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Abstract

In most cancers harboring Ccdc6 gene rearrangements, like papillary thyroid tumors or myeloproliferative disorders, the
product of the normal allele is supposed to be functionally impaired or absent. To address the consequence of the loss of
CCDC6 expression, we applied lentiviral shRNA in several cell lines. Loss of CCDC6 resulted in increased cell death with clear
shortening of the S phase transition of the cell cycle. Upon exposure to etoposide, the cells lacking CCDC6 did not achieve
S-phase accumulation. In the absence of CCDC6 and in the presence of genotoxic stress, like etoposide treatment or UV
irradiation, increased accumulation of DNA damage was observed, as indicated by a significant increase of pH2Ax Ser139.
14-3-3s, a major cell cycle regulator, was down-regulated in CCDC6 lacking cells, regardless of genotoxic stress.
Interestingly, in the absence of CCDC6, the well-known genotoxic stress-induced cytoplasmic sequestration of the S-phase
checkpoint CDC25C phosphatase did not occur. These observations suggest that CCDC6 plays a key role in cell cycle
control, maintenance of genomic stability and cell survival and provide a rational of how disruption of CCDC6 normal
function contributes to malignancy.
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Introduction

Coiled-coil domain containing 6 (CCDC6, also known as H4/

D10S170 or PTC1) encodes for a ubiquitously expressed protein,

highly conserved across species, that is frequently rearranged in

human malignances. It was initially isolated and characterized due

to its participation in RET/PTC1 oncogene, the product of

inversion inv(10)(q11.2q21) which is present in approximately 20%

of papillary thyroid carcinoma (PTC) cases [1]. It also forms H4/

PDGFRb, the fusion gene product of the translocation

t(5;10)(q33;q22), occurring in sporadic cases of atypical chronic

myeloid leukemia [2–4].

The oncogenic activity of CCDC6 fusion proteins has been

demonstrated in vitro and in vivo [3,5,6]. There is compelling

evidence showing that RET/PTC rearrangements are early

genetic events in the process of cancer formation [7–9]. The

presence of RET/PTC1 in adenomas and benign tumors [10–12]

indicates that RET/PTC1 probably acts synergistically with other

factors that lead to malignancy. Interestingly, the vast majority of

PTC bearing RET/PTC1 failed to express wild type CCDC6

from the non-rearranged allele, suggesting a potential tumor

suppressor function of this gene [10]. In addition, in cases

expressing the normal allele, CCDC6 seems to be functionally

impaired through heterodimerization with the coil-coiled domain

of the fusion protein [13,14]. These data indicated that loss of

normal CCDC6 might support oncogenic transformation. More-

over, normal CCDC6 might be a positive regulator of apoptotic

cell death [14,15]. Furthermore, recent work has suggested that

CCDC6 might be functionally implicated in the cellular DNA

damage response [15]. To study the functional consequences of

loss of CCDC6 we applied a highly efficient lentiviral shRNA

knock down strategy in several human cancer cell lines. We found

that loss of CCDC6 resulted in distinct S-phase cell cycle defects,

increased genomic instability and cell death.

Results

Efficient CCDC6 silencing alters proliferation rate and
significantly increases cell death

Two lentiviruses expressing different CCDC6 shRNAs were

applied to HCT116, HeLa and MCF7 cells. As show in

Figure 1A, expression of either shRNA, resulted in highly

significant reduction of the protein levels of CCDC6. The impact

of CCDC6 knock down on proliferation and survival of HCT116

cells was studied by trypan blue dye exclusion and counting the

number of alive and dead cells for 4 consecutive days (Figure 1B).

A slight growth reduction of CCDC6 knock down cells was

observed compared to mock transduced control cells. The reduced
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growth was associated with significantly increased cell death

(72 hours: rsh1 = 9.7 10213, rsh2 = 3.8 10207 and 96 hours:

rsh1 = 9.1 10207, rsh2 = 2.4 10208), suggesting that cells were not

growth arrested but rather cycling before cell death (Figure 1B).

To further investigate the observed cell death, we performed flow

cytometry gating for the cell population in subG0/G1 with less than

2n DNA content, corresponding to apoptotic and dead cells

(Figure 1C). This population was significantly increased (48 hours:

rsh1 = 2.8 1024, rsh2 = 8.19 1025, 72 hours: rsh1 = 0.0318,

rsh2 = 0.0259, 96 hours: rsh1 = 0.011, rsh2 = 3.9 1024) upon

CCDC6 knock down compared to the control cells, at all time

points measured. We further analyzed apoptotic cell death by

staining for Po-PRO and 7-AAD. The double positive population

corresponding to late apoptosis was significantly increased (48 hours:

rsh1 = 0.001853, rsh2 = 0.003125, 72 hours: rsh1 = 0.006971,

rsh2 = 0.000968) in CCDC6 knock down cells, furthermore

suggesting that efficient silencing of CCDC6 results in apoptotic

cell death. Similar results were obtained in MCF7 and HeLa cells

(data not shown). Consequently, we demonstrated that absence of

CCDC6 results in increased cell death without growth arrest.

Loss of CCDC6 expression results in aberrant S-phase cell
cycle progression

To study the effect of CCDC6 knock down on cell cycle

progression, we transduced HCT116 and HeLa cells with the

shRNA expressing lentiviruses and analyzed cell cycle progression

of the cells by PI staining, at 48, 60, 72 and 84 hours. As shown in

Figure 2, alterations of all phases of the cell cycle could be

observed. More specifically, we observed a consistent increase of

the cell population in phases G1 and G2 and a decrease of cells in S

phase of the cell cycle at all time points upon CCDC6 knock

down, compared to mock-transduced cells. Similar results were

observed both in HCT116 (Figure 2A & B) and in HeLa cells

(Figure 2C & D).

To clarify the impact on cell cycle regulation we synchronized

HCT116 cells by serum starvation for 48 hours and re-stimulated

Figure 1. CCDC6 knock down alters proliferation rate and increases cell death in vitro. Cells were transduced using lentivirus, expressing
two different small hairpins for CCDC6, labeled as sh1 and sh2 and cultured for 48 hours. The same viral vector was applied as control (mock: mock
transduced). (A) Western blot analysis using anti-CCDC6 mouse monoclonal antibody demonstrated the efficient knock down of CCDC6 protein
expression. Growth curves were performed in triplicates using trypan blue dye exclusion for counting the alive (B) and the dead cells (C). Decreased
proliferation rate and increased cell death was observed in the absence of CCDC6. (D) The subG0/G1 population, as measured by flow cytometry, is
indicative of apoptosis and is significantly increased following CCDC6 knock down. The percentage of survival was calculated for each time point by
excluding both early apoptotic and dead cells. (E) Apoptotic cell death was analyzed by Po-PRO and 7-ADD staining. The Po-PRO single-positive cells
are early apoptotic while the double positive stained cells for Po-PRO and 7-AAD are late apoptotic and dead cells. All assays were performed in three
independent experiments.
doi:10.1371/journal.pone.0031007.g001
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them by adding 5% FCS to the medium. Interestingly, synchroni-

zation of the mock-transduced control cells was superior to that

obtained by the CCDC6 knock down cells (Figure 2E). More

specifically, the majority of the mock-transduced cells were arrested

in G1 phase (84%) while a very small percentage of the cells was

distributed among S (6%) and G2 phase of the cycle (4%), as

expected. In contrast, upon CCDC6 knock down, the cells were

mainly in G1 (78%), with a respectful 22% of cells in G2; cells in S

phase were nearly undetected (1%). Moreover, 14 hours after serum

re-stimulation, the majority (<90%) of the control cells was in the S

phase whereas cells lacking CCDC6 exhibited a delay in G1/S

transition. However, 4 hours later, both control and knock down

cells demonstrated a similar profile. 24 hours after serum stimulation

CCDC6 knock down cells accumulated in G1 and G2 of the cycle. At

the latter time point, the control cells were cycling normally

(Figure 2E). Taken together, these observations suggest that

regulation of cell cycle is significantly affected by CCDC6 silencing,

and the proper transition of cells through the S phase is disturbed.

Loss of CCDC6 expression inhibits intra-S phase
checkpoint activation and results in increased cell death

The impact of CCDC6 on S-phase cell cycle progression was

further addressed by treating mock-transduced and CCDC6

shRNA expressing HCT116 and HeLa cells with etoposide

(20 mM), a well-established topoisomerase II inhibitor inducing

DNA damage. Etoposide is known to activate intra-S phase

checkpoint control depicted as a delay in S phase, followed by a

G2/M arrest via activation of G2/M checkpoint [16–18].

Etoposide treatment of mock-transduced cells resulted in an initial

accumulation in S phase, as early as 4 hours after etoposide

addition, gradually reaching a G2 arrest 36 hours post treatment.

In contrast, CCDC6 knock down cells showed a dramatic

reduction of S phase accumulation, at all time points

(Figure 3A). Eventually, the cells progressed and accrued in G2

phase, exhibiting increased cell death compared to the control.

This was evidenced by the percentage of cells in subG0/G1,

reaching 22.7% for knock down cells compared to 9.0% of mock

transduced cells (Figure 3A & 3B). These results strongly

suggested that the presence of CCDC6 is essential for the proper

function of intra-S phase checkpoint control.

To determine the effect of CCDC6 silencing on cell survival

upon etoposide-mediated genotoxic stress, the apoptotic cells were

determined by Po-PRO and 7-AAD double stains. As depicted in

Figure 3C, CCDC6 knock down resulted in a significant decrease

of cell survival at 24 hours post etoposide treatment whereas the

survival of control cells remained unaffected upon etoposide

Figure 2. Normal Cell cycle progression is altered upon CCDC6 knock down. Cell cycle analysis was performed using propidium iodide (PI)
staining and measuring the DNA content, at the indicated time points, starting 48 hours after transduction. Cell cycle was analyzed with FlowJo
software and Jean-Fox algorithm. In all time points both in HCT116 (A), (B) and HeLa (C), (D) the percentage of cells in the S phase is reduced upon
knock down of CCDC6 in comparison to the control (mock). One, out of three, representative experiment is shown. (E) HCT116 cells were
synchronized by serum starvation for 48 hours followed by restimulation with 5% of FCS. CCDC6 knock down resulted in incomplete arrest at G1 and
not total synchronization, as the control cells. 14 hours after serum stimulation the majority of the control cells are in S phase while CCDC6 knock
down cells demonstrated a delay in S phase entering. 4 hours later, control and CCDC6 knock down cells showed the same profile, suggesting
shorter duration of S upon CCDC6 knock down. 24 hours later, control cells were cycling normally and CCDC6 knock down cells exhibited a delay in
completing G2 phase and re-entering G1.
doi:10.1371/journal.pone.0031007.g002
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exposure. The difference between control and CCDC6 knock

down cells remained significant at 48 hours, while at 72 hours it

was eliminated, as expected, due to the etoposide toxicity. As cells

lacking proper S phase checkpoint regulation, accumulate DNA

damage and eventually die, these observations support the

necessity of CCDC6 for the proper function of the intra-S phase

checkpoint control.

CCDC6 knockdown increases susceptibility to UV-
induced DNA damage

To further investigate the contribution of CCDC6 to intra-S

phase cell cycle checkpoint, we applied genotoxic stress using UV

irradiation. Previous studies have shown that UV exposure leads to

the activation of an intra-S phase checkpoint that senses double

strand brakes (DSB) and triggers a signaling cascade of cellular

repair. The expected impact on the cell cycle profile is a delay of

completion of S phase leading to transient accumulation in S

phase. DNA damage beyond repair capacity results in G2 arrest,

cell death or senescence [19]; [20]. In this context, we treated

HCT116 and HeLa cells with UV-C in a DSB inducing dosage

0,002 J/cm2 and followed cell cycle progression with and without

CCDC6 knock down. As expected, UV exposure of mock-

transduced cells resulted in an increased population of cells in the

G1 and S phase (Figure 4A). In contrast, upon shRNA-mediated

CCDC6 knock down the cells did not accumulate in G1/S phase

but continued cycling and entered G2 prematurely, suggesting that

the UV-induced intra-S-phase checkpoint was impaired.

Moreover, CCDC6 knock down cells were more susceptible to

UV-induced cell death compared to the controls, as determined

by calculating the subG0/G1 population after PI staining. <35%

of the knock down cells recorded in subG0/G1 while the control

cells remained below 10% (Figure 4B), resulting in impaired cell

survival (Figure 4C) reaching 60% from the initial 80%,

24 hours after treatment. In the latter time point, cell survival

of control cells was unaffected. To follow DSBs induced by either

UV irradiation or etoposide treatment, we also determined the

expression of pH2Ax Ser139, an established marker for DSBs in

the genome [21]. Loss of CCDC6 expression resulted in

increased pH2Ax Ser139 levels upon irradiation with abundant

expression as early as 2 hours post UV treatment. At the same

time point, pH2Ax Ser139 levels remained undetectable in mock-

transduced control cells. Overall, in all time points analyzed, the

pH2Ax Ser139 protein levels were higher in the absence of

CCDC6 expression (Figure 4D). Likewise, upon etoposide

treatment, the pH2Ax Ser139 protein levels were elevated in

the absence of CCDC6 (Figure 4D). Additionally, we visualized

pH2Ax Ser139 expression by confocal microscopy and demon-

strated that the levels of pH2Ax Ser139 were elevated upon

knock down of CCDC6 expression in accordance to the Western

blot results. Moreover, the nuclear configuration of this protein

changed in the absence of CCDC6, pH2Ax Ser139 forming

distinct foci. These observations furthermore suggest that

CCDC6 knock down increases susceptibility to DNA damage

upon genotoxic stress.

Figure 3. Deficient S phase checkpoint regulation upon etoposide treatment in the absence of CCDC6. (A) HCT116 cells were treated
with 20 mM etoposide and cells were harvested at predetermined time points for cell cycle analysis. In the absence of CCDC6, no S phase
accumulation is observed and the transition to G2 phase is accelerated. One representative experiment is shown, out of three performed. (B)
Concomitant apoptotic cell death was quantified by measuring the subG0/G1 DNA content. CCDC6 knock down cells showed higher levels of
apoptosis, at earlier time point, in comparison to the control, in response to genotoxic stress upon etoposide treatment. (C) The percentage of cell
survival was assessed by gating for PoPRO and 7-AAD negative cells. CCDC6 knock down resulted in lower cell survival upon etoposide induced
genotoxic stress. The assays were performed in triplicates.
doi:10.1371/journal.pone.0031007.g003
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CCDC6 knock down affects the 14-3-3s and CDC25C
regulators of G2/M transition

The above results demonstrate that CCDC6 contributes to the

activation of the S phase checkpoints. Due to its absence there is

acceleration to S phase and premature entrance to G2/M. The

transition to G2/M during normal cell cycle is regulated by the

activation of CDC25C. Previous studies have shown that, inactive

Ser216-phosphorylated CDC25C is sequestered to the cytoplasm

by the 14-3-3 proteins. Once mitosis is activated, cytoplasmic

sequestration of CDC25C is inhibited by a CDC2-mediated

phosphorylation of CDC25C at Ser214, leading to disassociation

of 14-3-3s and CDC25C [22–25].

We followed these S-phase checkpoint mediators, CDC25C and

14-3-3s, upon exposure of HCT116 cells to etoposide (20 mM), in

the presence or absence of CCDC6 using Western blotting and

confocal microscopy. As shown in Figure 5A, CDC25C is steadily

increased in a course of time, upon etoposide treatment. However,

CCDC6 knock down resulted in an earlier increase of the

CDC25C protein levels compared to mock-transduced cells.

Moreover, in CCDC6 knockdown the protein levels of 14-3-3s
decreased and then increased upon etoposide treatment. In

contrast, in mock-transduced cells the 14-3-3s levels remained

unchanged for 24 hours. More interestingly, absence of CCDC6

altered the localization of these molecules (Figures 5B & C).

More specifically, we followed the subcellular localization of

CDC25C upon etoposide treatment at different time points (0, 4,

8, 12, 24, 48 hours). Cytosolic sequestration of CDC25C in cells

lacking CCDC6 was not obvious in any of the time points checked

whereas mock-transduced cells exhibit mainly cytosolic localiza-

tion of CDC25C between 8 and 12 hours upon etoposide

treatment (Figure 5B). In further detail, as shown in

Figure 5C, in mock-transduced cells, CDC25C cytoplasmic

localization was accompanied with significant interactions with 14-

3-3s as indicated by the numerous sites of co-localization (seen in

yellow). Upon CCDC6 knockdown 14-3-3s signals were cytosolic

and down regulated and CDC25C main localization after

etoposide treatment (12 hours) was found in the nucleus without

any signs of co-localization with 14-3-3s observed.

Figure 4. Knock down of CCDC6 increases vulnerability to genotoxic stress by UV induced DNA damage. HCT116 cells were transduced
with CCDC6 shRNA expressing lentivirus or empty control followed by UV irradiation (0.002 J/cm2), 48 hours after transduction. Cells were harvested
at 2, 6 and 24 hours after irradiation and analyzed for the cell cycle using flow cytometry. The percentages of the cell populations in each phase of
the cell cycle for every time point are depicted as bars in the diagram (A). In control cells, UV irradiation results in G1 and S phase increase while in
CCDC6 knock down cells UV irradiation causes a reduction of cell population in S phase and an increase in G2 phase. A representative experiment is
shown. (B) The apoptotic levels were measured by flow cytometric assessment of the subG0/G1 population. Knock down of CCDC6 increase UV-
mediated cell death. (C) Cell survival analysis by Po-PRO and 7-ADD staining (excluding the double positive cells) revealed a significantly decreased
cell survival of cells lacking CCDC6. Error Bars represent 3 independent experiments. (D) Cell lysates of HCT116 cells treated with etoposide (20 mM) or
radiated with UV (0.002 J/cm2) for 2, 6 or 24 hours and the untreated controls were resolved on a SDS-PAGE and probed for pH2Ax Ser139. Upon UV
irradiation, pH2Ax Ser139 levels arise earlier and to a higher extent in CCDC6 knock down cells compared to the control. UV irradiation is causing high
levels of pH2Ax Ser139 even in 2 hours after irradiation in CCDC6 knock down cells. The effect is similar upon etoposide treatment, although less
dramatic. (E) Increased basal levels and nuclear foci of pH2Ax Ser139 are present in CCDC6 knock down cells, even in the absence of any additional
treatment.
doi:10.1371/journal.pone.0031007.g004
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Discussion

Several lines of evidence suggested that CCDC6-related

malignancies are developed upon loss of CCDC6 normal

function. First, the majority (.90%) of tumors bearing CCDC6

fusion genes do not express CCDC6 from the normal allele [10].

In addition, in the presence of the chimeric molecule,

endogenous expressed normal CCDC6 protein seems to hetero-

dimerize with the fusion product, suggesting a dominant negative

effect of the fusion on CCDC6 normal function [13,26].

Moreover, several public databases reported that a significant

number of head and neck cancers exhibit considerable down-

regulation of CCDC6 (www.oncomine.org, www.proteinatlas.

org). Under this perspective, we have silenced expression of

CCDC6 in several cell lines using a highly efficient shRNA

knockdown strategy. Loss of CCDC6 resulted in apoptotic cell

death with only a minor reduction in proliferation. We also

reported that CCDC6 is important for normal cell cycle

progression and proper function of checkpoint controls. In the

absence of CCDC6, intra S phase control was deficient and this

Figure 5. CCDC6 knock down results in altered cellular localization of CDC25C and accelerated G2/S transition upon etoposide-
mediated genotoxic stress. Control and CCDC6 knock down HCT116 cells were treated with etoposide (20 mM). (A) Cell lysates of HCT116 cells
treated with etoposide (20 mM) for 2, 4, 8, 12 and 24 hours and mock control treated with DMSO vehicle were resolved on a SDS-PAGE and probed
for 14-3-3s and CDC25C. 14-3-3s protein levels were down-regulated in the absence of CCDC6 protein expression and the CDC25C protein level
regulation was altered. (B) Cells grown on cover slips were exposed to etoposide for 4, 8, 12, 24 hours, fixed and stained for CDC25C. In mock cells,
CDC25C is kept in the cytosol upon etoposide treatment at 8 and 12 hours but is localized in the nucleus in the absence of CCDC6. (C) Cells exposed
to etoposide for 12 hours were co-stained for CDC25C and 14-3-3s. CDC25C is kept in the cytosol upon etoposide treatment and exhibits co-
localization with 14-3-3s (seen in yellow) but enters the nucleus in the absence of CCDC6.
doi:10.1371/journal.pone.0031007.g005
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effect was enhanced upon DNA damage induced by etoposide or

UV-irradiation.

A key regulator of the S phase duration and the transition to G2

is 14-3-3s and its complexes to several partner proteins. 14-3-3-

ligand association triggers a phosphorylation cascade resulting in

cytoplasmic sequestration of the CDC25-B, CDC25-C phospha-

tases. Due to their location, the latter are kept inactive and unable

to reach their targets, Cdk1/cyclin B1 and MPF complexes [27];

[28]. Upon loss of CCDC6, we observed downregulation of 14-3-

3s and altered regulation and localization of CDC25C. In fact,

CDC25C enters the nucleus, were it triggers mitosis by activation

of the Cdk1/cyclin B complex. These observations suggest that

CCDC6 is implicated in the regulation of normal both cell cycle

progression and DNA repair mechanisms most probably through

co-operation with 14-3-3s. Interestingly, a recent proteomics

study proposed direct physical interaction of CCDC6 with 14-3-

3s in a PI3K kinase specific manner [29].

Cell cycle checkpoints are implemented to safeguard the

genome from accumulation of genetic errors. S (synthesis) phase

is undoubtedly the most vulnerable period of the cell cycle division

[30] and its checkpoints are the most significant for preventing

genetic instability [31]. Extensive literature shows that malfunc-

tioned S phase and thus aberrant DNA replication can lead to

increased mutagenesis and also cell death in mitosis [32]. The fact

that CCDC6 is highly implicated in chromosomal rearrangements

could be an additional link to its role in genomic stability and

supports our findings concerning S phase deficiency upon loss of

CCDC6 [33]. The spatial contiguity between CCDC6 and RET

and also their location at DNA fragile sites have been accused for

the high frequency of RET/PTC1 rearrangements [34–36]. Our

data suggest, that loss of CCDC6 function can create a prosperous

environment for the formation of cancer [15,26,37,38]. Cells

depleted for CCDC6 show increased cell death in presence or

absence of genotoxic stress. These cells do not arrest in G1 or S

phase upon DNA damage as expected. They proceed with DNA

synthesis resulting in accumulation of DNA damage, as demon-

strated by an increase of pH2Ax S139 protein levels. Our results

are in agreement with previous work showing that CCDC6 down-

regulation and treatment with c-radiation resulted in increased

BrdU incorporation and staining for the pH3 mitosis marker [15].

However, increased genotoxic stress-mediated DNA damage and

cell death upon CCDC6 knock down cells has not been observed

in the latter study. This discrepancy might be due to the higher

knock down efficiency in the here presented experiments where

the protective effects of CCDC6 were abolished.

Interestingly, similar cell cycle effects phenocopying CCDC6

knock down have been previously reported in leukemic cells

expressing the BCR/ABL tryrosine kinase fusion oncoprotein

[39,40]. In fact expression of BCR/ABL seems also to increase

DNA double-strand damage after etoposide treatment and lead to

a defect in an intra-S phase checkpoint. Therefore, it will be

interesting to study whether expression of the PTC1 oncogenic

tyrosine kinase results in similar cell cycle checkpoint defects.

Therefore, additional studies should be performed to address

whether loss of normal CCDC6 might be a more common

principle for other constitutively active oncogenic kinase fusions

beyond the CCDC6 fusions to RET or PDGFR.

Taken together, our work suggests that loss of CCDC6 results in

S phase deregulation that impairs the ability of the cell to maintain

genomic integrity and creates a prosperous ground for genomic

instability [30,41–43]. Further specification of the exact pathways

in which CCDC6 is implicated and identification of its interacting

partners will be necessary to unravel the molecular mechanisms of

cancers, harboring CCDC6 alterations.

Materials and Methods

Cell culture and treatments
Different cell lines, such as HCT116, HeLa, MCF7 and 293T

were cultured as a monolayer in Dulbecco’s Minimal Essential

Medium (DMEM) supplemented with 10% Fetal Calf Serum,

1%P/S and 1% L-Glutamine (Invitrogen, Paislay, UK). The cells

were incubated at 37uC and 5% CO2.

Synchronisation of HCT116s was achieved through serum

deprivation for 48 hours. The cells were plated on a 6 well plate

(36105 cells/well) and stimulated with DMEM supplemented with

5% of FCS. They were harvested at the indicated time points and

the cell cycle was analysed.

Cells in culture were UV irradiated at 0.002 J/cm2 using a

254 nm lamp of a UV Stratalinker 2400 (Stratagene/Agilent

Technologies, Santa Clara, CA, USA).

Cells were treated with 20 mM etoposide (Sigma/Aldrich, St.

Louis, MO, USA) for the selected time points and cell cycle and

apoptotic assays were performed.

Lentiviral shRNA constructs, viral production and cell
transduction

Silencing of Ccdc6 was accomplished using commercially

available shRNA lentiviral based constructs (TRCN 0000083831

and TRCN0000083828) from Sigma (Sigma/Aldrich, St. Louis,

MO, USA). The empty lentiviral vector TRC1 (Sigma/Aldrich,

St. Louis, MO, USA) was applied as a control.

For the lentiviral supernatant production, HEK-293T cells

maintained in DMEM supplemented with 5% FCS without

antibiotics, on 10 cm culture plates to ,60% confluency. Sixteen

hours later transfection of HEK-293T cells took place. As a

transfection reagent Lipofectamine (Invitrogen, Carlsbad, CA,

USA) was used according to the manufacture’s protocol. 3 mg of

the envelop plasmid pMD2G, 3 mg of the packaging plasmid

pMDLpRRE, 2.5 mg of the Rev-expression plasmid pRSV/Rev

(Addgene, Cambridge, MA, USA) and 10 mg of the shRNA

lentiviral construct were added in 1 mL of DMEM medium,

serum and antibiotics free. 40 mL of lipofectamine was diluted in

1 mL of DMEM without serum and antibiotics and incubated for

5 min. DNA and lipofectamine parts were mixed and incubated

for 20 min before added to the HEK293T cells. 24 hours later, the

medium was discarded and replaced with 5 mL of DMEM with

10% FCS, without antibiotics. 24 hours later the medium was

collected into a 15 mL tube and 5 mL of medium were added to

the plate and the same step was repeated at 48 hours. The

lentivirus-containing supernatant was filtered through a 20 mM

pore filter, aliquoted to 1 mL cryotubes and quickly frozen down

in liquid nitrogen. Virus was stored at 280uC.

HCT116s, HeLas and MCF7s were plated in 6 well plates (5

105 cells/well) and 16 hours later were viral transduced. This was

performed using 1 mL of lentiviral supernatant, diluted in 1 mL of

DMEM complete medium and 4 mL of protein sulphate. Cells

were centrifuged at 2,500 rpm (Heraeus Biofuge stratos centrifuge)

for 90 min at RT. The medium was replaced with fresh complete

DMEM and changed again 24 hours later.

Fixation and immunostaining
Cells were cultured on cover slips, coated with polylysine.

Fixation was performed in 4% paraformaldehyde (Sigma/Aldrich,

St. Louis, MO, USA) solution in PBS, incubated for 10 min at

RT. The excess paraformaldehyde was discarded after washing

the cells three times with PBS. Permeabilisation was achieved

through incubation in 0.1% Triton–X 100 solution for 10 min and

then in 0.5% Triton-X 100 (Sigma/Aldrich, St. Louis, MO, USA)

CCDC6 Is Implicated in Cell Cycle Regulation
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for 30 min. The fixed cells were incubated in 5% BSA blocking

solution for 1 hour. Incubation was performed for 16 hours at 4uC
in a solution containing 0.3% Triton-.X100, 0.5% BSA and the

indicated primary antibody in the appropriate dilution. After

washing three times with 0.3% Triton-X in PBS, cells were

incubated with the secondary antibody diluted in 0.5% Triton-X

in PBS and 0.5% BSA for 2 hours. The cells were washed on the

cover slips and put on a slide by adding on top a droplet of

clearnoutmounting medium (Invitrogen, Carlsbad, CA, USA).

The secondary antibodies used were anti-goat FITCH from

ZYMED, anti-mouse Alexa 555, anti-rabbit Alexa 488 from

Invitrogen (Invitrogen, Carlsbad, CA, USA).

Flow cytometric analysis
Cell death and apoptosis was measured by Membrane

Permeability/Dead Cell Apoptosis Kit with Po-PRO-1 and 7-

AAD Apoptosis for Flow Cytometry (Invitrogen, Carlsbad, CA,

USA) as recommended by the manufacturer, using a DAKO

CYAN flow cytometer (DAKO, Fort Collins, CO, USA). Cell

cycle profiling was carried out by Propidium Iodide staining and

analysed by FlowJo Software. The quantification of apoptosis was

performed via analysis of the subG0. Cells were fixed with 70% ice

cold ethanol and kept at 220uC over night. Then, cells were

washed twice with PBS and resuspended in PI solution containing

1 mg/mL propidium iodide, 100 mg/mL RNase A, 0.001%

Triton-X 100 in PBS at a concentration of 106 cells/mL,

incubated for 45 min at 37uC in the dark and analysed using a

Dako CYAN FACS machine. The propidum iodide fluorescence

emission signal was detected in the FL3 channel. At least 20,000

events were acquired.

Confocal microscopy
Confocal fluorescence images were obtained by a Zeiss LSM710

(Zeiss, Thornwood, NY microscope) with a 636objective. Images

were analysed by Zeiss software.

Antibodies and Western Blot analysis
Cells were harvested and lysed in RIPA (200 mM NaCl,

10 mM Tris-Hcl at pH 7.5, 0.1% SDS, 1%Triton X-100) and

complete protease and phosphatase inhibitor cocktail tablets

(Hoffmann-La Roche NJ, USA). The protein concentration was

determined by a Bradford assay (BIORAD). Equal amounts of

proteins were electrophorated and separated by 12% SDS-PAGE

gels, followed by transfer onto nitrocellulose membranes. Immu-

noblotting was performed using various antibodies. Blotted

proteins were visualized with the aid of an enhanced chemilumi-

nescence kit (Amersham, Piscataway, NJ, USA) and imaged with

Kodak Biomax Light Films (Sigma/Aldrich, St. Louis, MO, USA).

Antibodies were as follows: Anti-Ccdc6 (ab-56353), 14-3-3s
(ab1423) from Abcam (Abcam, Cambridge, UK), anti Cdc25C (sc-

327), anti-actin (sc-1615) and anti pH2Ax Ser139 (07-164,

Upstate) from Cell Signaling (Beverly, MA, USA). The secondary

antibodies were: anti-mouse, anti rabbit and anti-goat HRP

conjugated from ThermoScientific.

Statistic analysis
Inter-group comparison was performed using a paired two

sample t-test. The minimum level of statistical significance was set

at aJ0.05.
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