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Abstract

Association tests that pool minor alleles into a measure of burden at a locus have been proposed for case-control studies
using sequence data containing rare variants. However, such pooling tests are not robust to the inclusion of neutral and
protective variants, which can mask the association signal from risk variants. Early studies proposing pooling tests dismissed
methods for locus-wide inference using nonnegative single-variant test statistics based on unrealistic comparisons.
However, such methods are robust to the inclusion of neutral and protective variants and therefore may be more useful
than previously appreciated. In fact, some recently proposed methods derived within different frameworks are equivalent to
performing inference on weighted sums of squared single-variant score statistics. In this study, we compared two existing
methods for locus-wide inference using nonnegative single-variant test statistics to two widely cited pooling tests under
more realistic conditions. We established analytic results for a simple model with one rare risk and one rare neutral variant,
which demonstrated that pooling tests were less powerful than even Bonferroni-corrected single-variant tests in most
realistic situations. We also performed simulations using variants with realistic minor allele frequency and linkage
disequilibrium spectra, disease models with multiple rare risk variants and extensive neutral variation, and varying rates of
missing genotypes. In all scenarios considered, existing methods using nonnegative single-variant test statistics had power
comparable to or greater than two widely cited pooling tests. Moreover, in disease models with only rare risk variants, an
existing method based on the maximum single-variant Cochran-Armitage trend chi-square statistic in the locus had power
comparable to or greater than another existing method closely related to some recently proposed methods. We conclude
that efficient locus-wide inference using single-variant test statistics should be reconsidered as a useful framework for
devising powerful association tests in sequence data with rare variants.
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Introduction

The advent of high-throughput sequencing technologies is

providing an unprecedented opportunity to examine the associ-

ation of both common and rare variation with disease on an

exome-wide, and soon genome-wide, scale. In this study, we

consider the problem of using sequence data from a case-control

sample to perform a test for association between a disease and a

locus, which we define as a region of contiguous sequence

including many variants (i.e., polymorphic sequence positions).

These variants may be either common or rare; those with minor

allele frequencies (MAFs) ,2–3% [1] are termed rare variants,

and those with higher MAFs are termed common variants. Under

the null hypothesis of no association with the locus, all multi-

variant genotypes have the same disease risk. This implies that

cases and controls have equal multi-variant genotype frequencies,

and therefore single-variant genotype frequencies, at the locus

under the null hypothesis. Under the alternative hypothesis, multi-

variant genotypes have disease risks depending on one or more

variants in the locus, meaning that multi-variant genotype

frequencies differ between cases and controls at the locus.

To mitigate the power loss due to allelic heterogeneity [1–4]

and high dimensionality in this scenario, conventional wisdom

suggests that pooling minor alleles at rare variants into a measure

of burden at a locus will be necessary to detect associations [4–6].

Tests based on either collapsing rare variants in a locus into a

single indicator of the presence of any minor alleles [5,7] or

summing weighted minor allele counts over rare, and sometimes

also common, variants in a locus [6,8–10] have been proposed as

alternatives to single-variant tests. We subsequently refer to

techniques involving collapsing or summing as pooling tests.

Two of the earliest proposals, the Combined Multivariate and

Collapsing (CMC) method [5] for collapsing and the Weighted

Sum Statistic (WSS) method [6] for summing, are commonly used

as benchmarks for novel methods in the rare variant association

testing literature [8–13] based on results suggesting that these

techniques were superior to locus-wide inference using single-

variant test statistics.
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The power of pooling tests will depend on the linkage

disequilibrium (LD) patterns in sequence data. Simulations using

a coalescent approximation to a neutral two-locus Wright-Fisher

infinite allele model have shown that a substantial proportion of

the pairwise LD between biallelic variants can be expected to be

negative (i.e., D,0), even at very high levels of recombination

[14]. Most importantly for sequence data, negative pairwise LD

values become more likely when including variants with relatively

rare minor alleles [14]. To the extent that there is negative LD

between neutral and risk variants within a locus, higher MAFs at a

small number of risk variants in cases will be accompanied by

higher MAFs at a larger number of neutral variants in controls. In

this situation, case-control differences in the MAFs at individual

risk variants may actually be masked by those at a large number of

neutral variants in locus-wide summaries based on collapsing or

summing minor alleles over all variants at a locus. Masking, in

turn, reduces the power of pooling tests by obscuring locus-wide

case-control differences. Such masking and power loss will be

exacerbated by the inclusion of protective variants.

Because pooling tests lose power when neutral and protective

variants are included, one sensible approach is to try to exclude

such variants a priori by filtering on annotation and functional

predictions. However, making such exclusions with high sensitivity

and specificity will be difficult, particularly in non-coding regions

for which little information is available. Even in coding regions,

functional predictions may lead researchers astray. For example,

recent studies have implicated synonymous variants in altering the

function of protein products [15] and causing disease [16]. Thus,

methods for locus-wide inference that are inherently robust to the

inclusion of neutral and protective variants are desirable.

Existing methods for locus-wide inference using nonnegative

single-variant test statistics, such as performing joint inference

based on the maximum Cochran-Armitage trend chi-square

statistic in the locus, are inherently robust to the inclusion of

neutral and protective variants. This robustness arises from the

fact that the locus-wide inference depends on only the magnitude

of the deviation from the null hypothesis at each variant and not

the direction. Joint inference can be performed efficiently by using

permutation, which, by simulating draws from the joint null

distribution of the single-variant test statistics, avoids conservative

approximations (e.g., the Bonferroni correction) and accounts for

LD-induced correlations between test statistics [17]. Existing

methods that perform efficient locus-wide inference on nonneg-

ative single-variant test statistics using permutation can therefore

combine information across variants in a locus without masking.

Such methods may also be able to extract additional association

signal from neutral variants in negative LD with risk variants as

well as protective variants. Finally, such methods allow use of all

available data when genotypes are missing completely at random

in the sense of Little and Rubin [18], which is not necessarily true

of pooling tests.

Nonetheless, many novel methods have not departed from the

pooling test framework but rather attempted to devise improved

weighting schemes and adaptive thresholds that reduce the

influence of neutral and protective variants [8–10,13]. Despite

deriving their approaches within fundamentally different frame-

works, some of the newest methods that are robust to the inclusion

of neutral and protective variants have actually arrived at

procedures equivalent to performing locus-wide inference using

nonnegative single-variant test statistics. For example, the

Sequence Kernel Association Test (SKAT) [13] and the C-alpha

test [12] base inference on weighted and unweighted sums of

squared single-variant score statistics, respectively [13]. Under an

additive genetic model without covariates and with variant weights

equal to the inverse of the estimated null variance of each single-

variant score statistic, the SKAT statistic is simply the sum of

single-variant Cochran-Armitage trend chi-square statistics. Sums

of nonnegative single-variant test statistics have previously been

recommended as powerful methods for joint inference over

multiple variants in candidate gene association studies [19] and

genome-wide association studies (GWAS) [20,21]. The equiva-

lence of new developments to existing methods for efficient locus-

wide inference using nonnegative single-variant test statistics

argues for broader investigation of other existing methods falling

within this framework, such as permutation inference on the

maximum single-variant Cochran-Armitage trend chi-square

statistic in the locus.

In this study, we compared two existing methods for locus-wide

inference using nonnegative single-variant test statistics to the two

originally proposed pooling tests [5,6] under more realistic

conditions. We began by examining the characteristics of variants

appearing in actual candidate gene sequence data. We then

illustrated with analytic power calculations using a simple model

how pooling tests may have lower power than even Bonferroni-

corrected single-variant tests in the presence of neutral variants.

We finally extended the basic conclusions of this simple model to

more complex situations with allelic heterogeneity, extensive

neutral variation, and randomly missing genotype data using

simulations based on variants with realistic MAF and LD spectra.

In these simulations, we compared the locus-wide type I error and

power of a Bonferroni-corrected test based on the maximum

single-variant Cochran-Armitage trend chi-square statistic, effi-

cient permutation tests based on the maximum or sum of single-

variant Cochran-Armitage trend chi-square statistics, the CMC

test, and the WSS test. We found that methods for efficient locus-

wide inference using nonnegative single-variant test statistics

performed as well as, and often better than, the CMC and WSS

tests under a variety of scenarios. For disease models with only rare

risk variants, we observed that the permutation test based on the

maximum of single-variant Cochran-Armitage trend chi-square

statistics had power comparable to or greater than the permuta-

tion test based on the sum, which we show is closely related to the

SKAT and C-alpha test. We conclude that efficient locus-wide

inference using nonnegative single-variant test statistics should be

reconsidered as a useful framework for devising powerful

association tests in sequence data with rare variants.

Methods

Characteristics of Variants in Actual Sequence Data
To ground our interpretation of analytic power approximations

in actual data and provide a basis for evaluating the realism of our

simulated data, we estimated the MAF and LD distributions of

variants in resequencing data from six genes (CSRP3, LDB3,

MYH7, SCN5A, TCAP, and TNNT2) previously obtained for a

study of candidate genes for dilated cardiomyopathy [22]. These

data should provide a useful snapshot of sequence-level variation

within protein-coding genes of a wide range of sizes (3 kb–103 kb),

numbers of exons (2–40), and chromosomal locations (1q32, 3p21,

10q22.3–23.2, 11p15.1, 14q12, and 17q12). Bi-directional Sanger

sequencing of all coding sequence, at least 50 bp into 59-/39-

UTRs, and at least 40 bp into all introns was performed by

SeattleSNPs under contract to the National Heart, Lung, and

Blood Institute resequencing service. We used data from 184

unrelated controls of European descent from the Coriell database

with variant call rates $80% after removal of low-quality variants

called in ,80% of individuals in the study. We considered biallelic

variants with no evidence of deviation from Hardy-Weinberg
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equilibrium (HWE) (Monte Carlo exact HWE P$0.001),

including both SNPs and small insertions/deletions, in calculating

the MAF and LD distributions. Pairwise LD measured by the

correlation coefficient between major alleles, r, was calculated only

between variants within the same gene under the assumption of

HWE using the method of Weir and Cockerham [23] as

implemented in PROC ALLELE, SAS/GENETICS, Version

9.2 (SAS Institute Inc., Cary, NC). This correlation coefficient is

the same as the correlation coefficient between minor alleles for a

biallelic variant.

Impact of Neutral Variation in a Simple Model
We began by examining the relative performance of pooling

tests and locus-wide inference using nonnegative single-variant test

statistics in a simple model of a locus comprising one rare risk

variant and one rare neutral variant. Specifically, we compared

the locus-wide analytic power of collapsing and summing to that of

performing Bonferroni-corrected inference on the maximum

single-variant Cochran-Armitage trend chi-square statistic in the

locus (the BC-CA test) under our model at varying levels of LD.

The Cochran-Armitage test for a single variant is well-known in

the field of genetics [24–26]. It possesses some desirable properties,

including robustness to departures from HWE [24] and ease of

calculation, that make it widely applicable. Suppose that we

independently sample R cases and S controls, and let N = R+S. It

will be convenient for subsequent exposition to present the test

statistic T as a generalization of the form presented in Freidlin et

al. [26] to multi-variant genotypes:

U~
X

k

Xk
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N
rk{
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N
sk
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In (1), Xk is a score corresponding to the kth single- or multi-variant

genotype, denoted Gk = [G1k,…,Gvk], comprising v biallelic

variants indexed by j. We also let rk be the number of cases with

genotype Gk, sk be the number of controls with genotype Gk, and

nk = rk+sk. The single-variant genotype at biallelic variant j in multi-

variant genotype Gk is coded as Gjk = 0, 1, or 2 minor alleles.

Thus, multi-variant genotype k denotes one unique combination of

single-variant genotypes (e.g., Gk = [0,0,1,2] for v = 4 and one

particular k) in the set of all w = 3v possible combinations at each of

the v variants (i.e., k = 1,2,…, 3v-1,3v). If we consider a single

variant and use scores equaling the number of minor alleles at that

variant, we have Gk~ G1k½ �, k = 1, 2, or 3, and Xk~G1k, so T in

(1) reduces to the single-variant Cochran-Armitage trend chi-

square statistic.

A simple model of a locus comprising one rare neutral (j = 1)

and one rare risk (j = 2) biallelic variant with the same MAF (p) was

used. In this model, frequencies of haplotypes [h1,h2] for a given

level of LD (D) were calculated as (1-p)2+D for haplotype [0,0], (1-

p)p-D for haplotypes [0,1] and [1,0], and p2+D for haplotype [1,1],

where 1 denotes the minor allele and 0 the major allele at either

variant. Population frequencies of multi-variant genotypes

Gk = [G1k,G2k], denoted by pk, were then determined under

HWE. A multiplicative risk model, P AjGkð Þ~f0cG2k , was used,

with A or C denoting affection status (affected case or control), f0

denoting the penetrance for the variant 2 major allele homozy-

gote, and c denoting the relative risk for an additional minor allele

at variant 2. The conditional frequencies of each Gk in cases (pk|A)

and controls (pk|C) were determined based on this risk model and

population multi-variant genotype frequencies using Bayes’ rule:

pkjA~P AjGkð Þpk

.X
k

P AjGkð Þpk

pkjC~ 1{P AjGkð Þ½ �pk

.X
k

1{P AjGkð Þ½ �pk

Under the generalization in (1) and the assumed sampling model,

r1, . . . ,rwð Þ*Multinomial R; p1jA, . . . ,pwjA
� �

and s1,',swð Þ*
Multinomial S; p1jC ,:::,pwjC

� �
. The null hypothesis that no variant

in the locus influences disease risk implies that P AjGkð Þ~f0 and

pkjA~pkjC~pk for all k. Under the alternative hypothesis, at least

one variant in the locus influences disease risk, implying that

pkjA=pkjC for some k.

Freidlin et al. [26] provide formulas for the variance under this

null hypothesis as well as the expectation and variance under this

alternative hypothesis for the statistic U in (1) with arbitrary scores

Xk when v = 1. These formulas immediately generalize to

multinomial genotype distributions with more than 3 possible

genotypes (w.3):
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Under the null hypothesis, the asymptotic distribution of U is

N 0,Ns2
0

� �
, and ŝs2

0 defined in (1) converges in probability to s2
0

[26]. Thus, T has the same asymptotic x2
1 null distribution as

U2
�

Ns2
0 by Slutsky’s Theorem because s2

0

�
ŝs2

0 converges in

probability to 1 [27]. Under the alternative hypothesis, the

asymptotic distribution of U is N Nma,Ns2
a
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and ŝs2

0 converges in

probability to [26]:
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Thus, the asymptotic power function for any two-sided test based

on T with type I error rate a is:
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where F
x2
1

Nm2
a=s2

að Þ refers to the noncentral x2 CDF with 1 degree

of freedom and noncentrality parameter Nm2
a

�
s2

a [28].

We show in Appendix A (Text S1) that particular choices of

scores Xk in the statistic T yield a single-variant Cochran-Armitage

trend test, a collapsing test, and a summing test. This corres-

pondence allows us to use the generalized formulas presented

above to approximate the locus-wide asymptotic power of each

approach to association testing in our model. The single-variant

trend test uses Xk~Gjk for variant j; collapsing defines

Xk~I
P

j Gjk~0
� �

, where I(E) = 1 if E is true and 0 otherwise;

and summing defines Xk~
P

j Gjk. A slight modification is

required to approximate the locus-wide power of the BC-CA test

in the presence of LD because calculating the joint distribution of

the single-variant test statistics is analytically intractable. In

Appendix B (Text S1), we establish that a lower bound for the

locus-wide power function of the BC-CA test is the power of the

Bonferroni-corrected Cochran-Armitage trend test for the risk

variant alone.

We examined power as a function of r~D

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 1{pð Þ2

q
for

f0 = 0.05 and two types of rare variant pairs (p = 0.005 and c = 3;

p = 0.01 and c = 2). Balanced case-control samples with total sizes

of N = 500, 1,000, and 2,000 were considered. Values of r were

chosen by taking 100 evenly spaced increments of D starting from

Dmin = 2p2 and ending at Dmax = p(1-p).

Monte Carlo Simulations
We used Monte Carlo simulations to extend the conclusions drawn

from the two-variant locus model to a larger locus with heterogeneous

risk alleles, extensive neutral variation, realistic LD patterns, and

randomly missing genotype data. We begin by outlining the major

components of the simulation procedure and subsequently provide

more detailed exposition for each component. One thousand

populations of haplotypes at a 100 kb locus with realistic MAF and

LD spectra were first generated based on a neutral coalescent model.

Using the same 1,000 haplotype populations, a separate simulation

was then conducted for each combination of user-specified risk

variant parameters and sample size. Within each simulation:

1) The disease model for each haplotype population was

generated by randomly selecting risk variants for inclusion

based on user-specified parameters;

2) A case-control sample was drawn from each haplotype

population according to the disease model and a user-

specified sample size;

3) Data sets with randomly missing genotypes were generated

from each sample for each user-specified call rate; and

4) All association testing techniques were applied to each data

set.

Type I error and power for each technique were estimated for

balanced case-control samples of total sizes N = 500, 1,000, and

2,000. The disease risk for the multi-variant genotype with no

minor alleles at any risk variant was 5% for all simulations. For

power, 50 risk variants with independent effects were randomly

selected in each haplotype population under three different disease

models:

1) Multiple rare risk variants (MAF,0.005; odds ratio

(OR) = 3);

2) Multiple rare risk variants (MAF,0.01; OR = 2);

3) Combinations of multiple rare risk variants (MAF,0.01;

OR = 2), low-frequency risk variants (0.01#MAF,0.05;

OR = 1.5), and common risk variants (0.05#MAF,0.10;

OR = 1.2).

The first two models represent situations in which pooling tests

are expected to perform best, and the third model is included to

consider cases where both common and rare variants might

contribute to disease susceptibility. We chose a number risk variants

that represented ,5% of all variants at the locus in the average

haplotype population to reflect a situation in which associations

between the locus and disease were driven by heterogeneous risk

alleles characterized by a small number of risk variants among a

much larger number of neutral variants. Per-position genotype call

rates of 100% (complete data), 99.5%, and 95% were simulated. In

the following subsections, we provide a detailed description of each

component of the simulation procedure.

Haplotype Populations
One thousand populations of 10,000 haplotypes each were

generated at a 100 kb locus, which is representative of a larger

human protein coding gene based on recent data (mean size:

27 kb, range: 1 kb–2,400 kb) [29]. Haplotype populations were

generated according to a standard neutral coalescent approxima-

tion to the Wright-Fisher model with a finite-sites recombination

model and an infinite-sites mutation model, which is most accurate

when the number of haplotypes sampled is small relative to the

number of haplotypes in the population and the recombination

rate between adjacent bases is small [30,31]. We used a per-

nucleotide neutral mutation rate of 2.561028 estimated assuming

an effective diploid population size of Ne<10,000 [32], a

recombination rate of 161028 between adjacent nucleotides

derived by using the approximation 1 cM<1 Mb [33], and

Ne = 10,000 (i.e., 20,000 haplotypes). We used the program MS

[31] and, following the suggestion in the documentation, replaced

the standard C random number generator with the well-known

and highly robust Mersenne-Twister random number generator

[34]. All variants generated by MS are biallelic because it assumes

the infinite-sites model of mutation.

Disease Model
Disease risk for the multi-variant genotype Gk was determined

according to a logistic penetrance model of the form:

P AjGkð Þ~ 1zexp {a{GkBð Þð Þ{1 ð2Þ

where a~ln f0= 1{f0ð Þð Þ, the log odds of the wild-type penetrance

for the multi-variant genotype with no minor alleles at any risk
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variant, and B = [b1,…,bv]
T is the vector of log odds ratios for the

haplotype population. The odds ratio hj~exp bj

� �
reflects the

increase in the odds of disease for each additional minor allele at

variant j. This model implicitly assumes that (1) each additional

minor allele has a multiplicative effect on the odds of disease and

(2) this effect at variant position j is independent of the effects at

other variant positions.

To parameterize this model, we specified the desired number of

risk variants as well as a set of risk variant classes indexed by c,

where class c was defined by a half-open MAF range, pl
c,pu

c

� �
, and

an associated odds ratio, hc. For each haplotype population, the

vector of log odds ratios B was populated by repeating the

following steps until the specified number of risk variants was

selected:

1) A variant j was randomly selected from among the variants in

the haplotype population;

2) If the randomly selected variant j had a population MAF in

the interval pl
c,pu

c

� �
specified for risk variant class c and had

not already been designated a risk variant, then it was labeled

a risk variant and assigned a coefficient bj~ln hcð Þ.

This procedure effectively randomly samples risk-variant classes

from the haplotype population in proportion to the occurrence of

each MAF range in the population. All neutral variants had bj = 0

(hc = 1).

Case-Control Samples
After the vector of log odds ratios B was populated for a

haplotype population, a case-control sample was generated

according to the disease model. To generate a case-control

sample, the following procedure was repeated until the user-

specified numbers of case and control subjects were selected:

1) Haplotypes were randomly drawn with replacement to form

an individual’s multi-variant genotype Gk;

2) The disease risk of the individual’s multi-variant genotype,

P(A|Gk), was then calculated according to the logistic model

in (2);

3) The individual was randomly assigned affection status A with

probability P(A|Gk) or C with probability 1-P(A|Gk).

Our method of forming Gk by randomly drawing haplotypes

with replacement implicitly assumes random mating in the

population.

Missing Genotypes
For each case-control sample, data sets with different rates of

randomly missing genotypes were generated based on user-

specified per-base-pair call rates. The observation process over

the sequence was modeled as a two-state Markov chain with states

‘‘observed’’ (O) or ‘‘missing’’ (M) at each position defined by a

single base pair. Given a call rate of l,1 per base pair, the

number of base pairs that a chain remains in M before a genotype

is called is distributed Exp(l), assuming a sufficiently long sequence

for continuous measurement of base pair position to be

reasonable. At the position of this called genotype, the state of

the chain changes from M to O with probability 1. Because

genotypes are missing at a rate of 1-l per base pair, the number of

base pairs that the chain remains in O before a genotype is missing

is distributed Exp(1-l), and the chain transitions from O to M with

probability 1 at this position. If we rescale position to [0, 1] by

measuring in units of L base pairs, where L is the total sequence

length, the distance the chain remains in M is distributed Exp(Ll),

and the distance the chain remains in O is distributed Exp(L(1-l)).

It can be shown that the expected proportion of the sequence

length that a Markov chain with these transition rates and

probabilities spends in O is simply the call rate, l. Thus, for each

call rate, the following steps were performed in each individual to

generate the observed genotype data:

1) Starting at position 0 in O, a series of alternating O and M

intervals on the [0,1] scale were generated according to the

exponential transition distance distributions for the two-state

Markov chain with call rate l over a sequence of length L;

2) The genotypes of variants with [0,1] scaled sequence

positions not falling within an O interval were set to missing.

The observation process defined by this Markov chain is

independent of both affection status and underlying genotypes,

meaning that missing genotypes are missing completely at random

in the sense of Little and Rubin [18].

Association Testing
For each data set, several methods for association testing were

applied. To ensure comparability across data sets from a

population, the minor allele was determined based on the allele

frequencies in the haplotype population from which the case-

control sample was drawn. Variants that were monomorphic in a

given data set were excluded from the test. A test producing a p-

value rejected the null hypothesis in a data set at level a if the p-

value was less than or equal to a.

Single-variant Cochran-Armitage trend chi-square statistics

were calculated as T = NOr2, where NO is the number of

individuals with observed genotypes at the variant and r is the

Pearson correlation coefficient between the number of minor

alleles at the variant and a case status indicator equaling 1 for cases

and 0 for controls across individuals with observed genotypes.

Locus-wide inference was then performed using these single-

variant statistics in accordance with three established methods.

The most widely known method is the BC-CA test presented

above, which uses a conservative approximation that does not

make efficient use of the single-variant information for joint

inference [17]. This test was implemented by rejecting the null

hypothesis in a replicate at level a if the maximum Cochran-

Armitage trend chi-square statistic (max T) in the locus was greater

than or equal to the Bonferroni-corrected quantile of the

asymptotic null x2
1 distribution. This Bonferroni-corrected quantile

was determined separately for each data set as x2
1,1{a=v, where v is

the number of polymorphic variants in the data set.

A second popular method involves performing locus-wide

inference based on the permutation null distribution of max T

[19], which is efficient because it does not use a conservative

approximation and accounts for the LD-induced correlations

between the single-variant T values [17]. It has also demonstrated

consistently good performance relative to other locus-wide tests in

simulations of candidate gene SNPs with realistic LD [19]. The

permutation null distribution of max T was obtained by repeatedly

randomly shuffling affection status labels, calculating all single-

variant T values, and recording the resulting value of the max T

statistic. Letting Qt denote the value of the max T statistic in

permutation t and Qobs denote the observed value in the sample,

the two-sided p-value is estimated from m permutations as [35]:

P̂PQ~

Pm
t~1

I Qt§Qobsð Þz1

mz1
ð3Þ
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Assuming that missingness does not depend on the underlying

genotype or affection status, the Monte Carlo procedure described

above will correctly estimate the permutation null distribution and

yield a valid p-value. A Monte Carlo estimate of the two-sided p-

value was obtained from (3) with m = 10,000 permutations. We will

refer to the inferential procedure based on the permutation p-

value of the max T statistic as the CA max test.

A final method involves performing locus-wide inference based

on the permutation null distribution of the sum of Cochran-

Armitage trend chi-square statistics (sum T) over the locus, which

is also efficient because LD-induced correlations between single-

variant T values are fully taken into account in the permutation

null distribution. Variations on this theme have been proposed for

candidate gene association studies [19] and GWAS [20,21].

Simulations of candidate gene SNPs with realistic LD found that

the approach based on Fisher’s method for combining p-values,

which is equivalent to a sum of nonnegative single-variant test

statistics, performed well relative to other multi-SNP approaches

when there were many variants in high LD [19]. A Monte Carlo

estimate of the two-sided p-value for the sum T statistic was

obtained using the same permutation procedure as for the CA

max test. We will refer to the inferential procedure based on the

permutation p-value of the sum T statistic as the CA sum test.

The CA sum test is also closely related to the SKAT and C-

alpha test. Let Uj be the score statistic U in (1) for a single variant j

with additive scores Xk~Gjk, and let vj be a pre-specified weight

for variant j. In the absence of covariates and with complete

genotype data, the SKAT statistic can be expressed as

QSKAT~
Pv

j~1 vjU
2
j (see Text S1, Appendix C). The authors of

the SKAT suggest weights that are a function of a Beta(1,25)

density at the pooled sample MAF to increase the contributions of

rare variants to the overall sum [13]. With vj~1 for all j, QSKAT is

equivalent to the C-alpha statistic [13]. With vj~Vâar Uj

� �{1
,

where Vâar Uj

� �
is the estimated null variance of the single-variant

Cochran-Armitage trend score statistic from (1), QSKAT is

equivalent to the sum T statistic (see Text S1, Appendix C). With

missing genotypes and vj~Vâar Uj

� �{1
, QSKAT remains equivalent

to sum T when the single-variant SKAT score statistics and vj are

calculated using all available genotype data at each variant (see

Text S1, Appendix C). Thus, the performance of the CA sum test

should also provide insight into newer tests that achieve their

robustness to neutral and protective variants by performing

inference on weighted sums of nonnegative single-variant test

statistics.

Our implementation of the CMC method [5] collapsed rare

variants having overall sample MAF#0.01 into an indicator

variable equaling 1 if any minor alleles were present and zero

otherwise. Common variants that were not collapsed were coded

as 0, 1, or 2 minor alleles, and the means of the random vectors

comprising the rare variant indicator and common variant minor

allele counts were compared between cases and controls using

Hotelling’s T2 test.

One issue not considered in the paper proposing the CMC

method is that LD among common variants can induce linear

dependency in this random vector, which leads to a singular

covariance matrix. However, calculating Hotelling’s T2 statistic

with any generalized inverse is equivalent to calculating the

statistic with a standard inverse on a full-rank subset of linearly

independent common variants (see Text S1, Appendix D).

Goodnight [36] provides an algorithm for automatically calculat-

ing a g2 generalized inverse and the dimension of the full-rank

subset without any prior knowledge of the full-rank subset. The

algorithm involves applying the G2SWEEP operator once to each

of the columns of the covariance matrix in succession. This

operator zeros the rows and columns corresponding to common

variants that are numerically linearly dependent on the previous

common variant minor allele counts and/or the rare variant

indicator. The effective number of linearly independent vector

elements, v, is thus automatically obtained by subtracting the

number of columns that are zeroed from the total number of

columns in the covariance matrix. The p-value is then calculated

using the Fv,N-v-1 approximation to the distribution of the

appropriately scaled Hotelling’s T2 statistic calculated using the

g2 generalized inverse of the covariance matrix (see Text S1,

Appendix D).

Only individuals with complete genotype data at common

variants could be used in calculating Hotelling’s T2. Provided

genotype data were complete at all common variants, individuals

with missing genotype data at rare variants could be used if at least

one minor allele was present for a variant with a non-missing

genotype because the coding of the rare variant indicator would be

1 regardless of the other variant genotypes. However, if an

individual did not have any minor alleles at any variants with non-

missing genotypes, the coding of the rare variant indicator was

ambiguous because it would depend on the values of the

unobserved genotypes. Therefore, such individuals also had to

be excluded from calculating Hotelling’s T2. With large numbers

of exclusions, the F test for Hotelling’s T2 often could not be

performed due to insufficient effective denominator degrees of

freedom (ddf) or was performed with only a very small number of

effective ddf. We considered only results from F tests with effective

ddf.4 in our Type I error and power estimates because (1) our

testing indicated that algebraically identical generalized inverses

could yield different numerical results with effective ddf#4 and (2)

the expectation and variance of the F distribution only exist for ddf

.2 and ddf .4, respectively [27].

Our implementation of the WSS method [6] followed the

description in the original paper with four modifications. First,

midranks were used to break ties in genetic scores when

calculating the case rank-sum statistic, W. Second, we used a

two-sided p-value. A one-sided p-value will only be well-powered

for a deviation from the null in which the cumulative number of

minor alleles at lower-frequency variants is higher in cases than

controls. However, any departure from the null of equal genotype

frequencies in cases and controls at the locus is of interest in

association testing, which is why the BC-CA, CA max, CA sum,

and CMC tests all use two-sided p-values. Therefore, one would

also want to be able to detect deviations in which controls have a

higher cumulative number of minor alleles at lower-frequency

variants, which is not possible with a one-sided WSS p-value. Such

deviations could arise in plausible situations, such as one in which

the minor allele of a rare risk variant with a strong effect appears

exclusively on a haplotype with few other minor alleles. Third, we

estimated the two-sided p-value directly from the permutation

distribution of W. Letting Wt denote the value in permutation t,

Wobs denote the observed value in the sample, and �WWdenote the

mean of W over all m permutations, the two-sided p-value was

estimated from m = 10,000 permutations as [35,37]:

P̂PWSS~

Pm
t~1

I Wt{ �WWj j§ Wobs{ �WWj jð Þz1

mz1

Finally, missing single-variant genotypes, which were not consid-

ered in the paper proposing the WSS method, were not used in

estimation of the MAF in controls and were assigned values of 0 so

as not to contribute to the WSS in an individual. This procedure is
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equivalent to calculating the genetic score over only nonmissing

genotypes in each individual.

Results

Characteristics of Variants in Actual Sequence Data
We began by analyzing the MAF and LD distributions of

variants in actual sequence data from six candidate genes for

dilated cardiomyopathy. These genes spanned a total of 236,059

base pairs (bp), of which 53,466 bp were scanned for variation. A

total of 215 biallelic variants were identified in 184 Coriell samples

of white European ancestry, yielding approximately 4 variants per

kb scanned. We found no evidence against HWE (Monte Carlo

exact P$0.001) at 211 of these variants, which were carried

forward to the analysis of MAF and LD distributions.

More than half of variants had MAFs below 0.01, confirming

that a multitude of rare variants is likely to be a distinguishing

characteristic of sequence data (Figure 1, Panel A). In addition, the

majority of pairwise LD between variants within the same gene

was small and negative, with more than 75% of r values below 0

(Figure 1, Panel B). Pairwise LD between rare variants with

MAF#0.01 was even more concentrated in small negative values,

with 95% of values falling between r = 20.0095 and r = 20.0028.

These results confirmed in actual data predictions regarding the

sampling distribution of LD based on coalescent theory [14].

Although the negative pairwise r values between variants with

MAF#0.01 may seem small in magnitude, they are not

inconsistent with negative LD having a substantial impact on

pooling tests. First, the theoretical minimum for r between variants

with MAF#0.01 is rmin = 20.0101, so many of these r values may

actually represent D9 values near 1 that would be considered

strong LD. Second, because neutral variants are far more

numerous than risk variants in the genome, an appreciably higher

MAF at a single risk variant in cases can mean slightly higher

MAFs at numerous neutral variants in controls when most r values

are negative. If truly neutral variants are not detected with high

sensitivity and filtered out prior to analysis, the cumulative case-

control MAF difference over this large number of neutral variants

can easily mask the cumulative case-control MAF difference over a

few risk variants. Therefore, small negative pairwise r values

between rare variants can have an appreciable effect on pooling

tests.

Impact of Neutral Variation in a Simple Model
We used a simple model to compare the power of the BC-CA,

collapsing, and summing tests to detect a locus-wide association

driven by a single rare risk variant in the presence of a single rare

neutral variant at varying levels of LD between the two variants.

Although the power of the collapsing and summing tests exceeded

the lower bound for the BC-CA test with larger positive r values in

small samples (N = 500), the worst-case power of the BC-CA test

was greater than that of the collapsing and summing tests for all

r#0.08 under both models considered (Figure 2). Moreover, the

BC-CA test had a power advantage over an even larger range of r

values under the same models in moderate (r#0.34) and large

(r#0.52) samples (Figures S1 and S2). In our actual sequence data,

over 95% of r values between variants with MAFs in the range

considered in Figures 2, S1, and S2 (#0.01) fell below 0,

suggesting that the BC-CA test should enjoy a power advantage in

most practical situations.

We can explain the relationship between the power of the three

tests and r by first considering the properties of the BC-CA,

collapsing, and summing tests when r = 1. In this situation, the

number of minor alleles at the neutral variant must always equal

the number of minor alleles at the risk variant because minor

alleles at both variants must appear on the same haplotype. Thus,

the multi-variant genotype frequencies are the same as the

genotype frequencies at the risk variant alone, and the scores are

Xk = 1, 0, or 0 (collapsing) or Xk = 0, 2, or 4 (summing) when

G2k = 0, 1, or 2, respectively. Under these circumstances, the

collapsing and summing tests are equivalent to level a single-

variant Cochran-Armitage tests for the risk variant using scores for

a dominant model and an additive model, respectively. Because

these tests are not Bonferroni corrected, their power when r = 1 is

Figure 1. MAF and within-gene pairwise LD distributions in actual sequence data. Distributions of MAFs (Panel A) and within-gene
pairwise LD (Panel B) for biallelic variants in six candidate genes for dilated cardiomyopathy. Pairwise LD was measured by the correlation coefficient
(r) between major/minor alleles for variants within the same gene. These distributions were estimated from 184 Coriell samples of European descent.
The vertical dashed line in Panel B indicates r = 0.
doi:10.1371/journal.pone.0030238.g001

Reconsidering Association Tests for Sequence Data

PLoS ONE | www.plosone.org 7 February 2012 | Volume 7 | Issue 2 | e30238



substantially above the lower bound for the BC-CA test, which is

based on a level a/2 single-variant Cochran-Armitage test for the

risk variant using scores for an additive model.

However, as r decreases, the amount of noise introduced into

the collapsing and summing test statistics by including the neutral

variant increases and results in a concomitant decrease in power.

Moreover, the problem of masking by the rare neutral variant

further reduces power when r,0. The worst-case power of the

BC-CA test, which inefficiently combines single-variant test

statistics, was substantially greater than the power of the collapsing

and summing tests for r,0, which is where over 95% of the r

values between variants with MAF#0.01 fell in our actual

sequence data. These results suggest that, by eliminating the

problems of noise and masking, even inefficient techniques for

locus-wide inference using nonnegative single-variant test statistics

can yield more powerful tests for association than pooling minor

alleles in the presence of rare neutral variants.

Monte Carlo Simulations
Monte Carlo simulations were performed to extend the analytic

power results to more realistic situations. These simulations were

based on case-control samples generated at a hypothetical 100 kb

disease locus with heterogeneous risk alleles, extensive neutral

variation, realistic patterns of LD, and randomly missing

genotypes.

The variants in our populations of haplotypes simulated based

on a coalescent model closely resembled those analyzed in our

actual sequence data. First, the rates of variants per kb were

compatible when the sampling process that generated our actual

sequence data was taken into account. Each simulated population

had an average of 981 variant sites (range: 805–1193) over the

100 kb locus, or approximately 10 variants per kb. While this rate

was somewhat higher than the observed rate of 4 variants per kb

scanned in our actual sequence data, it was not inconsistent with

this observation because fewer variants are expected to be

observed in any small sample from a large population. In fact,

an average of only 747 variants, or 7.5 per kb, appeared in samples

of 500 individuals drawn from these haplotype populations under

a null disease model with complete genotype data. A further

reduction in the number of variants per kb would be expected in a

sample of the same size as our actual sequence data, which was

about one-third the size of our smallest simulated samples.

Second, the variant MAF and pairwise LD distributions across

the populations of simulated haplotypes (Figure S3) closely

resembled those across the six candidate genes for dilated

cardiomyopathy (Figure 1). The only noticeable difference

between the MAF distributions occurred in the lower quantiles

because the sample MAF could not fall below 1/368 = 0.002717 in

the actual sequence data. The distributions of pairwise LD,

measured by the correlation coefficient, were also similar, with a

strong resemblance between the histograms and a close corre-

spondence between the quantiles for actual and simulated data.

These results suggested that variants in the average simulated

haplotype population had similar MAF and LD spectra to variants

in the average resequenced dilated cardiomyopathy candidate

gene.

We evaluated the performance of the BC-CA, CA max, CA

sum, CMC, and WSS tests in samples drawn from these haplotype

populations according to different disease models. For each disease

model, we considered balanced case-control samples with N = 500,

N = 1,000, and N = 2,000; call rates of 100% (complete data),

99.5%, and 95%; and a = 0.05 and 0.01.

Under a null model with no risk variants, all techniques

controlled type I error at the nominal level (Figure 3). The 95%

confidence intervals for the CA max, CA sum, and WSS all

contained the nominal a level under nearly all conditions,

reflecting an observed distribution of p-values extremely close to

the uniform expected under the null hypothesis. The CMC based

on Hotelling’s T2 was often conservative in complete data, with

95% upper confidence limits below the nominal a level. Our result

agreed with that of Li and Leal [5], who observed conservatism

increasing with the number of variants analyzed when applying

Hotelling’s T2 to a random vector containing between 5 and 20

rare variants in balanced case-control samples of sizes 500 and

Figure 2. Analytic power comparisons in a small sample (N = 500). Analytic locus-wide power at a = 0.05 of the BC-CA (lower bound),
collapsing, and summing tests at a locus comprising one neutral and one risk variant as a function of the pairwise correlation coefficient between
major/minor alleles (r). The variants had the same MAF = 0.005 (Panel A) or MAF = 0.01 (Panel B), and the relative risk was 3 (Panel A) or 2 (Panel B) for
each additional minor allele at the risk variant. Both panels assume penetrance of 0.05 for the major allele homozygote at the risk variant and a
balanced case-control sample with N = 500 total subjects.
doi:10.1371/journal.pone.0030238.g002
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2,000. In our null simulations, Hotelling’s T2 was applied to a

much larger vector containing at least 110 effectively linearly

independent elements in all data sets with complete genotype data.

Finally, the BC-CA test nearly always had the lowest Type I error

of all tests considered, reflecting conservatism due to failure to

account for LD-induced correlations between single-variant test

statistics.

The type I error results for the CMC with missing genotypes

also reflect the substantial loss of sample information resulting

from having to exclude all individuals with incomplete genotype

data at common variants. With a call rate of 95%, no type I error

rate could be estimated because no individual had complete data

in any of the 1,000 samples and the CMC could not be performed.

With a call rate of 99.5%, about 92% of individuals in the

average sample were unusable due to missing genotype data for

each sample size. For this reason, only 23 of the 1,000 samples

had reliable F tests with ddf.4 for N = 500, and the type I error

rate estimates for both a levels had wide 95% confidence

intervals.

Under a disease model with 50 rare risk variants (MAF,0.005;

OR = 3), which represent ,5% of all variants in the locus in the

average haplotype population, the CA max test had higher power

than the CMC and WSS tests under all conditions (Figure 4). It

also had power comparable to or higher than the CA sum test,

Figure 3. Simulated type I error rate comparison. Monte Carlo estimates of rejection rates for each association testing procedure based on
1,000 samples from a null disease model with no risk variants. Estimates are reported by call rate, nominal a level, and sample size (N). Error bars
represent exact binomial 95% confidence intervals [39] for the rejection rate, and dashed horizontal lines are included at the nominal a level. The CMC
could not be performed at a call rate of 95% because no individual had complete genotype data in any sample; at a call rate of 99.5%, CMC results
with F ddf.4 were available in 23, 619, and 992 samples for N = 500, 1,000, and 2,000, respectively.
doi:10.1371/journal.pone.0030238.g003
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which is equivalent to a permutation-based SKAT under an

additive genetic model without covariates using the inverse of the

estimated null variances of the score statistics as weights. As

expected, the CA max test substantially outperformed the BC-CA

test, which does not account for LD-induced correlations between

test statistics. As the sample size grew, the power of the CMC test

with complete data approached that of the CA max test. With

missing data, however, the CMC test generally had the lowest

power due to the substantial loss of sample when it could even be

performed. The CA sum test was more powerful than the CMC

test under most conditions, but it began to lag the CMC in

complete data for N$1,000. The CA sum test was always more

powerful than the WSS test. Although the CA sum test was more

powerful the BC-CA test under all scenarios with a = 0.05, its

power deteriorated to below that of the BC-CA test in larger

sample sizes with a = 0.01.

Although the WSS test was more powerful than the BC-CA test

when N = 500, it began to lag the BC-CA test for N$1,000,

sometimes substantially. This observation suggests that, when

summing over minor alleles to reduce the number of tests

performed, the power gain from reducing the multiple-testing

penalty was rapidly outweighed by the power loss due to increased

noise and masking as the sample size grew. The WSS test also had

lower power than the CMC test in most scenarios with complete

data. Because the CMC test collapses over only variants with

MAF#0.01 and analyzes common variants in a manner not

Figure 4. Simulated power comparison for rare risk variants (MAF,0.005; OR = 3). Monte Carlo estimates of rejection rates for each
association testing procedure based on 1,000 samples from a disease model with 50 rare risk variants (MAF,0.005; OR = 3), which represent ,5% of
all variants in the locus in the average population. Estimates are reported by call rate, nominal a level, and sample size (N). Error bars represent exact
binomial 95% confidence intervals [39] for the rejection rate. The CMC could not be performed at a call rate of 95% because no individual had
complete genotype data in any sample; at a call rate of 99.5%, CMC results with F ddf.4 were available in 22, 596, and 991 samples for N = 500, 1,000,
and 2,000, respectively.
doi:10.1371/journal.pone.0030238.g004
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subject to masking, it may perform better than the WSS test,

which sums over all variants.

Results were similar under a disease model with 50 rare risk

variants (MAF,0.01; OR = 2) (Figure 5). The CA max test had

power greater than the CA sum, CMC, WSS, and BC-CA tests

under all scenarios. The CA sum test continued to have higher

power than the WSS test under all scenarios and was also more

powerful than the CMC test for all conditions except N = 2,000

with complete data. The CA sum test was more powerful than the

BC-CA test under all conditions other than N = 2,000 and

a = 0.01. The WSS test also exhibited a similar pattern of

performance relative to the CMC and BC-CA tests.

In the disease model with 50 total risk variants randomly

allocated between rare variants (MAF,0.01; OR = 2), low-

frequency variants (0.01#MAF,0.05; OR = 1.5), and common

variants (0.05#MAF,0.10; OR = 1.2), the CA max and CA sum

tests were both more powerful than the CMC and WSS tests

under nearly all conditions (Figure 6). Under this disease model,

the CA sum test, rather than the CA max test, had the highest

power under all conditions. The CA max and CA sum tests also

both had greater power than the BC-CA test in all scenarios. With

N = 2,000 and complete data, the CMC test had comparable

power to the CA max test but was still less powerful than the CA

sum test. The WSS test showed the same pattern of having higher

Figure 5. Simulated power comparison for rare risk variants (MAF,0.01; OR = 2). Monte Carlo estimates of rejection rates for each
association testing procedure based on 1,000 samples from a disease model with 50 rare risk variants (MAF,0.01; OR = 2), which represent ,5% of all
variants in the locus in the average population. Estimates are reported by call rate, nominal a level, and sample size (N). Error bars represent exact
binomial 95% confidence intervals [39] for the rejection rate. The CMC could not be performed at a call rate of 95% because no individual had
complete genotype data in any sample; at a call rate of 99.5%, CMC results with F ddf.4 were available in 18, 573, and 986 samples for N = 500, 1,000,
and 2,000, respectively.
doi:10.1371/journal.pone.0030238.g005
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power than the CMC and BC-CA tests for N = 500 but beginning

to lag these tests for N$1,000.

Discussion

We have compared existing methods for efficient locus-wide

inference using nonnegative single-variant test statistics to two

widely cited pooling tests in terms of their ability to detect

associations between rare variants and disease. We began our

analysis by exploring the characteristics of variants likely to

appear in actual sequence data. Based on these characteristics

and a simple model of a locus with one rare risk and one rare

neutral variant, we were able to demonstrate that even using

Bonferroni-corrected single-variant tests for locus-wide inference

may have higher power than collapsing or summing rare variant

minor alleles in the presence of a neutral variant. We then

simulated populations of haplotypes at a hypothetical 100 kb locus

with MAF and LD spectra closely matching those of our actual

candidate gene sequence data. We examined power in balanced

case-control samples drawn from these simulated haplotype

populations according to a disease model with heterogeneous risk

alleles and extensive neutral variation. In these simulations, one or

more of the existing approaches for efficient locus-wide inference

using nonnegative single-variant test statistics, the CA max test or

Figure 6. Simulated power comparison for a mixture of rare and common risk variants. Monte Carlo estimates of rejection rates for each
association testing procedure based on 1,000 samples from a disease model with 50 total risk variants, which represent ,5% of all variants in the
locus in the average population, randomly allocated between rare variants (MAF,0.01; OR = 2), low-frequency variants (0.01#MAF,0.05; OR = 1.5),
and common variants (0.05#MAF,0.10; OR = 1.2). Estimates are reported by call rate, nominal a level, and sample size (N). Error bars represent exact
binomial 95% confidence intervals [39] for the rejection rate. The CMC could not be performed at a call rate of 95% because no individual had
complete genotype data in any sample; at a call rate of 99.5%, CMC results with F ddf.4 were available in 15, 564, and 989 samples for N = 500, 1,000,
and 2,000, respectively.
doi:10.1371/journal.pone.0030238.g006
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CA sum test, had power comparable to or greater than the CMC

and WSS tests under the scenarios considered. Moreover, the type

I error and power of the CA max and CA sum tests were robust to

randomly missing genotype data, which was not observed with the

CMC test. Finally, the CA max test was nearly always more

powerful than the CA sum test for disease models with only rare

risk variants, suggesting that the CA max test may outperform the

class of techniques represented by the SKAT and C-alpha test in

these scenarios.

Our results contradict those of the original studies [5,6]

suggesting that the CMC and WSS tests were superior to locus-

wide inference using nonnegative single-variant test statistics.

However, our simulations improve upon these studies in two

important ways that explain the differences in results and make

our results more relevant to the analysis of actual sequence data.

First, we used a widely accepted population genetic model, the

coalescent, to simulate variants with MAF and LD distributions

similar to those in actual sequence data, meaning that our

simulations should more accurately reflect the impact of neutral

variants on each method. Although the CMC study did consider

the impact of including neutral variants, it used analytic power

calculations that assumed independence between genotypes at

different variant sites [5]. The study also considered only models

with fixed numbers of variants of different types having equal

MAFs within each type. The WSS study considered only MAF

spectra consistent with mildly deleterious mutations and sampled

each variant, whether risk or neutral, independently of all others

[6]. Neither of these methods is likely to recapitulate the rich

complexity of the variant MAF and LD distributions that we

observed in actual sequence data as well as our coalescent-based

approach did. Moreover, simulated data without many higher-

frequency neutral variants or substantial LD between neutral and

risk variants would tend to cause fewer problems with noise and

masking in pooling tests, resulting in overly optimistic assessments

of the performance of these techniques. In fact, we found that the

WSS test was often less powerful than even the inefficient BC-CA

test, suggesting that noise and masking from neutral variants may

present major problems for techniques based on summing in

actual sequence data.

Second, we used efficient methods for locus-wide inference

based on nonnegative single-variant test statistics that reduce the

multiple-testing penalty by accounting for LD-induced correla-

tions between the single-variant test statistics. However, the CMC

and WSS tests were both compared in the original studies to the

Bonferroni and Dunn-Sidak corrections [5,6], which are both

generally conservative. Although the choice to assume indepen-

dence between variants should mean that the Dunn-Sidak

correction was efficient in the original WSS study, the Bonferroni

correction used in the original CMC study should still have been

conservative and thus inefficient under these conditions. In our

more realistic simulated data, LD would have induced correlations

between test statistics at different variants, which would have

rendered both of these techniques more conservative [17]. In such

situations, methods based on simulating the joint distribution of p-

values or test statistics under the locus-wide null hypothesis yield

more powerful locus-wide tests [17] and are the relevant targets for

comparison. The CA max test used in this paper is one such

method, and it outperformed the BC-CA test under every scenario

considered in our simulations while controlling the Type I error

rate, as predicted by theory. Thus, the CA max test, which is

simple and computationally feasible, provides a fairer representa-

tion of the performance of existing methods for efficient locus-wide

inference using nonnegative single-variant test statistics in actual

sequence data.

These methods also make use of all available genotype data and

are therefore robust to randomly missing genotypes. This

robustness stands in stark contrast to our observations for the

CMC test using Hotelling’s T2, which rapidly became unreliable

with as little as 0.5% randomly missing genotypes. Other

multivariate techniques that rely on a generalized linear model

framework, such as the SKAT, will also be subject to the same

problem because generalized linear models can only use

individuals with complete data. Although all individuals’ data

could be made complete by imputing missing genotypes, low-

frequency or rare variants may be difficult to impute with high

accuracy. One caveat to our robustness result is that any method

relying on the permutation null distribution for inference, which

includes the CA max, CA sum, and WSS tests, will only be valid if

genotype missingness does not depend on either affection status or

the unknown value of the underlying genotype. In other words,

genotypes must be missing completely at random in the sense of

Little and Rubin [18]. If this is not the case, affection status is not

exchangeable under the genetic null hypothesis, meaning that

permutation inference may not yield valid results.

The problem of neutral and protective rare variants masking

case-control differences in pooling tests has been recognized by

other authors [8–13]. Many new developments have therefore

sought to reduce the influence of putative neutral and protective

variants using filtering, classification, or weights based on

annotation, functional predictions, or MAFs [8–11,13]. While

these approaches seem sensible, there are several drawbacks. First,

annotation and functional predictions are not readily available for

non-coding sequences that may influence disease through recently

discovered or as-yet-unknown regulatory mechanisms. Second, as

demonstrated by recent examples implicating synonymous coding

variants in altered protein products and Crohn’s disease [15,16],

annotation and functional predictions for coding sequences do not

always provide a solid basis on which to separate putative risk,

neutral, and protective variants a priori. Finally, distinguishing

neutral and protective variants based on sample MAFs alone [11]

will be prone to error because of sampling variability, particularly

with rare variants. In contrast, methods for locus-wide inference

using nonnegative single-variant test statistics are inherently robust

to the inclusion of neutral and protective variants and may even be

able to exploit their LD with risk variants to increase power.

Notably, the power advantage of the CA max and CA sum tests

observed in this study did not require any information or

assumptions about the putative functional consequences of the

minor allele in relation to the disease of interest. Thus, the CA

max or CA sum tests could be applied equally well to coding

sequence, non-coding sequence with poorly understood functional

consequences, or a combination thereof.

An additional advantage of applying existing methods for locus-

wide inference using nonnegative single-variant test statistics is

their adaptability. Although we have focused on single-locus

inference for concreteness, test statistics can be combined over any

relevant grouping of variants, including single exons, pathways, or

the entire exome, to perform joint inference. Pooling tests can also

be applied to arbitrary groupings, but they are not inherently

robust to the inclusion of neutral and protective variants.

Moreover, although we focused on case-control association testing

in the absence of confounding and population stratification,

existing methods using nonnegative single-variant test statistics can

be readily extended to multi-variant joint inference in more

complex case-control or family-based designs by simply changing

the test statistic and permutation strategy. As long as the new test

statistic has a nonnegative value that depends only on the

magnitude of the deviation from the statistical null hypothesis at
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each variant, the locus-wide test is inherently robust to the

inclusion of neutral and protective variants. The permutation

strategy would then need to be adapted to ensure exchangeability

under the model implied by the new single-variant test statistic

(see, e.g., McIntyre et al. [38] for a permutation strategy valid for

the transmission/disequilibrium test statistic in a trio design).

Finally, although we considered only the maximum and sum of

Cochran-Armitage trend chi-square statistics over the variant

grouping of interest, almost any summary of a wide variety of

nonnegative single-variant test statistics could be used for joint

inference based on the appropriate permutation distribution.

Although the idea of pooling minor alleles in association tests

with rare variants may still hold sway in the genetics community, it

is worth noting that some new association tests with greater

robustness to the inclusion of neutral and protective variants have

implicitly returned to locus-wide inference using nonnegative

single-variant test statistics. Specifically, the SKAT [13] and C-

alpha test [12] are equivalent to basing inference on weighted and

unweighted sums of squared single-variant score statistics,

respectively [13]. The sum T statistic evaluated in this study is

also a sum of squared single-variant score statistics weighted by the

inverse of their estimated null variances. Our results for the CA

sum test, combined with the results of the studies proposing the

SKAT and C-alpha test [12,13], suggest that further extending

methods for locus-wide inference using nonnegative single-variant

test statistics may be a fruitful line of research. Moreover, a

method in this class fundamentally different from the closely

related SKAT, C-alpha test, and CA sum test—the CA max test—

often had greater power than the CA sum test for disease models

with only rare risk variants. We therefore suggest that a conceptual

framework based on optimally combining nonnegative single-

variant test statistics may yield useful insights or suggest other

existing techniques that might be overlooked within a conceptual

framework based on pooling minor alleles.

Supporting Information

Figure S1 Analytic power comparisons in a moderate
sample (N = 1,000). Analytic locus-wide power at a = 0.05 of

the BC-CA (lower bound), collapsing, and summing tests at a locus

comprising one neutral and one risk variant as a function of the

pairwise correlation coefficient between major/minor alleles (r).

The variants had the same MAF = 0.005 (Panel A) or MAF = 0.01

(Panel B), and the relative risk was 3 (Panel A) or 2 (Panel B) for

each additional minor allele at the risk variant. Both panels assume

penetrance of 0.05 for the major allele homozygote at the risk

variant and a balanced case-control sample with N = 1,000 total

subjects.

(PNG)

Figure S2 Analytic power comparisons in a large
sample (N = 2,000). Analytic locus-wide power at a = 0.05 of

the BC-CA (lower bound), collapsing, and summing tests at a locus

comprising one neutral and one risk variant as a function of the

pairwise correlation coefficient between major/minor alleles (r).

The variants had the same MAF = 0.005 (Panel A) or MAF = 0.01

(Panel B), and the relative risk was 3 (Panel A) or 2 (Panel B) for

each additional minor allele at the risk variant. Both panels assume

penetrance of 0.05 for the major allele homozygote at the risk

variant and a balanced case-control sample with N = 2,000 total

subjects.

(PNG)

Figure S3 MAF and pairwise LD distributions in
simulated sequence data. Distributions of MAFs (Panel A)

and pairwise LD (Panel B) for biallelic variants in 1,000

populations of 10,000 simulated haplotypes each at a 100 kb

locus. Pairwise LD was measured by the within-gene pairwise

correlation coefficient (r) between major/minor alleles. Because it

was computationally infeasible to summarize hundreds of millions

of pairwise LD values, a 0.1% simple random sample of these

values was taken from each haplotype population. We repeated

this sampling procedure several times and obtained similar results.

The vertical dashed line in Panel B indicates r = 0.

(PNG)

Text S1 Appendices.
(DOC)
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