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Abstract

Fungal genomes range in size from 2.3 Mb for the microsporidian Encephalitozoon intestinalis up to 8000 Mb for
Entomophaga aulicae, with a mean genome size of 37 Mb. Basidiobolus, a common inhabitant of vertebrate guts, is distantly
related to all other fungi, and is unique in possessing both EF-1a and EFL genes. Using DNA sequencing and a quantitative
PCR approach, we estimated a haploid genome size for Basidiobolus at 350 Mb. However, based on allelic variation, the
nuclear genome is at least diploid, leading us to believe that the final genome size is at least 700 Mb. We also found that EFL
was in three times the copy number of its putatively functionally overlapping paralog EF-1a. This suggests that gene or
genome duplication may be an important feature of B. ranarum evolution, and also suggests that B. ranarum may have
mechanisms in place that favor the preservation of functionally overlapping genes.
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Introduction

Basidiobolus ranarum is an occasional human pathogen found

often in soil but most commonly detected in vertebrate guts and

dung especially of amphibians and reptiles [1,2,3,4,5,6,7]. The

phylogenetic position of Basidiobolus is not well resolved, but in

most phylogenies it occupies a place somewhere between chytrid

and Entomophthoromycotina lineages making it among the oldest

lineages in the Kingdom Fungi [8,9,10]. Basidiobolus has numerous

unique features that set it apart from other eukaryotes. Like many

fungi Basidiobolus can grow as hyphae and/or yeast depending

upon the environmental conditions, but when growing as hyphae

the cytoplasm migrates with the growing tip making a mycelium of

mostly empty cells and a collection of individual growing tip cells

with no internal sharing of resources or genetic material.

Basidiobolus has extremely large nuclei (25–50 mm) with nucleoli

that can fill nearly the entire nucleus and a unique nuclear

associated body superficially like a centriole but having a

completely different microtubule arrangement from the canonical

963 microtubule arrangement in other eukaryotes.

Basidiobolus is also unique in its translation machinery. The gene

EF-1a provides a core function of translation elongation by

delivering t-RNA to the ribosome. Although EF-1a was initially

believed to be a universal component of eukaryotic cells, it has

relatively recently been discovered that some eukaryotes lack EF-

1a and instead use a distantly related paralogous GTPase,

Elongation Factor-Like (EFL), for translation and no longer have

EF-1a [11]. The phylogenetic distribution of EFL is patchy across

mostly single-celled eukaryotic lineages and both horizontal-gene-

transfer and differential gene loss have been invoked to explain the

distribution of EFL and EF-1a [12,13,14,15]. Only B. ranarum and

the marine diatom Thalassiosira pseudonana have been found to

harbor both EF-1a and its distantly related paralog EFL with all

other lineages having lost one or the other gene [8,16]. There are

currently no explanations for why B. ranarum has retained both

EFL and EF-1a. In order to begin to better understand the

evolution of B. ranarum we sought to determine the genome size of

B. ranarum and the relative copy number of EFL and EF-1a genes

using qPCR.

Analysis

We sequenced three protein-coding loci, actin, EFL and EF-1a,

from three strains of B. ranarum isolated from the dung of the

amphibian Discoglossus sardus, collected on the island of Sardinia in

the Mediterranean with permission from the Ente Foreste della

Sardegna. These dung collections from a species not CITES listed

do not require any special permission. Strains were isolated via the

protocol of Nelson et al. (2002) and deposited in the USDA-

ARSEF strain collection (Strain designations 9900, 9901, 9902).

Sequences were deposited in GenBank with accession numbers

JN817948-JN817965. We detected polymorphism for all loci

within isolates based on ‘double peaks’ within the chromatograms

suggesting that B. ranarum contains a base copy number of genes

greater than one. In each locus, we detected within isolate

polymorphism, with up to 6 polymorphic sites in actin, 7 in EFL,

and 5 in EF-1a, and across all loci we found 18, 12, and 5 sites that

were polymorphic within isolates 9900, 9901, and 9902 respec-

tively. To confirm the nature of the within-isolate polymorphism

we designed two primers to be identical except for the final 39 base
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that covered a polymorphic position. This ensured that we would

only amplify one of the two alleles, thus allowing the polymorphic

site to be scored (Table 1). For all standard PCR we used Qiagen

TopTaq kits with the same cycling conditions for each primer set,

namely 95u for 15 minutes to activate the polymerase followed by

37 cycles of 95u for 30 seconds, a ‘touchdown’ annealing

temperature starting at 60u for 30 seconds and decreasing one

degree each cycle for the first 7 cycles to 54u for 30 seconds for

each remaining cycle followed by 72u for 60 seconds. Each PCR

with specific primers was successful, and sequencing of these

products showed no double peaks but recovered all polymorphic

sites in two haplotypes (Fig. 1).

To estimate the genome size of B. ranarum we used a quantitative

PCR based approach outlined by Wilhelm et al. [17] and the

following formula taken from Armaleo and May [18]: (QG/QP) *

LP * E(CtG-CtP) = LG. Here, QG and QP are the starting quantities

of DNA used in the qPCR reaction of genomic DNA and PCR-

produced DNA, respectively, LG and LP are the lengths of the

genomic and PCR-produced DNA, respectively, CtG and CtP are

the quantitative qPCR Ct values of the genomic and PCR-

produced DNA reactions, and E is the efficiency of the

quantitative PCR. Based on this equation the inferred length of

the genomic DNA should represent the haploid genome size, and

if inferred lengths differ between loci then it would suggest either

locus specific errors or copy number variation between loci. All

things being equal, the inferred genome size should scale linearly

with the copy number of the locus so that a single copy locus from

a 10 Mb genome would estimate a genome of 10 Mb while a two-

copy locus would estimate a genome of 5 Mb. We extracted

genomic DNA using DNeasy Plant minikits (Qiagen) and used a

Qubit fluorometer (Invitrogen) with the dsDNA BR kit to quantify

total DNA from 10 ml aliquots of genomic DNA and PCR

products, respectively. For qPCR, we used the QuantiTect SYBR

Green PCR Kit (Qiagen) and a standard cycling protocol

recommended by the kit manual of 95uC for 15 minutes followed

by 35 cycles of 95u for 15 seconds, 60u for 30 seconds and 72u for

30 seconds data was acquired at the end of the extension step and

during a final dissociation step moving from 60–90u. We used the

following dilutions of PCR products as target DNA for each of the

three loci independently: 1024, 1026, 1027, 1029. For genomic

DNA we used undiluted and 1021 dilutions as targets. We

designed primers for qPCR that covered only sites that were not

detected as polymorphic and amplified targets of 152, 98, and

83 bp of actin, EFL, and EF-1a loci, respectively. PCR efficiencies

were calculated using the mean slope (each with r2 greater than

0.99) of the linear function of Ct values for the log dilution series of

the PCR product qPCR reactions. This resulted in efficiencies of

1.96, 1.98, and 1.96 for actin, EFL, and EF-1a respectively. The

average haploid genome size estimated from actin and EF-1a was

350 Mb while the average genome size estimated from EFL was

116 Mb. This suggests that the EFL locus is present in three times

the copy number of the other two loci (Fig. 1).

Results and Discussion

The average size of haploid fungal genomes is ,37 Mb [19].

Therefore, this estimate of the B. ranarum genome is about ten

times larger than the average fungus, but it is similar to several

biotrophic fungal pathogens and still more than 20 times smaller

than the Entomophaga genome estimated at 8000 Mb [20].

However, the haploid genome may be larger than the estimated

350 Mb if the actin and EF-1a genes are duplicated rather than in

higher ploidy. Previous microscopic studies of mitosis have found

numerous small chromosomes with estimates ranging from about

60 to many hundreds [21,22]. Some chromosomes appear to be

entirely within the nucleolus, and the mitotic process does not

match any other fungi or indeed any other known organisms for

that matter [1,23]. It is possible that careful fluorescence

microscopy and allele specific in situ hybridization in cells from

multiple life stages of the fungus including zygospores could go

some way towards distinguishing ploidy from copy number or

genome duplication. The surprising result that EFL is apparently

in three times the copy number of EF-1a suggests that gene or

genome duplication may be an important feature of B. ranarum

Figure 1. Schematic of Basidiobolus genome based on DNA sequence and qPCR. A) The large nucleus of Basidiobolus found in the growing
tip cell of hyphal colonies is inferred to be larger than 700 Mb with multiple copies of each gene with three times as many copies of EF-1a as actin or
EFL genes. B) Sequences recovered from allele specific PCR reconstitute genotypes from nonspecific PCR. C) Haploid genome size inferred from each
gene shows the three-fold difference in inferred genome size of EFL compared to actin and EF-a consistent with a difference in copy number.
doi:10.1371/journal.pone.0031268.g001

Basidiobolus Genome Size
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evolution. It also suggests that B. ranarum may have mechanisms in

place that favor the preservation of functionally overlapping genes.

The presence of both EFL and EF-1a in a single organism is very

rare, having only been found for one other organism, the marine

diatom Thalassiosira pseudonana [16]. This observation has been

explained by a functional replacement of one paralog by another

followed by gene-loss of the nonfunctional locus. However, if

producing more of a gene is advantageous, it can favor the

preservation of gene duplicates via gene conservation [24], and the

same selective force acting to preserve the distant paralogs of EFL

and EF-1a would act similarly to preserve multiple EFL copies.

Diploidy is supported by the lifecycle of Basidiobolus and presence

of two divergent haplotypes in actin and EF-1a because these

genes had similar copy numbers detected via qPCR. However,

chromosome copy number may also explain the increased copy

number of EFL, making that region of the genome hexaploid. An

increase in the base chromosome copy number can favor the

accumulation of duplicate genes and simultaneously increase the

recombination rate under sexual reproduction [25]. However,

little is known about sexual recombination and ploidy in fungi

outside of the well-studied dikaryotic lineages, and where it has

been studied it is often complex [26]. Although zygospores are

formed by Basidiobolus, meiosis has never been documented in

Basidiobolus or any entomophthoralean fungus [27,28]. The

differing gene or chromosome copy numbers could also be

generated and maintained by parasexual processes, which may fit

the microscopic observations at least as well if not better than

meiosis. Parasexual processes and variation in ploidy have been

linked in Candida albicans, which has been found to maintain a

nearly diploid genome but frequently undergo rounds of partial

chromosome loss [26,29]. Whether it makes sense to think of

Basidiobolus as any particular ploidy may depend on making whole

genome scale observations. If the presumed sexual stage is meiotic

then Basidiobolus is likely to be both diploid and undergoing

frequent sexual recombination, albeit entirely selfing. A population

genetic study using these polymorphic genetic markers might

distinguish between strict asexual propagation, parasexual recom-

bination, selfing, and outcrossing in Basidiobolus, and would be a

beneficial step towards better understanding the roles of ploidy

and recombination in contributing to gene duplications and

increasing genome size.
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