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Abstract

Communication barriers often result in exclusion of children and youth with disabilities from activities and social settings
that are essential to their psychosocial development. In particular, difficulties in describing their experiences of activities and
social settings hinder our understanding of the factors that promote inclusion and participation of this group of individuals.
To address this specific communication challenge, we examined the feasibility of developing a language-free measure of
experience in youth with severe physical disabilities. To do this, we used the activity of the peripheral nervous system to
detect patterns of psychological arousal associated with activities requiring different patterns of cognitive/affective and
interpersonal involvement (activity engagement). We demonstrated that these signals can differentiate among patterns of
arousal associated with these activities with high accuracy (two levels: 81%, three levels: 74%). These results demonstrate
the potential for development of a real-time, motor- and language-free measure for describing the experiences of children
and youth with disabilities.

Citation: Kushki A, Andrews AJ, Power SD, King G, Chau T (2012) Classification of Activity Engagement in Individuals with Severe Physical Disabilities Using
Signals of the Peripheral Nervous System. PLoS ONE 7(2): e30373. doi:10.1371/journal.pone.0030373

Editor: Shree Ram Singh, National Cancer Institute, United States of America

Received August 21, 2011; Accepted December 14, 2011; Published February 17, 2012

Copyright: � 2012 Kushki et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was financially supported by the Canadian Institutes of Health Research [TWC-95045] (http://www.cihr-irsc.gc.ca), the Ontario Ministry of
Research and Innovations (http://www.mri.gov.on.ca/english/programs/PDF-Program.asp), and the Canada Research Chairs (http://www.chairs-chaires.gc.ca/)
programs. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: tchau@hollandbloorview.ca

Introduction

Individuals with severe and multiple disabilities are often unable

to use verbal (speech) or non-verbal (gestures, facial expressions)

communication to interact with others. Instead, they rely on

alternative and augmentative communication (AAC) methods

that complement or replace these communication functions. The

typical AAC paradigm requires a user to select messages or

codes from a set of possibilities provided by symbol books (e.g.,

communication boards) or electronic devices (e.g., on-screen

keyboards). Symbol selection may be achieved by directly selecting

the symbol (e.g., by using a finger or limb or by dwelling with a

head mouse or eye tracker) or indirectly with the sequential

scanning of symbols coupled with mechanical or bioelectric switch

activation. The target population for AAC includes individuals

with congenital disabilities (e.g., cerebral palsy and muscular

dystrophy) as well as those with acquired conditions (e.g.,

amyotrophic lateral sclerosis, multiple sclerosis, traumatic brain

injury, stroke, and spinal cord injury).

Alternative and Augmentative Communication:
Challenges

The goal of AAC is to enable efficient and effective participation

in social interaction and activities [1]. Effective AAC communi-

cation, however, is contingent on accurate and timely production

of symbols through direct or indirect selection. Direct selection is

often a significant challenge for individuals with severe motor

disabilities who may have limited and unreliable movements due

to hypertonia, hypotonia, and dyskinesia. Moreover, users relying

on mechanical switches to control AAC devices face challenges

related to positioning and mounting of the switch, inadequacy

of activation force (e.g., hypotonia), inability to release a switch

after activation (e.g., due to spasticity), false activations due to

involuntary movements (e.g., hyperkinetic cerebral palsy), and

poor timing [2]. These concerns motivate the development of

movement-free control methods for AAC devices. Brain-computer

interfaces (BCI) [3] are examples of such methods. These

systems generate control signals for external devices by detecting

spontaneous or deliberate modulation of brain activity through

measurement modalities such as electroencephalography (EEG)

[4,5], near-infrared spectroscopy (NIRS) [6], and ultrasonography

[7]. While BCIs may provide the opportunity for selection where

none existed, the speed of communication is still dependent on the

actual AAC paradigm. For example, the user of an on-screen

keyboard is typically required to sequentially scan through a

number of letters before the target letter can be chosen [2].

Moreover, fatigue resulting from continuous, conscious control of

BCI devices may discourage everyday use by individuals with

disabilities [8].

The consequence of the above challenges is that communication

using AAC may be fatiguing, slow, prone to errors, and dependent

on support from care-givers or communication partners. This
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limits the quality and quantity of communication and results in

asymmetrical interactions that are mainly initiated and dominated

by the speaking partner [9]. As such, individuals with complex

communication needs typically experience few opportunities for

expressive communication [10] and are often marginalized in

social settings because of arrangements that do not support their

unique needs [11]. Children and youth with disabilities are also

often excluded from social and learning activities essential to

developing life skills, forming friendships, establishing self-worth

and identity, and achieving mental and physical health [12]. Even

when physically included, activities of these individuals tend to be

characterized by patterns of restricted participation and increased

engagement in passive and solitary activities [12].

Engagement, defined as the behavioural and emotional quality of

involvement [13], reflects a person’s active involvement in a task

or activity. There is evidence that engagement is a key mediating

factor in children’s development and positive academic, behav-

ioural, and social functioning [14,15]. In fact, the degree to which

child-care programs promote engagement is considered as an

indicator of program quality [16,17]. Despite this, very little is

known about the factors that promote engagement and participa-

tion in children with severe disabilities. This is in part due to

communication barriers as this group of children has limited

verbal and non-verbal means to express their experiences.

Moreover, it is suggested that emotional competency, defined as

‘‘the process through which children learn to recognize, interpret,

use, and respond to emotions’’, may develop differently in this

group [18]. Collectively, these issues limit the utility of self and

care-giver reports in understanding the experience of engagement

in children and youth with disabilities. This in turn hinders the

development of programs and services that optimally promote

engagement and participation in this group of children.

In light of the aforementioned gap, our study investigates the

development of movement- and language-free measures that can

be used to describe experiences of children and youth with

disabilities.

Measure of Activity Engagement: Signals of the
Peripheral Nervous System

It is suggested that engagement is comprised of behavioural (e.g,

effort), cognitive (self-regulation), and affective/psychological (e.g.,

interest) subcomponents [14]. There is evidence to suggest that

changes in affective and psychological states can be detected

physiologically - specifically using the signals of the peripheral

nervous system [19–21]. This motivates the investigation of

physiological patterns as a language-free means of engagement

in children and youth with disabilities.

The peripheral nervous system connects the organs and limbs to

the central nervous system (brain and the spinal cord) and is

further divided into the autonomic and somatic nervous systems

[22]. The autonomic nervous system (ANS) is responsible for

regulating visceral functions such as heart rate, respiration,

perspiration, and digestion. In the presence of stressors, the

arousal of the sympathetic branch of the ANS promotes a number

of physiological changes to prepare the body for defensive

behaviours. During this stress response, known as the ‘‘fight or

flight’’ response, heart and respiration rates increase, pupils dilate,

perspiration increases, and blood is diverted away from organs and

skin to skeletal muscles and lungs through vasoconstriction (ANS

arousal). Once the stress situation is over, the parasympathetic

branch of the ANS returns the body to steady state.

Due to the role of the ANS in controlling physiological changes

in the presence of external stimuli, the activity of this system is

correlated with changes in affective and psychological states

[22,23]. Moreover, the response of the ANS to changes in these

states can be detected through measurement of signals reflecting

ANS activity (e.g., cardiac and electrodermal activity, skin

temperature, and respiration) [24]. In fact, a large body of

literature provides evidence that physiological responses resulting

from different psychological and affective states can be differen-

tiated [25]. For example, statistically significant differences in

indexes of heart rate, electrodermal activity and respiration were

reported in response to three psychological states (relaxation,

engagement, and stress) [26]. Similarly, Haag et al. [27]

automatically classified physiological response patterns corre-

sponding to three levels of arousal (low, medium, high) and two

levels of valence (positive and negative) elicited through photo

watching in a single individual.

While the above results are promising, the aforementioned

studies only involved adults without disabilities. It is unclear

whether or not similar results can be obtained with individuals

with severe disabilities for three reasons. First, measurement of

signals related to ANS activity (e.g., heart rate, electrodermal

activity) is severely affected by the presence of motion and

pressure artifacts. This poses a challenge to obtaining these

signals from individuals with disabilities that result in involuntary

movements (e.g., hyperkinetic cerebral palsy). Second, there may

be anatomical and physiological differences between individuals

with and without disabilities that affect the autonomic nervous

system response. Third, some of the individuals in previous

studies were professionally trained to modulate their affective

states. Such training may not be possible in individuals with

disabilities due to differences in cognitive abilities. In this context,

encouraging results were reported by a recent study that

examined the ANS response of children with severe disabilities

during two activities - television watching (low engagement) and

therapeutic clowning (high engagement) [28]. Results suggested

that the patterns of ANS response may be different between the

two activities, lending further evidence to support the develop-

ment of an ANS-based communication tool. To quantify the

activity of the autonomic nervous system, we used blood pulse

volume (BVP), electrodermal activity (EDA), respiration, and skin

temperature. BVP is related to the changes in the volume of

blood in vessels and provides an indirect measure of heart rate

which is increased with the arousal of the ANS in response to

external stimuli. EDA measures changes in the skin’s electrical

conductivity due to sweat production by the eccrine glands. Since

these glands have sympathetic cholinergic innervations [29], the

amount of sweat in the skin, and therefore, skin conductivity,

change with ANS activity [30]. Respiration changes are also

related to the activity of the ANS as respiration rate is increased

during the stress response to accommodate for the increased need

for oxygen (note that respiration rate is not completely

autonomically controlled as conscious control of respiration rate

is also possible). Finally, skin temperature changes occur with

changes in sympathetic stimulations of cutaneous microcircula-

tion structures (arteriovenous anastomoses) which lead to

vasoconstriction or vasodilation [31].

The second part of the peripheral nervous system is the somatic

nervous system (SNS). This system contains nerves that enable

voluntary control of the body’s skeletal muscles and sensory

organs. Interestingly, movement disturbances (loss of typical

movement or presence of atypical and involuntary movement)

may vary in frequency, intensity and duration with affective states

[32] or personal preference [33]. In this light, we hypothesized

that the somatic nervous system signals may provide indicators of

psychological arousal in individuals with disabilities. We quantified

the activity of the somatic system by measuring limb movements.

Peripheral Nervous System Signals for Expression
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The above evidence suggests that physiological changes

associated with the activity of the peripheral nervous system are

related to changes in affective and psychological states. As such,

these changes can potentially provide a language-free measure of

experiences that are associated with engagement in different

activities. As a first step in developing such a measure, we

addressed two questions in this study:

1. Can psychological arousal due to activity engagement be

detected based on changes in signals of the peripheral nervous

system in individuals with severe disabilities?

2. Can signals of the peripheral nervous system differentiate

between patterns of engagement resulting from different

activities in individuals with severe disabilities?

Methods

Ethics Statement
The Bloorview Research Institute research ethics board approved

the study and all participants provided informed consent. A special

process was approved by the ethics board to obtain consent from

participants who were nonverbal or unable to provide written

consent due to physical abilities. The process was as follows. Prior to

the study, potential participants and their parents received an

information package to ensure they have an opportunity to fully

review the study information and consent forms. During the study

visit, a research assistant (RA) provided participants and their

parents with a detailed overview of the study. For youth with little or

no functional speech, a pictorial overview of the study components

was provided along with verbal explanations. Prior to completion of

the consent forms the RA asked a series of questions to determine

the youth’s capacity to consent to participate in the study. If the

youth’s responses to the questions demonstrated the ability to

understand the purpose of the study and their rights regarding

participation in the study then the RA determined that consent

could be provided, otherwise the youth were excluded from the

study. Following determination of capacity to consent, the Picture

Communication Symbols (PCS) visual consent framework was used

to obtain consent. This involved arrangement of communication

symbols on a board. The participant either indicated ‘‘yes’’ using

their communication aid or using their gestural ‘‘yes sign’’ (e.g. head

nod, smile). If the participant was able to sign or had a signature

stamp or was able to mark an ‘‘X’’ they also provide written consent.

If not, the RA noted that verbal consent was obtained on the written

consent form and witness it.

Participants
We recruited nine individuals with severe physical disabilities

(18.162.2 years old, 7 female) through Holland Bloorview Kids

Rehabilitation Hospital in Toronto, Canada. All participants had

cognitive functioning and language comprehension abilities of at

least a grade three level.

The group of participants consisted of individuals with cerebral

palsy, muscular dystrophy, and an undiagnosed neuro-muscular

degenerative disorder. Of the nine participants, seven relied on

AAC devices for communication and two had complex continuing

care needs (CCC) (e.g., mechanical ventilation, parenteral nutrition,

oxygen therapy, tracheotomy). Participant 2 also had a cardio-

pulmonary condition. All participants used wheelchairs for mobility.

Apparatus
We measured blood volume pulse (BVP), electrodermal ac-

tivity (EDA), skin temperature and respiration signals using

FDA-approved sensors and encoders (Flexcomp Infiniti, Thought

Technology Ltd.). BVP, EDA, and skin temperature sensors were

attached to the participants using breathable tape and/or velcro

straps to either the hands or the feet of the participants, depending

on signal quality and the participant’s comfort. The sensors and

locations are listed below and discussed in detail in [34]. Figure 1

depicts the typical attachment of sensors to the hand.

N To measure BVP, a single photoplethysmography [35] sensor

was used. This sensor was secured to the palmar or plantar

surface of the distal phalanges of the first digits of the hand or

the foot.

N EDA was measured as skin conductance obtained using a pair

of 10 mm diameter dry Ag-AgCl electrodes. These sensors

were secured to the palmar surface of the second or proximal

phalanges of the second and third digits of the non-dominant

hand or to the plantar surface of the distal phalanx of the

second and third digits of the non-dominant foot. Prior to

attaching the sensors, we ensured that the skin was clean and

free of visible lesions.

N To measure skin temperature, a thermistor was fastened to the

palmar surface of the distal phalanx of the fifth digit of the

non-dominant hand or to the plantar surface of the distal

phalanx of the fifth digit of the foot.

N Respiration was measured using a piezoelectric belt positioned

around the thoracic cavity.

N Limb movement was measured using a tri-axial accelerometer

mounted on the same limb as the other sensors.

All signals were sampled at a frequency of 256 Hz and recorded

to a laptop computer for subsequent off-line analysis.

Task
The participants performed three different activities:

N Activity 1 (no engagement required): participants sat in their

chair or wheelchair and were not instructed to perform any

particular task.

Figure 1. Typical sensor setup. BVP: Blood Volume Pulse, EDA:
Electrodermal Activity, Temp: Temperature, Resp: Respiration.
doi:10.1371/journal.pone.0030373.g001

Peripheral Nervous System Signals for Expression
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N Activity 2 (passive engagement required): participants passively

watched pictures of items they liked or disliked. Picture

watching is known to be an effective means to induce emotions

[27] and standard affective picture databases have been

developed specifically for this purpose (for example, the

International Affective Picture System (IAPS)[36]). The IAPS

set, however, is validated using participants without disabilities

[37]. Considering this and the uniqueness of the individuals in

our participant group, we asked the participants to provide

prior to the study, a list of 10 items they strongly liked and 10

items they strongly disliked (e.g., objects, feelings, activities). A

research assistant then obtained pictures of each item which

were used as stimuli. During the activity, participants were

instructed to looked at the pictures and reflect on their feelings

about the displayed items.

N Activity 3 (active engagement required): participants interacted

with a research assistant to communicate their feelings towards

the pictures they viewed. The participants indicated how they

felt while watching the picture by selecting a grade of

agreement with the statement ‘‘I felt good when I saw the

picture’’. The choices for the grades of agreement were ‘‘I

really agree’’, ‘‘I agree’’, ‘‘I don’t agree or disagree’’, ‘‘I

disagree’’, ‘‘I really disagree’’ [38]. Participants responded with

a yes or no to the options read aloud by the research assistant

using their typical means of communication (e.g., nod, smile,

or vocalizations) or by vocalizing their choice. Any pictures

associated with a neutral rating (‘‘I don’t agree or disagree’’)

were excluded from the analysis.

Protocol
During data collection, participants sat in either a chair or

wheelchair, facing a laptop computer (see Figure 2). A five-minute

baseline recording was collected to allow for thermal acclimation and

relaxation. This was followed by a 20–25 minute period (Figure 3)

when participants alternated between 20-second intervals of no

engagement (blank screen) and passive engagement (watching a

picture on the laptop computer). After each picture, participants rated

their experience of the picture as described above in the description of

Activity 3. The average length of the rating period was 20612 seconds.

Analysis
Preprocessing. The data from each session were preprocessed

to remove movement, pressure, and physiological artifacts. Table 1

shows the filters used for preprocessing each measured signal. For

BVP, a bandpass filter retained frequency content corresponding to

40–200 beats per minute based on typical heart rate limits. As

changes in EDA typically happen on the scale of several seconds, a

low-pass filter was employed to reduce movement artifacts and high

frequency noise above 5 Hz from this signal [39]. The respiration

signal was bandpass filtered preserving frequency content in the

range of 10–120 breaths per minute. For the accelerometer, the

signal along each axis was adjusted for the effect of gravity by

subtracting the mean. We then extracted the norm of centered axial

signal (square root of the sum of squared values along the three axes)

for further processing.

After filtering, linear trends over the entire session were

removed from the data to mitigate the effects of thermal regulation

(for example, general increases in temperature or thermoregula-

tory perspiration) and changes in posture.

For each participant, the data were segmented to extract the

intervals corresponding to periods of no engagement, passive

engagement, and active engagement (20 intervals for each activity

type).

Feature Extraction. Four features were extracted from each

of the physiological signals from the no engagement, passive

engagement, and active engagement intervals:

N Mean and standard deviation of signal values over the interval;

N Slope: this feature was extracted as the slope of the line-of-best

fit over the interval;

N First order difference (FOD): this feature is computed as the

mean of the absolute values of the first differences of the signal

standardized by its mean and variance over the interval [40].

Figure 2. Typical experimental setup. Participants sat in a chair or wheelchair, facing a laptop computer.
doi:10.1371/journal.pone.0030373.g002

Peripheral Nervous System Signals for Expression
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For the BVP signal, the mean, standard deviation, and slope

were obtained from the instantaneous heart-rate values extracted

using a custom shape-matching algorithm. Similarly, the afore-

mentioned features were computed from the instantaneous

respiration rate obtained through peak detection. For the

accelerometer, feature extraction was performed on the norm of

the the mean-corrected signal.

With the goal of eventual real-time operation, the features used

for activity classification were computed as the change in each of

the features between consecutive intervals. For example, the

features used for the active engagement interval were obtained as

the feature differences between the active engagement period and

the preceding passive engagement interval.

Classification and Feature Selection. We employed linear

discriminant analysis (LDA) [41] to automatically classify the

activity in which the participant was engaged using the measured set

of autonomic and somatic nervous system signals. LDA projects

signal patterns into a lower dimensional space where the patterns

corresponding to each class are maximally separated. We examined

three, two-class classification problems (no engagement versus

passive engagement, no engagement versus active engagement, and

passive versus active engagement) as well as the three-class problem

(no engagement versus passive versus active engagement).

Classification accuracy was calculated as the percentage of

correctly classified samples obtained from 100 iterations of 5-fold

cross-validation.

Previous literature [28,40] suggests that the ANS response to

external stimuli may be more pronounced in a subset of the

physiological signals and that this subset may be different for each

individual. In this light, we employed the Sequential Feature

Forward Selection with the Fisher criterion [41] to determine the

most separable features for activity classification for each

individual. This criterion is defined as:

f ~
(m1{m2)2

s2
1zs2

2

, ð1Þ

where mi and si are the mean and variance of feature values for

class i. For the three-class problem, we used the sum of the Fisher

criterion values computed for each pair of classes.

Results

Classification accuracies for the four classification problems are

reported for each participant in Table 2 (4 and 9 features were

used for the two-class and three-class problems, respectively).

These accuracies significantly exceeded chance for all classification

problems and all participants with three exceptions: participants 1,

3, and 7 (note that upper confidence limits of chance results for

2 and 3 class problems with 20 trials per class are 65 and 45,

respectively [42]).

Table 3 shows the effect of the number of features on

classification accuracy for each of the three-class classification

problem. As seen, classification accuracy is not highly sensitive to

the number of features used for classification. The top four features

selected for three-class classification are shown in Table 4 for each

participant. These results show that signals of the autonomic and

somatic nervous systems were both used for activity classification.

Figure 4 shows the relative frequency of each signal appearing in

the top four selected features. Based on this figure, EDA features

were most commonly picked, followed by respiration and BVP

features. The least commonly chosen features were those of limb

acceleration.

To verify that the classification accuracies were not due to

differences in amount of vocalization or physical effort among

tasks, we further performed the classification using only the

accelerometer and respiration features. Classification accuracy

based on all features was significantly higher than that based on

respiration or accelerometer features for all participants (Wilcoxon

rank-sum, pv0:05), except for participants 1, 3, and 7. Using

video records of each session, two evaluators investigated whether

Figure 3. Experimental protocol. Participants alternated between intervals of no engagement (blank screen), passive engagement, and active
engagement.
doi:10.1371/journal.pone.0030373.g003

Table 1. Filters used to preprocess the data.

Signal Filter type

BVP 3rd order Butterworth bandpass filter (0.67–3.33 Hz)

EDA 2nd order Butterworth lowpass filter (5 Hz)

Temperature No filtering used

Respiration 3rd order Butterworth bandpass filter (0.17–2.00 Hz)

Acceleration Mean adjusted

doi:10.1371/journal.pone.0030373.t001

Table 2. Classification accuracy results (upper confidence
limit of chance results for 2 and 3 class problems with 20 trials
per class are 65 and 45, respectively [42]).

Participant
No Eng./
Passive

No Eng./
Active

Passive/
Active

No Eng./
Passive/Active

1 {6465 {6865 {6566 5165

2 9762 9761 8863 9462

3 {5267 7265 7265 5665

4 9064 8963 8763 8163

5 9062 9762 9663 9462

6 8763 9063 7964 7564

7 {5066 {6766 {6165 {4565

8 9062 8463 8164 7764

9 8864 10061 9262 9064

Average 79618 85613 80612 74619

{classification accuracy not significantly different from chance (pw0:05). Note -
Eng.: Engagement.

doi:10.1371/journal.pone.0030373.t002

Peripheral Nervous System Signals for Expression
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or not there were significant differences among patterns of

participant movement for the three tasks. Such a pattern was

only suspected for participant 5, who used gestures to communi-

cate through an AAC device.

Discussion

Peripheral Nervous System Signals as a Means of
Communication

We examined the feasibility of using signals of the peripheral

nervous system for developing a language-free measure of

experience in youth with severe disabilities. We demonstrated

that these signals can be used to automatically differentiate

between activities requiring no participant engagement, passive

engagement, and active engagement. In particular, we showed

that both passive and active engagement activities could be reliably

differentiated from the no engagement state. This suggests that

psychological arousal associated with activity engagement can be

detected in this population despite the presence of anatomical and

physiological conditions that may potentially affect signal lability

(e.g., mechanical ventilation) and signal acquisition. Moreover, our

results indicated that peripheral nervous system signal patterns

associated with passive and active engagement were differentiable

with higher than 80% accuracy. Overall, our results suggest that

signals of the peripheral nervous system provide a promising

avenue for the description of experiences in individuals with

disabilities. An experience indicator based on peripheral nervous

system responses is speech-free and does not rely on language

proficiency or voluntary movement control.

Three of the nine participants had poor classification accuracies

for differentiation of of the combinations of the three activities

(participants 1, 3, and 7). One reason for this may be that these

participants had excessive involuntary movements that resulted in

significant artifacts in the measured signals.

Feature Selection
In this study, we used signals of the autonomic and somatic

nervous systems to quantify the activity of the nervous system. As

seen in Table 4, signals of both branches of the peripheral nervous

system were chosen for classification, though the autonomic

nervous systems features were more prevalent. Interestingly,

somatic nervous system features were only chosen for participants

with spasticity. This may suggest some specificity in the selected

features with respect to movement characteristics, though further

exploration of this issue was not possible in our study due to the

small sample size.

Among the signals of the autonomic nervous system, electro-

dermal activity and respiration were most frequently selected,

followed by blood volume pulse and temperature when all

participants were considered. This pattern is consistent with that

reported in [26] who investigated the response of the ANS to

activities inducing states of relaxation, engagement, and stress in

participants without disabilities. The fact that some signals were

more reflective of psychological arousal than others may be in part

due to the differences in the sensitivity of the underlying neural

mechanisms to arousal. In particular, changes in electrodermal

activity, respiration, and fingertip temperature are primarily

attributed to sympathetic activity [24,31], though changes in

fingertip temperature often occur on a much slower scale than the

other two signals (for example, he response latency of electroder-

mal activity is 1–3 seconds [29] while that of fingertip temperature

is 15 seconds [31]). In contrast, cardiac activity is affected by the

antagonistic interaction of the sympathetic and parasympathetic

systems. Given the physiological uniqueness of our sample, further

investigations are needed to describe the contribution of each

branch of the nervous system to the differentiability of response

patterns.

When we considered participants individually, we noted that the

subset of features providing the best classification accuracy was not

always consistent with the general pattern discussed in the previous

paragraph. Determination of this optimal subset is critical for our

target population as each individual may have unique physiology.

In this study, we employed a feature selection method based on the

Fisher criterion to automatically determine the optimal feature

subset for classification. This type of feature selection method

provides automatic personalization essential to account for inter-

individual physiological differences. For example, two of our

participants (2 and 9) relied on mechanical ventilation. As seen

from Table 4, respiration features were not chosen by the

automatic feature selection method for use in classification for

these participants. Moreover, features related to cardiovascular

activity were not selected for participant 2 who had a cardio-

pulmonary condition.

Table 3. Effect of the number of features on classification
accuracy (three-class problem).

Part. 1 ft. 2 ft. 3 ft. 4 ft. 5 ft. 6 ft. 7 ft. 8 ft. 9 ft.

1 5265 5164 5465 5365 5265 5165 5165 5265 5265

2 9061 8863 8963 8963 9162 9263 9362 9462 9462

3 6662 5465 5265 5165 5165 5265 5364 5465 5664

4 6665 6965 7264 7464 7763 7864 7963 8064 8163

5 5465 7364 8364 8563 8562 8762 9163 9362 9562

6 5365 7265 7864 7464 7364 7364 7464 7464 7464

7 3966 4365 4865 4665 4665 4665 4564 4565 4565

8 6862 7064 7464 7764 8064 8164 8064 7964 7864

9 5664 6964 7963 8462 8663 8963 9063 9063 9064

Avg. 60614 66614 70615 70616 71617 72618 73618 73619 74618

Note - Avg. ft.: features; Part.: Participant #.
doi:10.1371/journal.pone.0030373.t003

Table 4. Features most commonly selected for classification
based on the Fisher criterion (most frequently selected
appears on the left).

Participant Feature

1 Resp. (FOD) Resp. (SD) Accel. (SD) Resp. (mean)

2 EDA (slope) EDA (FOD) Temp. (FOD) EDA (SD)

3 Accel. (FOD) Resp. (mean) Resp. (SD) HR (mean)

4 Resp. (SD) EDA (SD) Resp (mean) BVP (FOD)

5 Accel. (slope) Temp (slope) BVP (FOD) EDA (slope)

6 EDA (mean) Resp. (FOD) Temp (FOD) Temp (SD)

7 EDA (SD) Temp (FOD) Resp. (FOD) Temp (slope)

8 HR (mean) HR (slope) EDA (slope) HR (SD)

9 HR (mean) Temp (FOD) EDA (slope) EDA (mean)

Accel.: Limb acceleration, BVP: blood volume pulse, EDA: electrodermal activity,
HR: heart rate, FOD: first order difference, Resp: respiration, Temp: skin
temperature.
doi:10.1371/journal.pone.0030373.t004
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Limitations
Our results demonstrate the feasibility of classifying activity

engagement that is potentially associated with different patterns

of psychological arousal related to engagement. We did not,

however, examine whether or not the valence associated with the

emotional experience of the activity (positive or negative) can

also be classified using signals of the peripheral nervous system.

While previous studies have reported success in participants

with disabilities, the complexity of inducing pure emotions and

obtaining self-reports in the target population prevented us from

directly replicating those experiments.

This study examined somatic nervous system signals obtained

from one limb only. This was done to minimize any confounding

effects resulting from voluntary movements used to produce

vocalizations and/or to control AAC devices (participants typically

used one limb and/or their head for this purpose). An interesting

future direction would be to examine whether or not movement

data collected from multiple bodily sites can improve the

discrimination power of the signals of the somatic nervous system.

Another limitation of this study was that we assumed prior

probabilities for the three states. In reality, however, states of

engagement are expected to occur less frequently than states of no

engagement in the target population. Future investigation of the effect of

unequal probabilities on classification accuracy is strongly warranted.

Finally, the order of task presentation was not randomized in

this study to ensure a natural progression (rest, picture watching,

and evaluation). Because physiological data closer in time tend to

be more correlated than those further apart in time, the effect of

task order on classification accuracy should be further investigated.
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