
Iterative filtering decomposition based on local spectral
evolution kernel

Yang Wang1, Guo-Wei Wei1,2, and Siyang Yang1

1 Department of Mathematics Michigan State University, MI 48824, USA
2 Department of Electrical and Computer Engineering Michigan State University, MI 48824, USA

Abstract
The synthesizing information, achieving understanding, and deriving insight from increasingly
massive, time-varying, noisy and possibly conflicting data sets are some of most challenging tasks
in the present information age. Traditional technologies, such as Fourier transform and wavelet
multi-resolution analysis, are inadequate to handle all of the above-mentioned tasks. The empirical
model decomposition (EMD) has emerged as a new powerful tool for resolving many challenging
problems in data processing and analysis. Recently, an iterative filtering decomposition (IFD) has
been introduced to address the stability and efficiency problems of the EMD. Another data
analysis technique is the local spectral evolution kernel (LSEK), which provides a near prefect low
pass filter with desirable time-frequency localizations. The present work utilizes the LSEK to
further stabilize the IFD, and offers an efficient, flexible and robust scheme for information
extraction, complexity reduction, and signal and image understanding. The performance of the
present LSEK based IFD is intensively validated over a wide range of data processing tasks,
including mode decomposition, analysis of time-varying data, information extraction from
nonlinear dynamic systems, etc. The utility, robustness and usefulness of the proposed LESK
based IFD are demonstrated via a large number of applications, such as the analysis of stock
market data, the decomposition of ocean wave magnitudes, the understanding of physiologic
signals and information recovery from noisy images. The performance of the proposed method is
compared with that of existing methods in the literature. Our results indicate that the LSEK based
IFD improves both the efficiency and the stability of conventional EMD algorithms.
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I Introduction
Information extraction, complexity reduction, data analysis, signal and image understanding
have become increasingly important in the society today. With explosive advancement of
information technology, scientists and engineers have been dealing with huge quantity of
multi-disciplinary data with greater complexity, increasingly false information. In many
areas including bioinformatics, biological and biomedical sciences, information technology,
national geophysical researching, and financial stock market, traditional data analysis and
data mining techniques are not always sufficient for inspecting, filtering, understanding,
modeling and analytically predicting the large volume of complex data.

Traditionally, Fourier analysis has been widely used for signal processing and data analysis.
The Fourier method provides a general approach to study the global energy/frequency
distribution. Although this method is valid and easy to implement under very general
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conditions,50, 63 there are some well known limitations. The traditional Fourier spectral
analysis is based on the assumption that data is piecewise stationary. Therefore, it is not
suitable for analyzing data of non-stationary nature. The Fourier method defines uniform
harmonic components globally, so it needs many additional harmonic components to
simulate non-stationary data that are non-uniform globally. This leads to the spreading of
energy over a wide frequency range, and thus the additional spurious harmonics can not
faithfully represent the true energy exactly due to constraint of energy conservation. This is
one example where mathematical picture can not guarantee and lead to the correct physical
picture. In practical applications of the method, it may be difficult to choose a suitable
window size to satisfy the conflicting requirements of localizing an event in time, which
favors narrow window width, and longer time series for better frequency resolution. In
addition, the method is not data adaptive. In many applications in signal processing, one
usually desires information of localized spatial and temporal dimensions, which is not well
addressed in the Fourier spectral analysis.

Another popular technique is the wavelet transform which is very useful in analyzing data
with gradual frequency changes, especially in edge detection and image compression, and
also, to certain degree, for time-frequency distribution in time series. The wavelet approach
is essentially an improved Fourier spectral analysis equipped with adjustable windows. The
general definition includes the convolution of the basic wavelet function with original
signals.13 Wavelet parameters are used in the formula to specify the dilation factor whose
inverse gives the frequency scale, and the translation of the origin which specifies localized
temporal location. In spite of the many appealing features of this versatile method,24, 60 e.g.,
being able to capture discontinuities successfully, providing uniform resolution for all the
scales, etc., wavelet analysis is basically a linear analysis and suffers from many limitations.
The down sides include uniformly poor resolution due to the size of the basic wavelet
function, sometimes counter-intuitive interpretation from the wavelet analysis, and non-data
adaptive nature as the same basis wavelet function has to be used to analyze all the data.30

Moreover, since some commonly used wavelets, e.g., Morlet wavelet, are based on Fourier
method, it therefore inherits many shortcomings of the Fourier analysis as well.

The empirical mode decomposition (EMD) was introduced by Norden Huang32 to define
and extract series of instantaneous frequencies beyond the traditional Fourier spectrum
analysis. The local information extraction employed in the EMD is especially useful for
analyzing signals which are nonlinear and non-stationary. The method can be used to
decompose a time series into a sum of intrinsic mode functions (IMF) based on the local
characteristic time scales of the data. By requiring these IMFs to have equal (or different by
one) number of extrema and zero crossings and to have zero mean value of the envelopes
defined by the local extrema, the method admits better behaved Hilbert transforms and leads
to meaningful readings for the instantaneous frequency of the data. With the Hilbert
transform, the IMFs yield instantaneous frequencies as functions of time that accurately
match with and identify embedded structures. The EMD is thus aimed at decomposing a
complicated signals into various IMFs with separated frequency in the time domain. As
illustrated in many previous studies, noises can often be well filtered to arrive at clean and
accurate modes and residues of the original signal. In processing and analyzing signals and
images, EMD allows one to freely choose low pass filters for decomposition. The EMD has
been successfully applied in image and signal processing37, 55, 61, 62 and in analyzing a very
diverse category of data sets and real time series32 in areas and fields, including material
texture analysis,42, 54, 77 handwriting recognition,,78 geology and seismology,34, 64 optics
and sound waves,23 weather and wind,31, 75 ocean wave and turbulence,31, 44 and biological
and biomedical sciences.10, 22, 51, 79 Through various numerical and real data, it has been
shown that the EMD provides a clearer picture of the underlying physical processes and well
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defined instantaneous frequencies complementary to the global energy — frequency
distributions as analyzed by Fourier analysis63 and its variations.13, 17, 40, 50, 60

Many algorithms have been proposed to improve the performance and stability of the EMD.
Given the definition of the IMF above, one still has to design efficient working algorithm of
the EMD in decomposing data. A practical challenge is that most data are not associated
with clear instantaneous frequency such that, at any given time, the data may involve more
than one oscillatory mode and the simple Hilbert transform cannot provide the full
description of the frequency content for the general data.43 To decompose the data into
various IMFs effectively, the sifting process was proposed.32 As the name indicates, the
sifting process works by separating the finest local mode from the data based only on the
characteristic time scales. The local maxima and minima of the original signal are
respectively connected through cubic splines to form upper and lower envelopes. The
average of the two envelopes is then subtracted from the original data. The sifting process is
used to eliminate riding waves and to make the wave profiles more symmetric. Usually the
process is repeated recursively until various modes are extracted. Essentially, the sifting
process is an intuitive and direct implementation of low pass filtering, which leads to the
easy implementation and effective performance of the EMD method.

The sifting algorithm in the EMD is highly adaptive due to the intuitive design, but the
trade-off is the loss in stability, i.e. final modes are sensitive to the small variation of data as
well as a lack of mathematical understanding of the algorithm. The ensemble EMD (EEMD)
was introduced in an effort to mitigate the stability concern.74 But it is only a partial fix and
it greatly increase the computational cost. The sifting process has the effect of smoothing
uneven amplitudes due to the nature of low pass filter. It is necessary in case the neighboring
wave amplitudes have large disparity, but it also introduces the risk of over-smoothing. The
common observation is that too many siftings may drain all the physical meaning, but too
few siftings do not yields enough IMF components to separate different time scales. This
reveals the importance of choosing a suitable low pass filter, as will be discussed in the next
subsection. As far as sifting process is used, to guarantee the IMF components retain
physical sense and to avoid over-smoothing, certain type of stopping criterion is necessary.
This is usually accomplished by limiting the size of the standard deviation which measures
the difference between two consecutive sifting results. Not surprisingly, putting constraint
on the standard deviation introduces additional limitations in terms of convergence and
finite number of IMFs. Apart from the above concerns and limitations, the EMD also lacks a
rigorous mathematical foundation due to the ad hoc construction of envelopes using cubic
splines. Alternative EMD methods can be constructed by replacing cubic splines with B-
splines,15 but the fundamental difficulty is not resolved. Though B-spline approach has
opened a new set of possible decompositions, one still has to determine which spline and
what order to use. Alternative algorithms using moving average for the EMD was proposed
to improve upon sifting algorithm in addressing some of the above concerns. Moving
average and earlier sifting algorithms calculate the instantaneous frequencies of the data via
a simple way of constructing envelopes.

Recently, iterative filtering decomposition (IFD) was introduced by Lin, Wang and Zhou to
address the above mentioned difficulties.41 On one hand, although the IFD is motivated by
the EMD, it is a much simpler approach that by-passes the Hilbert transform in the original
EMD. The starting point for IFD is a low pass filter from which an IMF can be extracted
using a modified sifting algorithm (iterative filtering). The entire IFD can be built on a series
of low pass filters with decreasing localizations. It is shown that for given degrees of
localization, the extraction of an IMF is extremely stable. Indeed the IFD has proven itself to
be an extremely viable tool for data decomposition and analysis. In addition to having much
better numerical stability compared with the original EMD, it has a rather rigorous
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mathematical foundation, where the convergence is well understood and broadly
analyzed.41, 66 Another significant advantage of IFD over the traditional EMD is the
possibility of “horizontal” comparisons between the IMFs of data. The horizontal
comparison refers to the approach in which various signals of the same class (e.g.
earthquake waves in different places or time periods) are decomposed into same number of
modes, and modes with same index for different signals are compared in terms of certain
feature characteristic. In the traditional EMD, due to its sensitivity to small perturbations and
the ad hoc nature of spline envelopes, horizontal comparisons between IMFs are
meaningless. With IFD, if the low pass filters are chosen identically at each stage the
corresponding IMFs will encode comparable informations and thus comparison makes
sense. This advantage is already proven useful in several applications such as stochastic
modeling,82 visual stylometry45 and physiological data.46 The IFD can help resolving some
of the long standing challenges, such as how to link the intra-wave frequency modulation
with nonlinear nature of the data. It also works for higher dimensional data, something the
traditional EMD cannot do naturally. Nevertheless a comprehensive comparison between
ordinary EMD and IFD have not been reported, and the performance of the IFD in broader
applications has yet to be explored.

The local spectral (LS) method introduced by Wei67, 72 is closely related to and improved
upon the Fourier spectral method. Although Fourier spectral methods provide spectral
convergence in approximating data and solving partial differential equations (PDEs), they
are generally restricted to certain boundary conditions and regular geometry or
computational domains. Alternatively, a family of local spectral methods has been proposed
as generalization of global spectral methods to overcome the limitations of classical spectral
methods including Fourier spectrum methods. The LS methods provide a framework for a
unified description of Galerkin, collocation, and finite difference methods.68, 72, 76 In some
sense the local spectral methods provide a wavelet collocation approach to singular
convolutions using locally confined kernels. The algorithm succeeds in many applications
such as solving nonlinear equations,7, 69, 83 fluid flows,65, 70, 86, 87 electromagnetic wave
propagation,5, 6, 58 and image analysis.28, 71 For numerical simulation including arbitrarily
complex geometry, LS methods usually achieve good performance comparable to, though
usually not as robust as, finite element, finite difference, and finite volume methods. Besides
achieving optimal balance between global spectral methods and finite element methods, LS
methods also benefit the computer simulation by employing only the simple uniform grid
points while most other spectral methods, except for Fourier pseudospectral methods, adopt
non-uniform grid points, e.g. Laguerre-Gauss-Radau points and Chebyshev-Gauss-Lobatto
points. It is clearly more advantageous to use uniform grid in many cases including explicit
integration of evolution PDEs.

Recently, local spectral evolution kernel (LSEK), a novel LS method, has been constructed
to solve PDEs with high order accuracy.80 Derived from Hermite function expansion of a
time evolution operator, the LSEK achieves spectral accuracy and local flexibility.
Compared to other methods, LSEK is an explicit method employing uniform mesh of grid
points. It is numerically stable and efficient with all the weights computed once only in the
whole computation. As a local spectral method, the LSEK offers controllable and spectral
accuracy in both spatial and temporal discretization. The complexity of the LSTS method is
(2M + 1)N (where 2M + 1 is the length of stencil and N is the number of truncation like in
any other spectral method).80) N is the and scales as O(N) at a fixed level of accuracy such
that it is numerically fast. The other merit LSEK offers as local spectral method is that it has
the same flexibility as finite difference methods in handling complex boundary conditions.
Therefore, The LSEK serves as a good alternative to the Fourier analysis method due to its
flexibility in choosing grid points and handling boundary conditions. The LSEK is also a
near-perfect low pass filter with desirable time-frequency localizations.80 However, the
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utility of the LSEK for data analysis, and signal and image processing has not been
explored.

The objective of this paper is to explore the utility of the LSEK as a robust low pass filter
and implement it in the IFD for signal processing, information extraction and image
analysis. Our goal is to combine the robustness of the LSEK as a low pass filter and the
utility of the IFD so as to construct an efficient, stable, and robust method for a wide variety
of applications. Through the various numerical tests and applications described in this paper,
we will illustrate that the IFD in combination with the LSEK exhibits great accuracy,
stability and flexibility in extracting intrinsic frequencies of various signals, images, and real
time series. The proposed approach is expected to be applicable to a more general category
of applications to complement the traditional spectral methods, wavelet methods and EMD
approaches.

The rest of this paper is organized as follows. In Section II, theories and algorithms of both
the LSEK and the IFD are presented in details. In particular, the LSEK is derived in the
framework of path-integral formulation. It is shown that a low pass filter for signal
processing is essentially equivalent to the wave propagation under the action of the
Schrödinger operator, with a position-independent potential operator. This fundamental link
between the quantum wave propagation and image/signal processing reveals how the
uncertainty principle plays a role in the time-frequency analysis. Numerical tests and
validation for the LSEK based IFD are discussed in Section III. Both benchmark synthetic
functions and noise removing are used for the testing purpose. Applications are carried out
in Section IV to a wide range of problems, including financial real time series, ocean wave
records, physiologic signals, and images used for edge detection and noise removal. We also
propose a new way of edge enhancement and image reconstruction based on IFD modes.
This paper ends with a conclusion.

II Theory and algorithm
In this section, the IFD and LSEK are briefly reviewed, which are integrated into a new
algorithm for extracting IMFs from various types of signals and real time series. An
improved version of the IFD is used in this paper, which has the flexibility to be coupled
with other techniques such as machine learning. A Hermite function representation of the
time evolution operator of the LSEK is discussed in details which forms the basis of low
pass filters used for signal processing in Section III and IV.

II.A Mode decomposition algorithms
In this subsection we discuss two non-standard mode decomposition algorithms. We first
provide a brief review to the empirical mode decomposition (EMD) and analyze its utilities
and advantages in data analysis. The iterative filtering decomposition (IFD) is presented to
establish notations and facilitate the further algorithm development in the paper.

II.A.1 Empirical mode decomposition (EMD)—The concept of instantaneous energy
has been well accepted in signal processing, but the instantaneous frequency has been
controversial.11, 18 In the traditional Fourier method, the frequency (or spectrum in some
sense) is defined in terms of sine (or cosine) basis spanning the global data region with
constant amplitude. As an extension, instantaneous frequency needs to be related to sine or
cosine basis to some extent, which requires at least a reasonable number of full oscillations.
Such requirement would pose difficulty in defining instantaneous frequency for non-
stationary data. One relevant but independent difficulty is that, in most practice,
instantaneous frequency is usually not uniquely defined. The difficulty is partially taken care
of by introducing means to make data analytical through Hilbert transform8
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(1)

where PV is the Cauchy principal value. It is clear from Eq. (1) that XH(t) and X(t) form
complex conjugate pair such that Z(t) = X(t) +iXH(t = |Z(t)|eiθ,(t) defines the instantaneous
frequency ω(t):= θ′(t). In this way, instantaneous frequency of signals can be proposed and
calculated, which is the conceptual innovation of the EMD. When it was constructed, the
EMD was proposed for analyzing nonlinear and non-stationary data.22 The key idea is to
decompose the arbitrarily complicated data into small number of IMFs that admit well-
behaved Hilbert transform. By the way it was designed, the decomposition is a highly
adaptive scheme as complement to the Fourier and wavelet transform. The EMD is based on
the local characteristic time scales of the data, it is applicable to nonlinear and non-
stationary processes. The local energy and the instantaneous frequency derived from the
IMFs through the Hilbert transform can give us a full energy-frequency time distribution of
the data. However, it has been well known that instantaneous frequency defined above is
still not well-defined or meaningless for many types of data. Instead, one has to consider
narrow band limitations of instantaneous frequency. Yet again, since bandwidth are usually
defined in the global sense, the bandwidth limitation of instantaneous frequency has never
been firmly established. In order to obtain meaningful and well defined instantaneous
frequency, restriction condition is modified from a global one to a local one in the EMD. It
is from this local restriction that the EMD was proposed to decompose data into IMFs for
which the instantaneous frequency can be defined everywhere.

An IMF is a function that satisfies two conditions: (1) In the whole data set, the number of
extrema and the number of zero crossings must either equal or differ at most by one, and (2)
each function is symmetric with respect to the local zero mean. The first condition is similar
to the traditional narrow band requirements for a stationary Gaussian process. The second
condition really implies that, with this definition, the IMF in each cycle involves only one
mode of oscillation with no overlapping with complex riding waves. This definition
modifies the classical global requirement to a local one such that instantaneous frequency
will not have the unwanted fluctuations induced by asymmetric wave forms and thus it
allows decomposition of even non-stationary signal into IMFs. With the physical approach
and the approximation adopted here, the original EMD algorithm does not always guarantee
a perfect instantaneous frequency under all conditions. Nevertheless, even under the worst
conditions, the instantaneous frequency so defined is still consistent with the physics of the
system studied and agrees with the definition of frequency for the classic wave theory.73

II.A.2 Iterative filtering decomposition (IFD)—Recently, an alternative scheme called
iterative filtering with moving average was introduced by Lin, Wang and Zhou41 to replace
the mean of the spline-based envelopes in the sifting algorithm. Due to its entirely parallel
functions with the EMD, it is called iterative filtering decomposition (IFD) in the present
work. Apart from numerical benefits gained using this iterative filtering, the IFD is placed in
a more rigorous mathematical framework for analysis. The use of low pass filtering to create
moving averages avoids the lack of analytical characterization of the cubic and other spline
envelopes. This new IFD is a stable, efficient and robust analytical tool for signal and image
processing. This new algorithm is able to link the intra-wave frequency modulation with
nonlinear nature of the data. Additionally, the IFD also provides a more effective way to use
all the data to define the the long-period component, which is especially valuable in
extracting low-frequency oscillations in transient data series without zero or mean
references.31
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Let L1 be a low pass filter, and repeated application of the high pass filter (1 − L1) on the
original discrete signal X yields the first IMF F1,

(2)

The convergence of the iterations is guaranteed if certain spectral properties are satisfied by
L1.41 The next IMF F2 is obtained by choosing a second low pass filter L2 and sifting again

(3)

By choosing a series of low pass filters L1, L2, …, Lm and iterating (3) yields the IMF Fk as

(4)

The final residue is obtained by

(5)

where m is total number of IMFs. Each IMF Fk extracts mode with lower frequency than the
previous one, and the residue retains the information of the trend of X.

A class of low pass filters suitable for IFD, which was proposed in,41 is the double average
filter, which generates the moving average by averaging over a centrally symmetric interval
twice. More precisely, the double average filter L with mask of window size N generates the
moving average of a signal X by convolution

(6)

where aj = (N + 1 − |j|)/(N + 1)2. The fact that window size N can be chosen adaptively is
crucial for extraction of modes with different frequencies, which is more flexible than the
traditional EMD and often other methods like Fourier transform and wavelets. They have
proven effective in applications.45, 46 However, the fact that double average filters and other
filters used in IFD employ uniform mask (with adaptive window size) to obtain moving
averages can be a significant limitation, especially for processing non-stationary data.

Based on the above discussion, we propose implementing a newly constructed low pass
filter in the IFD so as to address all the above mentioned problems and concerns while
retaining all the desired advantages associated with the IFD based EMD.

II.B Local spectral methods
In general, spectral methods are global in nature, which contributes to the exponential
convergence with respect to the increase in the number of grid pints. However, the same
global characteristic leads to the lack of flexibility for different boundary conditions and
complex geometry, and the much desired exponential convergence also implies instability,
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especially when non-uniform meshes have to be used for explicit time integration. Partially
motivated by the limitations of global spectral methods and inspired by the wavelet theories,
local spectral methods were proposed to combine the merits of both classes of methods
while avoiding the shortcomings. The early version of local spectral methods were called
discrete singular convolution which provides a framework to unify Galerkin, collocation and
finite difference methods.67, 68, 72, 76, 83 To some extent, local spectral methods can be
viewed as a wavelet collocation approach to singular convolutions using locally confined
delta kernels.

II.B.1 Path-integral formulation—There are many ways to derive the local spectral
methods. In the present work, we start from a path-integral formulation. In the following
derivation, we follow the standard derivation for time-evolution operator in the path integral
in quantum mechanics. The dynamics information for quantum mechanics is contained in
the matrix elements of the time-evolution operator U(tf, ti) which is the solution of the
evolution equation

(7)

where the Hamiltonian takes the form

(8)

For a time-independent Ĥ one has

(9)

and when the Hamiltonian is time-dependent

(10)

where  is the time-ordering operator.

Now we assume V is not a function of x,

(11)

such that time-ordering operator can be removed since non-conjugate pair (x, p) no longer
exists. To evaluate the matrix element associated with Hamilton operator, one usually inserts
identity operator

∫ |p〉 〈p|, where the eigenstate |p〉 of momentum operator p̂ is also eigenstate of H under our
current approximation (11), i.e.,

(12)
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with relation

(13)

Thus Eq. (12) simplifies Eq. (10) to be

(14)

With initial condition U(tf = ti, ti) = I, time-evolution operator U (tf, ti) propagates the
wavefunction from ti to tf, i.e., Ψ(tf) = U (tf, ti)Ψ(ti). By definition, one can derive one
important property of time-evolution operator,

(15)

which leads to the time-slicing in path integral formalism of quantum mechanics. For our
design of LSEK, we are interested in the matrix elements of U in position representation,
which is usually referred as kernel K, defined by

(16)

which can be interpreted as transition amplitude

(17)

Equation (17) now can be written in the form

(18)

where Eq. (14) has been inserted and Eqs. (12) and (13) have been used. Here H(t) is
defined by replacing p̂ with p:

(19)

II.B.2 Local spectral evolution kernel (LSEK)—The original motivation for deriving
LSEK is to analytically integrate the partial differential equations of the form
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(20)

Now we re-write Eq. (18) by replacing Hamiltonian operator in (8) by  in (20),

(21)

where , etc.

The Dirac delta function in Eq. (18) can not be digitized directly in computer programming.
There are many different approximations for discretizing delta functions. In some other
versions of local spectral methods, regularized Shannon kernel has been used in the form

(22)

or Dirichlet kernel of the form

(23)

can also be used. In the equation, M′ denotes window size and h is grid spacing.

In deriving LSEK, we use Hermite function representation, which can be defined in several
slightly different ways, and with no loss of generality we choose the following definition

(24)

The delta distribution function can be expressed in terms of series as follows

(25)

where coefficients cn can be solved and shown to be

(26)

where the terms with odd n are zero. Therefore, Hermite function representation of delta
distribution is
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(27)

and derivatives are given by

(28)

where the relation  has been used. One usually needs to truncate
summation after Mh terms, which yields a numerical implementation of Hermite local
spectral kernels.

Since evolution operator K in its position representation has a toeplitz matrix, i.e. K(x, x′, t, t
′) = K(x − x′, t, t), we can write out the Hermite function representation developed above:

(29)

By using the generating function (24) and following standard Gaussian integral, one can
derive the explicit form of LSEK as follows,

(30)

where  Solution of PDE (20) can be analytically approximated by

(31)

A more convenient form ready for numerical coding is given by

(32)

Multidimensional generalization is straight-forward,

(33)
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II.C LSEK based IFD
The LSEK has been tested and illustrated to achieve spectral accuracy comparable to global
spectral methods in solving various types of real and complex PDEs, while maintaining
flexibility for complex boundary conditions and geometry. When applied to signal and
image processing, the LSEK can be used as a robust low pass filter if the PDE solved
describes the Wiener process. The governing stochastic Fokker-Planck equation of the
Wiener process is given by

(34)

where D is the diffusion coefficient. The Wiener process can be analytically resolved by
Fourier pseu-dospectral method, and numerical results are obtained in a single time step
with a given initial data. It has been illustrated in our earlier work81 that the LSEK achieves
higher accuracy and stability compared to the Fourier pseudospectral method for many data
settings. In applying the LSEK to solve the Fokker-Planck equation (34), Dirichlet boundary
condition is usually adopted. Domain size is specified according to the signal under study.
As emphasized many times before, LSEK employs a uniform grid mesh. Consequently, one
has to choose an appropriate scaling parameter σ consistent with the maximum order Mh of
Hermite function used in the truncation of expansion (27). In the applications to the IFD, a
relatively small value of Mh is enough for numerical convergence. A value of 20 is chosen
for Mh in all the applications in this paper. The optimal value of σ is chosen according to the
central frequency π/h. A detailed list of summary of choices of σ is given in Table 1 by Yu,
et al.81 The window size M is usually chosen according to the signal oscillation and the
frequency of the IFD mode of interest.

In combining low pass filter with IFD (4), one needs to choose a reasonable stopping
criterion to truncate the number of iterative filtering in limn→∞. The empirical nature of IFD
method leaves much flexibility in such a choice of stopping criterion without significantly
changing the quality and characteristics of various IFD modes. For numerical convenience, a
maximum number of 10 iterative filtering are used for the IFD in this work.

II.C.1 Implementing LSEK—A high-level LSEK pseudocode with interface to EMD
driver is given below. The pesudocode can be easily generalized to multi-dimensional case.

Initialization Initialize parameters: NIFD (total number of desired IFD modes), MIFD(1:
NIFD) (number of iterations for each IFD mode), xmax(:), xmin(:), Δx(:), MLSEK (the value of
M in Eq. (31)), Mh (the parameter in Eq. (30)), σLSEK (the value of σ in Eq. (27)), and other
specific problem-related parameters such as diffusion coefficients.

DO I1=1, Mh: calculate evolution kernel Kh,σ in Eq. (30)

FOR X=A(t), B(t), C(t), DO: Calculate  according to Eq. (20).

FOR all grid points: Calculate Kh,σ(x) by summing over all the orders of Mh.

DO I1=-M,M: Intergrate PDE (31) explicitly in one time step

Output and finish LSEK subroutine: Calculate L2 and L∞ norms, and generate various
output files depending on the problem to be solved.
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II.C.2 Implementing IFD—Based on the LSEK low pass filter algorithm, the procedures
of applying IFD to signal (or image) processing are briefly itemized as follows.

I. Prepare initial setup for both IFD and LSEK. Additional parameters (e.g. number of
total IFD modes) used in the IFD are also required to be initialized at the beginning
of the computation.

II. Implement mode computation.

i. Code do-loops over all the IFD modes.

ii. In each do-loop, code embedded do-loops over all the iterative filtering
procedure to generate one specific intrinsic mode.

iii. In each iterative filtering step, call LSEK subroutine to perform low pass
filter L as in Eq. (2).

III. Finish the IFD computation and generate output files (or images) for all the IFD
modes and corresponding partial and final residues. These outputs can be used for
various kinds of analysis, e.g. edge detection, trend plotting, oscillation study, and
noise removal.

II.C.3 Reconstructing image from IFD modes—One additional merit using the IFD is
the availability of obtaining many mode characteristics of different scales. When applied to
image processing, for example, various modes contain information of edge, noise, and
trends. As will be illustrated in the next section of validation, The IFD using the LSEK
enables one to extract more and subtle intrinsic modes. For instance, noise and edge usually
shares the similar feature as high frequency modes of image, and is thus difficult to separate.
Using the currently proposed IFD, we can separate the two types of information. Moreover,
we can use these IFD modes to reconstruct better image with denoising and edge sharpening
performed together. A sample algorithm looks as follows.

I. Perform IFD. LSEK is used to separate out fine details in various IFD modes. The
whole procedure is called “overall-IFD”.

II. The first IFD mode, mode 1, contains both edge information and highly oscillating
white noise with zero mean. Mode is selected as individual image and decomposed
further using another independent IFD procedure. This is called “individual-IFD”
procedure. The final residue of the individual-IFD procedure contains the trend of
mode 1 (which differs from the trend of the original image).

III. Reconstruct image by adding the residue of mode 1 to the denoised image (which is
usually the mode 2 obtained from the overall-IFD).

IV. Further and future improvements.

i. For simplicity, parameters for overall-IFD and individual-IFD are chosen
to be same. In future applications, one has the flexibility to further fine-
tune various sets of IFD and LSEK parameters.

ii. One can perform individual-IFD for each modes generated from overall-
IFD algorithm. And one can arbitrarily combine all the modes and
individual trends of each mode.

All the above algorithms are used in the next sections of validation and applications to
various model signals, real time series and two-dimensional images. Figure 1 summarizes
the above procedure.
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III Numerical test and validation
In this section, we apply the LSEK based IFD to several benchmark testing cases to
demonstrate the flexibility, efficiency, and accuracy of the new IFD mode analysis using the
new low pass filter.

III.A Test on mode decomposition
We first illustrate the efficiency and accuracy of the current IFD applied to the analytically
composed signal. As shown by Huang et al.,32 by stationary phase approximation,19 the IMF
designed this way agrees with the best fit sinusoidal function locally. Therefore, we do not
need a whole oscillatory period to define a frequency value. In this sense, even a monotonic
function can be treated as part of an oscillatory function and have instantaneous frequency
assigned. A frequency variation is designated as frequency modulation. In Figure 2, original
signal is taken of the form f(x) = sin(x) + sin(4x) + sin(8x). For all the cases shown in this
section, unless otherwise specified, periodic boundary condition is used in the computation.
For this simple linear and stationary signal, one expects the separation of three clear modes
corresponding to sin(x), sin(4x) and sin(8x) respectively. As shown in the figure, the IFD
indeed decomposes the signal into a sum of oscillatory IMFs that have the same numbers (or
different by one) of extrema and zero-crossings. Each mode is symmetric with respect to
local zero mean as designed. Residue can be obtained for each signal when all the IFD
modes are subtracted. For the signal studied in Fig. 2, clearly the trend is zero when the
three oscillatory modes are removed, as is indeed the case as shown in the figure.

A similar but more challenging testing case is when all the IFD modes have close
frequencies. When band-width of various modes get close, they are more difficult to be
separated using normal global low pass filters. Using the LSEK, the low pass filter is more
flexible and data adaptive. As shown in Fig. 3, which is very similar to Fig. 2 except that
signal is composed of f(x) = sin(x) + sin(2x) + sin(3x). The separation of modes becomes
more challenging as there are multiple modes with close frequencies.41 A very clear
distinction of all the three IMFs are obtained with zero residue after three modes are
subtracted.

When one mode is highly oscillatory, one essentially introduces noise. In Figure 4, the
signal f(x) = sin(x) + sin(4x) + eegr;(x) contains random (Gaussian-type) noise so that SNR
of the signal is -6dB. This is a rather challenging case since the noise is comparable to the
signal strength.41 Using the same IFD algorithm, now one obtains three modes as shown on
the right panels in Figure 4. The first one clearly corresponds to the white noise with zero
mean and high frequency oscillation. The next two modes are the IMFs corresponding to
sin(4x) and sin(x). The accuracy of the 3rd mode is not as accurate as in previous cases of
Figures 2 and 3 because of the noise term. But there is still good matching between the black
line of IMF and red line of analytical values of sin(x).

III.B Test on non-stationary data
Now we test our algorithm on the highly non-stationary signal f(x) = cos(4πλ(x)) + 2
sin(4πx) where λ(x) can be any non-stationary time series. In Figure 5, we choose

(35)
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The results show that IFD can be used to effectively, adaptively analyze highly non-
stationary data.41 The use of LSEK makes the algorithm very robust with respect to the
choice of parameters and window size.

In many of the previous work, nonuniform mask has to be used due to the highly non-
stationary nature of the signal. Using LSEK within IFD, we are expecting a more robust yet
accurate low pass filter to separate out various IMFs with much more desired stability than
methods proposed before. In

Figure 5, IFD and LSEK parameters are varied quite wildly and randomly in a large range.
Since results obtained using all these parameters behave and converge similarly as shown in
the figure, we randomly pick 5 sets of parameters for illustration. The values of all the
parameters are listed in Table 1 and results are plotted in Figure 5. Recalling the section on
theory and algorithm, there are 2 important types of parameters, i.e., number of modes and
maximum number of iterations in each IFD step, in the current IFD algorithm proposed by
Wang, et al.,41 and there are 5 sets of parameters, i.e., mesh size h, delta function width σ,
truncation terms Mh, diffusion time td and diffusion constant D, in the LSEK. In the actual
programming and numerical calculations, number of modes can be easily detected by
looking at the output of various modes, and one just stops when the residual is almost flat or
zero. When the LSEK is used as low pass filter, only the coefficient A(t) in Eq. (20) is
nonzero and is identical to the role of diffusion constant D in the conventional notations. In
the same manner, the propagation time range in this case can be denoted by td which is the
step size of integration giving the length of diffusion process. Since td plays the similar role
as D, we fix the value of td to be 10 while varying only D. As discussed before, optimal
value of σ is known for each given value of M and should not change. So, the total set of
parameters we need to vary and check for convergence are all listed in Table 1. For the
signal 35 we consider here, there are only 3 most characteristic IFD modes, including one
high frequency noise and one low frequency trend. In principle, one needs to assign value
for M, D, and maximum number of iterations for each mode, i.e. they are all vectors of the
size of number of IFD modes. Therefore, in each entry of Table 1, except for those on the
first column, there are 3 values corresponding to IFD modes 1, 2, and 3, respectively and in
order. As illustrated in the plots, current version of IFD combined with the LSEK shows
very stable and accurate mode decomposition with very robust choice of parameters.

III.C Test on chaotic dynamics
The study of classic nonlinear systems provides a simple yet rigorous analysis of all the
essentials of the possible nonlinear effects. We choose the Duffing equation which exhibits
interesting dynamics and has been studied extensively by other methods including the EMD
algorithm before.31 The Duffing equation can be written in the general form

(36)

Traditionally, the Duffing equation has been solved by the perturbation method.20 The
solution is then expressed as a series of basic frequency and its super harmonics. This is a
general approach of using (series of) linear functions to approximate nonlinear system. The
oscillation of Duffing-equation-generated systems is far from being constant-frequency
within a period, and the spectrum analysis calls for the local change of instantaneous
frequency modulations. To be more specific, one can define an average frequency ω =
∂H(J)/∂J, where J = 1/2π ∫ ∫ dpdq is the averaged action density. The total Hamiltonian H
is not represented by the action density variable instead of generalized momentum p and
coordinate q. In this action-angle canonical representation, the important parameter is
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averaged period of frequency instead of the shape of the phase-space plane. Yet the different
shapes of the phase curves represent the different details of oscillations. Such details are best
analyzed in terms of instantaneous frequency. We study a specific example by choosing
initial conditions and parameters as follows: x(0) = 1, x′(0) = 1, c1 = 0, c2 = 0.1, c3 = 0.279,
c4 = −1.1, c5 = 1. Numerical integration of ODE (36) gives the solutions for x(t) as in Figure
6, together with the phase-space trajectory. From the phase-space presentation, there is no
fixed point in the dynamics with currently chosen initial conditions, and the shape of the
phase diagram is deformed from a simple circle. If one uses Fourier method to analyze such
a phase diagram, many harmonics need to be contained in the Fourier expansion of the
solution. We apply the current IFD algorithm to the signal generated above, and obtain only
three IMF components as shown in Figure 6. Mode 1 corresponds to the high-frequency and
most energetic component representing the intrinsic frequency of the system. The shape of
mode 1 is far from being the simple sinusoidal form indicating the nonlinear nature of the
oscillator. IFD mode 2 corresponds to the frequency component representing the forcing
function. Mode 3 corresponds to the low-frequency component representing the very low-
intensity subharmonics. It actually represents the slow aperiodic wobbling of the phase.36

As a short summary, compared to the conventional EMD and iterative filtering algorithm,
the new IFD advances the methodology in at least two aspects. First, the number of total
modes is greatly reduced. In typical applications of the EMD to various signals, a lot of
modes are generated since the node is required to increase in the step of one for consecutive
mode separation.41 Using IFD, exactly and only those physically meaningful modes are
extracted, which would be very helpful for the mode analysis in various applications. For
example, signal sin(x)+sin(4x)+η(x) in Figure 4 is accurately decomposed into exactly 3
modes (compared to 11 modes in previous study41) corresponding to the two sinusoidal
waves and the noise. Secondly, the values of the two modes of sin(x) and sin(4x) are very
accurate compared to the similar results in Ref.41 The additional advantage of the IFD is the
flexibility and numerical stability in choosing values of various parameters. For example, in
most conventional EMD methods, number of iteration needs to be chosen appropriately in
order to avoid the blow-up in the numerical results. As illustrated in Table 1, a wide range of
values can be chosen for the iteration number, and the IFD results are not only stable, but
also remain very accurate over variations in various parameters.

IV Applications
The LSEK based IFD has been validated on various testing cases in the previous section.
The flexibility in extracting accurate and useful information from various types of signals
has been well illustrated. In this section, the new algorithm is applied to a few systems,
including real time series data containing real historical stock market data for S&P500, year-
record of ocean wave height, physiologic signals, and noisy images.

IV.A Stock market behavior and S&P500 index
The S&P 500 has been widely regarded as the best single gauge of the large cap U.S.
equities market since the index was first published in 1957. The index has over US $ 3.5
trillion benchmarked, with index assets comprising approximately US $ 915 billion of this
total. The name comes from the fact that the index includes 500 leading companies in
leading industries of the U.S. economy.

The S&P 500 is a free-float capitalization-weighted index of the prices of 500 large-cap
common stocks actively traded in the United States. By capitalization-weighted one means
the index whose components are weighted according to the total market value of their
outstanding shares. The stocks included in the S&P 500 are those of large publicly held
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companies, usually the leading companies in leading industries of the U.S. economy, that
trade on the largest American stock market exchanges.

There have been numerous studies and research conducted on analyzing the stock market
price data and using that analysis to either predict or distinguish various market behaviors.
In the additive model of the time series of stock price data, it is assumed that the series is
composed of three time-dependent components, the trend T(t), the cyclic (seasonal) C(t), and
the irregular oscillations (random noise) η(t),

(37)

The noise is usually assumed to be stationary and of zero mean, and various de-noising
techniques have been developed to remove high oscillation part. In mathematical modeling,
trend is the most interesting component to many as it in general contains information of long
term characteristic behavior. The whole time series composed of all the components are
inevitably non-stationary, so any in-depth study of the series needs to first separate/filter out
various modes for statistical modeling. Two complementary techniques are widely used to
decompose a time series not consisting of seasonal component: differencing and detrending,
which are essentially high-pass and low-pass filters. In many cases, the trend estimation is
more crucial and useful for both interpretation and forecasting. All the methods for trend
estimation are either parametric or non-parametric, depending on whether a priori smoothing
(e.g. polynomial) function, with parameters to be determined, is chosen. The parametric
approach suffers from the risk of using inappropriate parametric model. Therefore,
alternative non-parametric methods like moving average filters and exponential smoothing
filter are widely adopted and provide much flexibility and thus better fitting. Most of the
non-parametric methods make use of linear filters or regression estimators for trend
estimation. The key to the success of various filters in the non-parametric trend estimator is
to use and to adjust smoothing parameters to balance the tradeoff between smoothness and
fidelity.

The LSEK provides a global quantification with local flexibility to achieve optimal balance
between smoothness and fidelity. When implemented in the IFD, as validated in the
previous section, the LSEK is equipped with an adaptive yet accurate tool to decompose the
signal into various intrinsic modes and residue containing the trend information. We apply
the current algorithm to study the S&P500 index. In particular, we explore the correlation
between various IMFs of the index and the stock market behavior when it is close to crash.
By stock market crash one indicates a sudden dramatic decline of stock prices across a
significant cross-section of a stock market. The causes of crashes are complex and usually
result from synergetic impact from psychological panic and underlying economic factors.
Since the crashes often follow speculative stock market bubbles, one tends to believe they
are characterized by long term behavior strange from the normal trend. On the other hand,
there is no numerically specific definition of a stock market crash, but the term commonly
applies to steep double-digit percentage losses in a stock market index over a period of
several days. Crashes are often distinguished from bear markets by panic selling and abrupt,
dramatic price declines.

We will take the crash of 1987 for example which did not lead to a bear market. The
mid-1980s were a time of strong economic optimism. From August 1982 to its peak in
August 1987, the Dow Jones Industrial Average grew from 776 to 2722. The crash on
October 19, 1987, a date that is also known as Black Monday, was the climactic culmination
of a market decline that had begun five days before on October 14. The DJIA fell nearly 4%
on October 14, followed by another 4.6% drop on Friday, October 16. On Black Monday,
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the S&P 500 dropped by nearly a quarter, and liquidity of the stock market quickly dried up.
The Black Monday Crash was the greatest single-day loss that Wall Street had ever suffered
in continuous trading up to that time. This Crash also led to the introduction of the trading
curb on the stock market, i.e. a cooling off period would be enforced through mandatory
market shutdowns in such situation to help dissipate investor panic.

In Figure 7, the IFD analysis is performed on the half-year-long data for the S&P500 index
between July 19, 1987 and January 19, 1988. The reason to focus on the half-year behavior
centered on the date of Black Monday crash is that IFD with LSEK has the capability of
decomposing the signal into both IFD mode and trend that contain complementary global
and local information of the whole range of data. In the Figure, we show the original signal
embedded with trend (top left panel), IFD modes 1 and 2 (the two panels on the right), and
partial residue by subtracting IFD mode 1 (bottom left panel), i.e.

(38)

where n≤ the total number of IFD modes. IMF Fi is defined in Eqs. (2), (4) and (5).

For comparison, similar half-year data are chosen from one-year before and after 1987. The
corresponding IFD mode analysis is performed and results are given in Figures 8 and 9. By
studying and comparing S&P500 index in Figures 7 through 9, there are several
observations and conclusions. First, the trend yielded by the IFD with LSEK is clearly
characteristic and adaptive to very different market behavior in different years. In the year
1987 of big crash, the big drop is present in the smoothed trend curve. For all the other
years, a much smoother curve with no big oscillation is not observed. Secondly and more
importantly, current algorithms extracts the mode information in addition to the low
frequency trend. For all modes, oscillation is much larger (50) in 1987 than other years
(¡10). The first mode contains the highest frequency of zero-mean noise, and it has peak of
50 near the date of crash on 1987. For all the other period, oscillation of 1st mode is usually
smaller than 10. Similar phenomena are observed for other modes in various years, but the
peak and large oscillatory behavior become more globalized spanning the whole data region.
Such a large oscillation associated with various IMFs is expected to be correlated with the
local sharp-edge-like effect in the original signal, and the effect of localized crash (only a
few days around October 19, 1987) is seen to have a more global spanning in IMFs. The
sudden crash is not only indicated by the steep drops in the residue, but also characterized by
the large oscillation of various IFD modes. All these observations have certain implications
for the corresponding statistical analysis. Moreover, it is shown how the partial residues (38)
become smoother as more IFD modes are subtracted and how they approach the final true
residue. This would provide a sequential snapshot of the shape of trend compared to using
various independent window sizes in different low-pass filters.

IV.B Ocean wave magnitude
EMD has been extensively applied to the time series analysis with data collected from
laboratory and field experiments. As was noted and pointed out before,32 Fourier expansion
of the wave field is so natural that it has been closely associated with and taken as default
conceptual base in the general wave studies in almost all fields. But the harmonics used in
studies are not always physical, subject to the nonlinear and non-stationary nature and
boundary conditions of the field wave. It is not always physical to assume a collection of
such components should exist for all the time everywhere for Fourier analysis synthesis. It is
exactly in this sense that IFD provides an alternative framework. Some of the previous
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reports include analysis on the data from various channels, e.g., the laboratory data from
mechanically generated waves,30 whose frequency will down shift as they propagate and
thus exhibit non-stationary feature;9,38,53 field data of waves collected by the National
Oceanic and Atmospheric Administration (NOAA);33 satellite altimetry data for large scale
ocean circulation studies;48,56,84,85 the non-stationary earthquake data;1,27,49 and laboratory
wind data.32 In all the previous studies, the EMD has been compared with Fourier and other
methods to illustrate the associated Hilbert spectral analysis. Limitations together with
improvements have been discussed in much details in various applications on both
mathematical and physical grounds. Here we illustrate the utility of our IFD on the field data
of ocean wave magnitude.

Decision-makers at Tsunami Warning Centers must assess the hazard to coastal
communities by rapidly collecting and interpreting earthquake and sea-level data. Tsunami
forecasting technology is based on the integration of real-time measurement and modeling
technologies. Real-time monitoring and measurement of sea-level data in the deep ocean is
presently made by a seven-station network of DART (Deep-ocean Assessment and
Reporting of Tsunamis) systems. Tsunami data from the DART system can be combined
with seismic data ingested into a forecast model to generate accurate tsunami forecasts for
coastal areas.

The EMD has been developed to analyze the nonlinear data and signals beyond the
capability of traditional Fourier analysis. Data from real systems like earthquake and seismic
record are highly nonlinear and non-stationary which fits into the expertise of the EMD.
Based on the direct extraction of the energy associated with various intrinsic time scales, the
EMD is capable of effective decomposition of complex signals. The IFD improves the
efficiency and flexibility of EMD algorithms. A recently developed LSEK method can be
employed as a robust low pass filter and helps increase the stability and accuracy of
information extraction using the IFD. The new LSEK based IFD is applied to analyze the
real time series of ocean water wave height downloaded from the website of Coastal Data
Information Program (CDIP). The ocean water wave height is recorded by the station
number 134 located at Fort Pierce, FL.

In Figures 10 and 11, the field data of water wave height recorded in the whole month of
January and May, 2009, are studied using the IFD. Original raw data of the signal is plotted
on the top left of each figure, with the corresponding trend plotted on the top left. IFD
modes 1 and 2 are plotted on the middle and bottom left, with partial residue given in the
neighboring right panel. As shown in the figures, trend becomes smoother with more IFD
modes subtracted, similar to the analysis of S&P 500 data in the previous case. The high
frequency wave oscillation (due to random transient factors like wind and wave collisions) is
clearly separated from the low frequency wave trend (containing the direct information of
and close correlation to the fundamental driving forces like tsunami wave or earthquake
wave).32,47

The study here shows the possibility that, in the future real time monitoring, the ocean water
wave can by analyzed together with the correlated seismic data to yield a complete picture
of various modes and their evolution in case of predicting potential natural disasters like
tsunami.2

IV.C Physiologic signal analysis
The EMD has found greater interests and uses in medical image and signal processing and
analysis in the recent years. Among numerous medical data, we choose the data from
PhysioBank which is a large archive of well-characterized digital recordings of physiologic
signals and related data for use by the biomedical research community. PhysioBank
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currently includes databases of multi-parameter cardiopulmonary, neural, and other
biomedical signals from healthy subjects and patients with a variety of conditions with
major public health implications, including sudden cardiac death, congestive heart failure,
epilepsy, gait disorders, sleep apnea, and aging.

In Figure 12, we choose and apply the IFD to two sets of standard testing signals provided
as benchmark models in PhysioBank.16,29 The signal shown in the right panel is
contaminated with sharp local spikes. The IFD with quite flexible choice of parameters can
easily separate out the IFD mode (plotted in blue star) containing all the spikes in the
original signal. The signal shown in the left panel is known to have linear trend. Again, the
IFD easily separates out the mode from the signal. The resulting residue is clearly a linear
trend. The parameters used in this and the following signals cover a wide range, which
illustrates the relative stability of the IFD with LSEK.

In Figure 13, we then test the current algorithm on another two benchmark data sets with
known sinusoidal trends of period T = 128 and amplitude 2. The two data sets differ in the
degree of autocorrelation and noise. In addition, we also test the numerical stability and
convergence of the IFD by choosing different values of iterations corresponding to different
stopping criteria. Signals in the top left and top right panels are all known to have sinusoidal
trend, but with different levels of autocorrelation and noise. In the top left panel, black curve
shows the original signal with relatively large correlation and noise (and thus is more
challenging to denoise and to find trend), and the red curve is the first IFD mode. In the
bottom left panel, the corresponding sinusoidal trend is labeled with black circles connected
by dashed line. In the same time, we also choose different stopping criteria used for the IFD
to study and compare the convergence and stability. The values of N = 10, 20, 40 indicate
the number of iterations used before stopping. In the panel, all three curves were very close
to each other, which indicates good numerical stability and convergence of the IFD. In the
top right panel, signal with sinusoidal trend but smaller correlation is plotted with black
curve. Red line is the first IFD mode. In the bottom right panel, only one IFD with N = 10 is
plotted, since the convergence between IFD trend and exact sinusoidal trend is almost
perfect.

IV.D Image edge detection and noise reduction
Image processing has become important tool in many areas of research in physical,
mathematical and biological sciences.14,25,26,39,52 A key issue in pattern recognition,
computer vision, target tracking and image processing is the edge detection.3,4,12,21,35,57,59

Closely related to edge detection is noise reduction. Both operations are related to the use of
low pass filters (or high pass filters in the complementary way). In the LSEK, the time
evolution of local spectral kernel is identified as a low-pass filtering process. As illustrated
in the many references published before as well as in the validation and applications in this
paper, the LSEK is expected to be a very robust and reliable low pass filter. Together with
the IFD, it is natural to expect alternative or better algorithms for image processing. In this
section, we chose the 256 by 256 grey-scale Lena.tiff file for image processing. The same
image has been extensively used in the literature. The current LSEK based IFD is applied to
the original Lena image, the image added with relatively small and large Gaussian white
noise respectively. The purpose of studies is to illustrate the ability and performance of
current algorithm when used as edge detector, noise remover, and mode reconstructor
combining both of the former functions.

In Figure 14, the current methodology is compared with previous approach by Lin and
Wang41 who employed a multiscale total variation algorithm. Figures 14(a) and 14(b) are
the original images used in this paper and in Ref.,41 respectively. Various levels of
comparable noises are added to the images as shown in Figures 14(c) and 14(d), respectively
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in the work and in Ref.41 Denoised images are shown in Figures 14(e) and 14(f). In spite of
the slight difference in the resolution of original images and noise added, quantitatively it
can be observed that the current method works as well as various popular algorithms in use
now. The details of the cameraman in the image seem to be slightly better captured, but the
background denoising was better achieved in the previous work.41

In Figure 15, IFD with just 1 mode is applied to the original image in Figure 15(a).
Essentially, it is the direct application of LSEK low pass filter L itself. A small window size
of M = 3 is used for edge detection. The image corresponding to mode 1, i.e. I − L, is shown
in Figure 15(b).

Now we investigate the smoothing effect when large Gaussian white noise is added in to
Figure 15(a). The contaminated image is shown in Figure 16(a). The SNR is measured to be
8dB. The IFD with total 2 modes is applied to the image. In mode 1, a small window size M
= 3 is used to remove high-frequency noise, and the residue is shown in Figure 16(b). Then a
second mode decomposition follows with larger window size. Due to the flexibility of the
LSEK, value of M can be chosen with large flexibility in the range of M ∈ [10, 30]. Mode 2
is thus obtained and subtracted to yield residue of the original image. The whole process is
called smoothing. The final image is shown in Figure 16(c). In a similar way as before, we
draw a horizontal line in the middle of the image, and plot the values of grey scale along the
line. Results are gathered for comparison in Figure 17, in which lines with different color
correspond to various modes and residues. The black line corresponds to the original image.
The blue and red lines correspond to Figures 16(b) and 16(c). The green line shows the
highly oscillatory noise as captured in mode 1. It is clear from the Figure 16 that high and
medium levels of oscillatory noises are sequentially captured in modes 1 and 2 using current
LSEK based IFD. The resulting images become smooth, but at the cost of edge blurring. All
the above results not only show that the IFD with LSEK can be used to effectively smooth
noise or detect edge (as in Figure 15), but the IFD modes thus obtained can be effectively
and artistically used to reconstruct and enhance the noise-contaminated images.

One unique advantage of the IFD for image and signal processing is the mode
reconstruction. Various IMF yielded by the IFD not only reveals the physically important
frequencies at various time and length scales, it also provides a way to enhance the image
via mode reconstruction, which is for the first time explored in details in this paper. In
Figure 18(a), Gaussian white noise is added to the original image in Figure 15(a). Same
parameters are used for edge detection as in Figure 15, and this time the first mode shown in
Figure 18(b) is contaminated with random noise. Algorithm II.C.3 is applied for image
reconstruction. The trend, or partial residue, of mode 1 is shown in Figure 18(c). Note that
noise and edge share the similar feature of high frequency oscillation on the same length
scale in this case. Since the amplitude of noise is smaller than the one (as shown in Figure
16(d)) added to Figure 16(a), it is more difficult to separate noise from edge. Indeed, as
shown in Figure 18(b), one can recognize the edge embedded in the first IFD mode. To
enhance the image reconstruction, we continue to apply the IFD (which is termed
individual-IFD in Section II.C.3) to extract the trend of mode 1 alone. In Figure 19, we
randomly choose one horizontal line (without loss of generality, we choose the horizontal
line which cuts the 2D image into halves in the middle) and plot the values of grey scales of
this horizontal line. In the figure, z-axis labels the value of grey scale from 0 to 255 in the 8-
bit tiff image. The green curve on the bottom of Figure 19 corresponds to the signal
contained in mode 1, i.e. noise plus partial edge. The pink curve is obtained as the residue of
mode 1, i.e. when individual-IFD is applied to the mode 1. When compared to the black line
which shows the values of grey scale for the original non-contaminated image in Figure
15(a), one can clearly tell the similarity between the pink line and black line. It is no doubt
that some degree of edge information has been filtered into mode 1 and embedded into the
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random noise. One then has the choice of adding the residue of mode 1 back into the final
results obtained using IFD described above. We call this procedure edge-compensation.
Comparison is made between Figures 18(d) and 18(e), where the former is obtained using
the standard EMD as before, and the latter is edge-compensated. It is not difficult to visually
tell the difference. And signal-to-noise ratio is improved from 20 to 21.7 dB. In Figure 19,
blue and red lines correspond to the values of grey scale along the chosen horizontal line for
the second IFD mode (i.e. Figure 18(d)) and edge-compensated (i.e. Figure 18(e)) results
respectively. When the trend of mode 1 is added back for edge compensation, one can then
recover the partial edge mixed with high frequency noise which is filtered after mode 1
extraction. As shown in Figure 18(e), such a compensation leads to visual edge sharpening
together with denoising procedure. One can further improve the method by over-
compensating edge, i.e. multiply the trend of mode 1 and then add back to the IFD results.
This process is essentially edge improvement. In short, with the capability of various IFD
modes and strength of the LSEK low pass filter, one can improve the quality and/or analyze
the features of images with more flexibility and efficiency.

V Conclusion
A common challenge faced by researchers and decision makers in a wide variety of
disciplines as diverse as science, engineering, finance, medicine, and security is the
synthesizing information and deriving insight from increasingly massive, dynamic,
ambiguous and possibly conflicting data sets. Our objective of collecting and analyzing
these data sets is to derive in-depth understanding from them and to facilitate correct
decision-making. Conventional analysis tools, such as Fourier analysis, wavelet
decomposition, Hilbert transform etc., are insufficient for our current tasks. Recently,
iterative filtering decomposition (IFD) has been introduced to address the stability and
efficiency issues of the empirical model decomposition (EMD), an emerging powerful
method for resolving many challenging problems in data analysis and processing. Another
efficient data processing technique is the local spectral evolution kernel (LSEK)81 which
behaves like a perfect low-pass filer with balanced time-frequency localizations. The present
work capitalizes the merits of both IFD and LSEK to develop an efficient, flexible, and
robust scheme for information extraction, complexity reduction, and signal and image
understanding.

The LSEK is combined with the IFD to facilitate an empowered EMD. The theory and
algorithm of the proposed LSEK based IFD are presented in detail. The performance of the
proposed method is widely validated over a number of common tasks, including mode
decomposition, analysis of non-stationary data, information extraction from chaotic data
sets, etc. Specific applications are considered to stock market index analysis, ocean wave
decomposition, physiologic signal processing and information recovery from noisy images.
Some of the best results are obtained in the above mentioned studies. Comparison with
earlier methods has also been carried out.

The LSEK based IFD improves the efficiency as well as the stability of the conventional
EMD algorithm in applications to a wide category of synthetic, analytic and real time series
and images. Specifically, the new algorithm excels in several aspects. First, the LSEK-IFD
is capable of extracting more and useful physical features of signals. This is due to the use of
the IFD which not only improves the mathematical clarity of the instantaneous frequency
characterizing each IFD mode, but also stabilize each mode generation. Secondly, numerical
stability and accuracy is enhanced, in part due to the LSEK, a local spectral method, which
combines the spectral accuracy of Fourier method and flexibility of local collocation
methods. Thirdly, mode reconstruction is proposed for better signal and image analysis and
processing. As illustration, it is shown that how one can better reconstruct the image via
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proper treatment and use of various IFD modes. In particular, it is illustrated that edge can
be mixed with equally high frequency noise such that quality of image is reduced in
smoothing process. By applying a second individual-IFD to the overall-IFD process, one can
extract the edge information embedded in the IFD mode overwhelmed by random noise, and
this partial edge information can be used for edge-restoration or edge-enhancement.
Therefore, the IFD combined with LSEK can be used to dramatically improve the
applicability and performance of the EMD in signal and image processing.
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Figure 1.
Chart sketch summarizing the LSEK based IFD.

Wang et al. Page 27

J Sci Comput. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
IFD analysis for signal sin(x) + sin(4x) + sin(8x). The panel on the top left shows the
original signal. The three panels on the right show the IFD modes 1, 2 and 3 respectively
from top down. In each panel, exact mode is plotted with black line and IFD results are
shown by red circles. The IFD yields exactly the three modes as predicted analytically. The
bottom left one shows the residue after the above 3 modes are subtracted from the original
signal.
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Figure 3.
IFD analysis for signal sin(x) + sin(2x) + sin(3x). The panel on the top left shows the
original signal. The three panels on the right show the IFD modes 1, 2 and 3 respectively.
Black curve shows the exact values while red circles show the IFD results. The bottom left
one shows the residue after the above 3 modes are subtracted from the original signal. All
the notations are same as in Figure 2.
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Figure 4.
IFD analysis for signal sin(x) + sin(4x)+ noise. The signal-to-noise ratio (SNR) is −6dB. The
panel on the top left shows the original signal. The three panels on the right show IFD
modes 1 (which is high frequency noise), 2 (i.e. sin(4x)) and 3 (sin(x)) respectively. Black
solid curves show the exact values, and red circles show the IFD results. The bottom left one
shows the residue after the above 3 modes are subtracted from the original signal.
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Figure 5.
IFD analysis for signal cos(4πλ(x) * x) + 2 sin(4πx). The panel on the top left shows the
original signal. The three panels on the right show IFD modes 1 (which is high frequency
noise), 2, and 3, respectively. The bottom left one shows the residue after the above 3 modes
are subtracted from the original signal. In each individual panel, there are 5 lines embedded
and closely overlapping with each other, corresponding to the various choices of parameters
listed in Table 1.
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Figure 6.
Top left panel shows the phase space dynamics of the trajectory generated by the Duffing
equation. Panel on the top right shows signal dX(t)/dt as function of time. The rest four
panels show the original signal, IFD modes 1, 2, and 3, respectively in the order from top to
bottom and left to right.
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Figure 7.
IFD analysis for the half-year S&P500 index centered on Black Monday at Oct 19, 1987. Y-
axis is S&P500 index. Original index values are shown in black curves in the two left
panels, and IFD modes 1 and 2 are plotted with blue curves in the top right and bottom right
panels respectively. The red curve in the top left panel gives the trend yielded by IFD, while
the red one in the bottom left panel corresponds to the “partial” trend by subtracting mode 1
from original signal. The partial residues become smoother as more IFD modes are
subtracted. The sudden crash is indicated by both the steep drops in the trends and the large
oscillations of IFD modes.
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Figure 8.
IFD analysis for the half-year S&P500 index centered on Oct 19, 1986, one year before
Black Monday crash. The panels and notations are same as those in Figure 7. The magnitude
of the oscillations of various modes are much smaller than those in the year of big crash.
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Figure 9.
IFD analysis for the half-year S&P500 index centered on Oct 19, 1988, one year after Black
Monday crash. The panels and notations are same as those in Figure 7. The magnitude of the
oscillations of various modes are much smaller than those in the year of big crash.
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Figure 10.
IFD study of the historical record of real time series of ocean wave wave height in the month
of January 2009, recorded at station 134 Fort Pierce, FL. Y-axis is the wave height in
meters, and x-axis is date of the month. Original signal is plotted with black line in the top
left panel. The trend is plotted with red line in the same panel. The three IFD modes are
plotted in top right, bottom left and bottom right panels respectively.
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Figure 11.
IFD study of the historical record of real time series of ocean wave wave height in the month
of May, 2009, recorded at station 134 Fort Pierce, FL. Labels for the curves and order of
panel arrangement are same as in Figure 10.
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Figure 12.
In the left panel, signal with linear trend is shown. Original fast oscillating signal is plotted
with black curve. Mode 1 is shown in blue color, and residue is shown in red color. The
trend is perfectly linear as expected for the signal. Shown in the right panel is the signal with
sharp spikes. The original signal is plotted by black circles, and the first IFD mode is labeled
with red star.
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Figure 13.
Signals in the top left and top right panels are all known to have sinusoidal trend, but with
different levels of autocorrelation and noise. In the top left panel, black curve shows the
original signal with relatively large correlation and noise (and thus is more challenging to
denoise and to find trend), and the red curve is the first IFD mode. In the bottom left panel,
the corresponding sinusoidal trend is labeled with black circles connected by dashed line. In
the same time, we also choose different stopping criteria used for the IFD to study and
compare the convergence and stability. The values of N = 10, 20 and 40 indicate the number
of iterations used before stopping. In the panel, all three curves were very close to each
other, which indicates good numerical stability and convergence of the IFD. In the top right
panel, signal with sinusoidal trend but smaller correlation is plotted with black curve. Red
line is the first IFD mode. In the bottom right panel, only one IFD with N = 10 is plotted,
since the convergence between IFD trend and exact sinusoidal trend is almost perfect.
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Figure 14.
Comparison of IFD with previous EMD algorithms using images with artificial noise. Both
algorithms work well. Denoised image in 14(e) conserves better the sharpness of the image,
while the one in 14(f) removes background noise more efficiently.
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Figure 15.
Edge detection using LSEK based IFD.
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Figure 16.
Processing image heavily contaminated by Gaussian random noise.
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Figure 17.
Values of grey scale along the horizontal line across the middle of the corresponding 2D
image. Black line shows the values of original image 18(a). Blue lines shows the values for
Figure 16(a). Red line shows the values for Figure 16(b). Green line shows the noise
captured in the IFD mode.
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Figure 18.
Edge restoration/compensation and edge enhancement using edge-noise-decoupling
technique based on IFD mode reconstruction.
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Figure 19.
Values of grey scale along the horizontal line across the middle of the corresponding 2D
image. Black line shows the values of original image 18(a). Blue lines shows the values for
Figure 18(d). Red line shows the values for Figure 18(e). Green line shows the noise
captured in IFD mode 1 in Figure 18(b). Pink line shows the values for Figure 18(c).
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Table 1

Comparison of various IFD and LSEK parameters for signal (35). Number of total IFD modes is 3.

Paremeter Set IFD maximum iterations LSEK M values LSEK D values

1 5, 5, 5 25, 25, 25 0.0001, 0.001, 100

2 5, 5, 5 15, 15, 15 0.0001, 0.001, 100

3 5, 5, 5 55, 55, 10 0.0001, 0.001, 10

4 10, 10, 10 55, 55, 55 0.0001, 0.0005, 10

5 15, 10, 5 10, 40, 70 0.001, 0.001, 1
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