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Purpose: Precise 3D modeling of the mitral valve has the potential to improve our understanding

of valve morphology, particularly in the setting of mitral regurgitation (MR). Toward this goal, the

authors have developed a user-initialized algorithm for reconstructing valve geometry from trans-

esophageal 3D ultrasound (3D US) image data.

Methods: Semi-automated image analysis was performed on transesophageal 3D US images

obtained from 14 subjects with MR ranging from trace to severe. Image analysis of the mitral valve

at midsystole had two stages: user-initialized segmentation and 3D deformable modeling with con-

tinuous medial representation (cm-rep). Semi-automated segmentation began with user-

identification of valve location in 2D projection images generated from 3D US data. The mitral

leaflets were then automatically segmented in 3D using the level set method. Second, a bileaflet de-

formable medial model was fitted to the binary valve segmentation by Bayesian optimization. The

resulting cm-rep provided a visual reconstruction of the mitral valve, from which localized meas-

urements of valve morphology were automatically derived. The features extracted from the fitted

cm-rep included annular area, annular circumference, annular height, intercommissural width, sep-

tolateral length, total tenting volume, and percent anterior tenting volume. These measurements

were compared to those obtained by expert manual tracing. Regurgitant orifice area (ROA) meas-

urements were compared to qualitative assessments of MR severity. The accuracy of valve shape

representation with cm-rep was evaluated in terms of the Dice overlap between the fitted cm-rep

and its target segmentation.

Results: The morphological features and anatomic ROA derived from semi-automated image anal-

ysis were consistent with manual tracing of 3D US image data and with qualitative assessments of

MR severity made on clinical radiology. The fitted cm-reps accurately captured valve shape and

demonstrated patient-specific differences in valve morphology among subjects with varying

degrees of MR severity. Minimal variation in the Dice overlap and morphological measurements

was observed when different cm-rep templates were used to initialize model fitting.

Conclusions: This study demonstrates the use of deformable medial modeling for semi-automated

3D reconstruction of mitral valve geometry using transesophageal 3D US. The proposed algorithm

provides a parametric geometrical representation of the mitral leaflets, which can be used to evalu-

ate valve morphology in clinical ultrasound images. VC 2012 American Association of Physicists in
Medicine. [DOI: 10.1118/1.3673773]
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I. INTRODUCTION

Conventionally, assessment of the mitral valve is achieved

by qualitative 2D ultrasound image analysis, which derives

structural and dynamic information from cross-sectional

views of the valve. Published guidelines for performing a

transesophageal 2D ultrasound examination1 describe 20

standard views that must be comprehensively interpreted by

an observer to evaluate the complex morphology of the

mitral valve, consisting of two leaflets (anterior and poste-

rior) and a fibrous ring (the annulus) surrounding the leaflets.

More recent three-dimensional ultrasound (3D US) over-

comes the inherent limitations of 2D ultrasound interpreta-

tion by enabling real-time 3D visualization of valve

geometry. In fact, it was not until the advent of 3D US
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technology that Levine and colleagues first described the

saddle shape of the human mitral valve annulus, which had

been previously thought to have the shape of a planar ring.2,3

Since these early morphological studies, advances in 3D US

transesophageal transducer design and signal processing

have opened a previously unexplored avenue for quantitative

study of mitral valve geometry and mechanics. The current

commercial clinical scanners can acquire full-volume, nearly

isotropic data sets with submillimeter resolution showing the

mitral valve in three dimensions through a midesophageal

window, with a matrix-array probe that contains a few

thousand individual active elements. Although several com-

mercial software packages allow for manual tracing and

user-guided measurement of valve dimensions in these 3D

US data sets, manual analysis is time-consuming and labor-

intensive and is therefore impractical for routine clinical use.

Additionally, a more efficient means of noninvasive 3D

valve morphometry would add quantitative patient-specific

information on valve structure to the standard qualitative

clinical assessments. Such information has potential to

improve diagnosis, risk stratification, and periprocedural

care of patients with ischemic MR, a condition in which a

structurally normal mitral valve is rendered incompetent as a

result of myocardial infarction induced remodeling.

To date, many valve morphometry studies have employed

manual tracing to reconstruct valve geometry from 3D US

image data.2,4–9 Alternatively, valve geometry has been

invasively assessed in animal models by sonomicrometric

array localization10–12 and biplane radiography with tanta-

lum markers.13–15 Several studies have explored automated

ultrasound image analysis of the mitral valve,16–22 including

tracking of the anterior leaflet in 2D ultrasound images and

segmentation and tracking of the mitral annulus with 3D

ultrasound. The recent work of Ionasec et al.18 models and

quantifies aortic and mitral valve dynamics using a nonrigid

landmark motion model. With that technique, the mitral

valve is represented by seven anatomic landmarks, which

are tracked throughout the cardiac cycle using a trajectory

spectrum learning algorithm. The landmark locations and

learned boundary detectors guide fitting of a surface repre-

sentation of the valve in cardiac computed tomography (CT)

and real-time 3D US image data. While this method identi-

fies correspondences on the valves of different subjects and

on the same valve at multiple time points, it does not provide

volumetric segmentations and the valve is represented by

only a few points. In another study, Burlina et al.20 demon-

strate 3D segmentation of the open mitral valve using a thin

tissue detector, dynamic contour method, and manual correc-

tion. Those authors develop a mechanical model to infer the

closed position of the valve given a static 3D mesh recon-

struction of the open valve obtained from segmentation.

Schneider et al.19,21 describe a semi-automated method for

locating the mitral annulus and subsequently estimating and

refining a search space coordinate system to generate a mesh

of the mitral leaflets at diastole. The segmentation algo-

rithms proposed in the latter two works produce surface rep-

resentations of the open valve from 3D US images. Finally,

Shang et al.22 demonstrate volumetric rendering of the mitral

valve using an intensity-based level set method, but this seg-

mentation algorithm also captures extraneous structures with

similar intensities, such as the left ventricular wall, in addi-

tion to the mitral leaflets.

The objective of this paper is to introduce a novel

approach to valve delineation and morphometry that pro-

duces volumetric reconstructions of the anterior and poste-

rior leaflets at midsystole in transesophageal 3D US images.

Midsystole was selected for analysis in this work since it is

most relevant in identifying leaflet malcoaptation in patients

with MR. While segmentation allows for delineation and

visualization of anatomical structures, the extraction of

quantitative, clinical information requires additional knowl-

edge of anatomic landmarks and valve shape, which segmen-

tation alone may not always provide. In this paper, we

propose an additional step in which a continuous medial rep-

resentation (cm-rep) of the valve is obtained from the results

of image segmentation in order to match anatomic land-

marks. While there are several approaches to obtain a medial

representation of an anatomic structure, we propose a

method first described by Pizer et al.23 and later extended by

Yushkevich et al.,24 in which different instances of a struc-

ture are fitted with a deformable medial template whose

skeletal branching configuration is preserved during defor-

mation. Here, deformable medial modeling is used to repre-

sent 3D valve geometry derived from image segmentation in

a compact manner suitable for statistical shape analysis. The

advantage of deformable medial modeling is that it is able to

account for shape variability across a patient population

while preserving the topology of the anatomic structure

being analyzed. Furthermore, the deformable model estab-

lishes correspondences on valves of different subjects, which

facilitates the measurement of clinically relevant morpholog-

ical features.

Volumetric representation with cm-rep is advantageous in

valve modeling. Unlike a surface representation of the valve

which may be attracted to the image gradient on either the

atrial or ventricular leaflet surfaces, cm-rep delineates the

atrial and ventricular surfaces separately and prevents inter-

section of these surfaces by enforcing a positive radial thick-

ness field. This could lead to more accurate assessments of

leaflet geometry. Moreover, localized leaflet thickness meas-

urements derived from cm-reps could serve as indicators of

myxomatous change, identifiers of secondary chordal attach-

ment, and useful input to biomechanical simulations of the

mitral valve.

Section II details our approach to valve morphometry

using 3D US. Section II begins with an overview of 3D US

image acquisition and describes the components of the semi-

automated image analysis algorithm, including user-

initialized image segmentation and deformable modeling

with cm-rep. A brief explanation of a well-established man-

ual valve delineation technique used for validation of semi-

automated morphometry is also presented. The section

concludes with a description of how clinically relevant

features of valve morphology are extracted from a medial

representation of the valve. Section III presents a comparison

of manual and semi-automated image analysis, as well as
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assessments of deformable model fitting accuracy. The

section concludes with an example of a clinically significant

observation derived from automated 3D US image analysis

that is currently unobtainable by standard 2D ultrasound.

Section IV provides a discussion of the study, and the con-

clusion is presented in Sec. V.

II. MATERIALS AND METHODS

II.A. Image acquisition

Intra-operative transesophageal 3D US data sets, devoid

of significant signal dropouts and stitching artifacts, were

obtained from 14 patients with MR ranging from trace to

severe. The MR of patients with moderate to severe disease

was of ischemic origin. The electrocardiographically gated

full-volume images were acquired with the iE33 platform

(Philips Medical Systems, Andover, MA) using a 2–7 MHz

transesophageal matrix-array transducer over four consecu-

tive cardiac cycles. The frame rate was 17–30 Hz with an

imaging depth of 12–16 cm. The images were acquired such

that the atrial surface of the mitral leaflets was in a direct

line of vision along the axial dimension of the image. The

image volumes were exported in Cartesian format

(224� 208� 208 voxels), with an approximate isotropic re-

solution of 0.6–0.8 mm. From each 3D US data series, an

image volume delineating the mitral valve at midsystole (a

single time point in the cardiac cycle) was selected for semi-

automated image analysis.

II.B. Semi-automated valve morphometry

Image analysis involves multiple steps, including user-

initialized segmentation, deformable medial modeling, and

morphological feature extraction. A schematic of the analy-

sis is presented in Fig. 1, and the details are outlined in Secs.

II B 1 - II B 2 and Sec. II D.

II.B.1. User-initialized segmentation

Semi-automated segmentation has two steps: user-

initialized region of interest (ROI) extraction, and 3D active

contour segmentation based on region competition. In the

absence of valve shape priors derived from training data, a

simple algorithm for user-initialized ROI extraction estab-

lishes boundaries between the anterior and posterior leaflets

and between the mitral leaflets and adjacent tissue. Once

these boundaries are established, 3D active contour evolu-

tion delineates the anterior and posterior leaflets in the 3D

US image volume.

II.B.1.a. User-initialized ROI extraction. Semi-auto-

mated segmentation begins with user identification of the

valve in the axial (basal-apical) dimension of the 3D

US image volume, denoted by {V0(x,y,z); x¼ 1 … Nx,

y¼ 1 … Ny, z¼ 1 … Nz}, where Nx, Ny, and Nz are the

number of voxels in the x, y, and z directions of the image

volume. In this framework, the axial dimension of the

image volume is synonymous with the z-axis and the lateral

dimensions are synonymous with the x- and y-axes. The user

initializes two points ðx; zÞ ¼ fðxinit
1 ; zinit

1 Þ; ðxinit
2 ; zinit

2 Þg demar-

cating a region containing the valve in a long-axis cross-sec-

tion of V0, shown in Fig. 2(a). With these user-initialized

points, a 2D maximum intensity projection image, Imax(x,y),

is constructed from the image volume

Imaxðx; yÞ ¼ max
zinit

1
<z<zinit

2

V0ðx; y; zÞ: (1)

The projection is generated along the axial dimension of the

3D image, providing an atrial perspective of the valve.

Contrast-limited adaptive histogram equalization25 of

Imax(x,y) locally enhances the contrast of the projection

image and thereby improves the visibility of the annular rim

and leaflet coaptation zone of the mitral valve. In this

enhanced projection image, a user marks a series of Na

ordered points on the annulus {An; n¼ 1 … Na}, shown in

Fig. 2(b). The user then marks a second series of Nal points

{ALn; n¼ 1 … Nal} outlining the anterior leaflet in 2D,

shown in Fig. 2(c). The user may choose any Na and Nal that

adequately delineate the valve in Imax (generally about

15–20 points). Next, two 2D binary mask images, IA and IAL,

are automatically created from polygons enclosing An and

ALn. A 2D mask image of the posterior leaflet is also

obtained by subtraction: IPL¼ IA – IAL. First, IA is used to

create a masked image containing the entire valve in the

lateral dimensions of the 3D US image volume

Vmaskedðx; y; zÞ

¼ V0ðx; y; zÞ if IAðx; yÞ ¼ 1 and zinit
1 < z < zinit

2

0 otherwise

�
:

(2)

To identify a tighter 3D region of interest enclosing the

valve along the axial image dimension, a dilation operation

is applied to the set of maximum intensity voxels used to

FIG. 1. Schematic of semi-automated image analysis. First, a deformable

medial template of the mitral valve is generated from 3D ultrasound image

data. This template generation step is performed once. Then, for each sub-

ject in the study, a 3D ultrasound image of the mitral valve is segmented

using the level set method. The template is then deformed to fit each seg-

mented image. Finally, morphological features are automatically computed

from the fitted medial representation of each valve.
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generate the projection image Imax. Let VM,bin denote this set

of points

VM;binðx; y; zÞ ¼
1 if Vmaskedðx; y; zÞ ¼ Imaxðx; yÞ
0 otherwise

�
: (3)

Although, in general, we cannot guarantee that the voxels in

VM,bin are continuous in 3D, in practice they trace a voxel-

thin surface through the center of the valve [Fig. 2(d)]. To

produce a shaped ROI containing the valve, VM,bin is mor-

phologically dilated with a spherical structuring element of

radius 1.5 mm [Fig. 2(e)]. The volume Vmasked is then point-

wise multiplied by the largest connected component of the

dilated VM,bin to extract an image region containing the valve

in Vmasked

V0maskedðx; y; zÞ ¼ Vmaskedðx; y; zÞ � VM;binðx; y; zÞ: (4)

Multiplication of the masked image volume and the dilated

binary image of M is a simple means of imposing a thickness

prior on image segmentation. It prevents the segmentation

from identifying cardiac tissue surrounding the annulus as

part of the valve.

II.B.1.b. Segmentation by 3D active contour
evolution. A binary segmentation of the valve in V0masked is

then obtained by 3D active contour evolution based on

region competition, described by Zhu and Yuille.26 In this

scheme, an evolving estimate of the valve surface is repre-

sented by a closed contour, which, in turn, is represented

numerically as the zero level set of a function U : R3 ! R,

which is negative inside the region enclosed by the contour

and positive outside of the contour. The function A evolves

over time t according to the evolution equation

@

@t
Uðx; tÞ ¼ F

rU
rUk k ; (5)

where F is an application-specific signed “speed function.”

Note that rU= rUk k is a unit vector orthogonal to the level

sets of A, and hence, F gives the speed of contour propaga-

tion in the normal direction. We use a modified version of

Zhu and Yuille’s speed function F, presented in Ref. 27, to

drive contour evolution

F ¼ aðPobj � PbgÞ þ bj: (6)

Here, Pobj is the probability that a voxel belongs to the object

of interest, Pbg is the probability that the voxel belongs to

the background of the image, j ¼ div
� rU
rUj j
�

is the mean cur-

vature of the contour, and a and b are weights. We estimate

the probabilities in Eq. (6) by applying a soft threshold to

V0masked. Since each 3D US data set is obtained with different

acquisition parameters, such as gain and dynamic range, an

appropriate threshold is interactively determined from the

FIG. 2. Outline of semi-automated segmentation. (a) The user initializes two points in a long-axis cross-section of the 3D US image volume, identifying an

ROI (red) containing the valve along the axial dimension. (b) The user initializes a series of annular points in an enhanced projection image depicting the valve

from an atrial perspective. (c) The user shifts posterior annular points into the coaptation zone, forming an outline of the anterior leaflet in the enhanced projec-

tion image. (d) A 3D point cloud delineating the valve is automatically generated. (e) The 3D point cloud is morphologically dilated with a spherical structur-

ing element to obtain an ROI containing the valve. (f) A final segmentation of the valve is obtained by thresholding and active contour evolution. (LA¼ left

atrium, LV¼ left ventricle, AL¼ anterior leaflet, PL¼ posterior leaflet, RO¼ regurgitant orifice).
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long-axis cross-sectional image in Fig. 2(a). Generally, this

threshold is an intensity value corresponding to 60 percent

of the area of the histogram of Vmasked in Eq. (2). The con-

tour evolution equation [Eq. (5)] is then solved using an

extreme narrow band implementation of the level set

method.28 The image that defines the initial contour is nega-

tive inside the binary object of the thresholded V0masked and

positive outside the object, and the speed image (Pobj �Pbg)

that drives contour evolution is positive inside the binary

object and negative outside the object. Contour evolution

propagates for 100 iterations, and a curvature parameter

weight of b¼ 2.0 is used to eliminate fine jaggedness on the

leaflet boundary. Compared to straightforward thresholding,

3D active contour segmentation has the advantage of estab-

lishing smooth boundaries in ultrasound images that have

noisy image intensity edges, but relatively homogeneous in-

tensity distributions in the valve tissue and surrounding

blood pool.

Once a binary image of the entire valve is obtained, two

separate binary images of the anterior and posterior leaflets

are generated by masking the lateral dimensions of the valve

segmentation with IAL and IPL. An example of the final seg-

mentation result is illustrated in Fig. 2(f). The entire segmen-

tation algorithm is implemented as a combination of

functions implemented in MATLAB (Mathworks, Natick, MA)

and the convert3D toolkit.29

II.B.2. Deformable medial modeling

Once 3D image segmentations of the anterior and poste-

rior leaflets are obtained, our technique models each mitral

leaflet using 3D continuous medial representation (cm-rep).

Unlike a surface representation that describes an object’s

boundary geometry, medial representation is a compact rep-

resentation of shape that describes the geometry of an

object’s medial axis. First introduced by Blum in Ref. 30, an

object’s medial axis is defined as the locus of centers and

radii of maximal inscribed balls (MIBs) of the object. In

three dimensions, a medial axis is a locus of tuples

ðm;RÞ 2 R3 �Rþ, in which m refers to points on the

medial axis formed by the centers of the MIBs and R refers

to the radii of the MIBs centered at those points or, equiva-

lently, to the distance between the medial axis and object

surface. As described earlier, this representation is particu-

larly useful for assessing an object’s localized thickness

(derived from R) and for characterizing how the object

locally bends (determined by the curvature of the medial

axis).

Given an object’s image segmentation, the medial axis of

the object can be derived from its boundary using a number

of deterministic geometric skeletonization algorithms.31–35

However, these deterministic algorithms do not necessarily

preserve the branching configuration of the medial axes of

similar anatomic structures, which presents a challenge to

morphometric analysis. To circumvent this problem, cm-rep

utilizes the idea of inverse skeletonization, whereby an

object is defined first by its medial axis and the object

boundary is constructed analytically from its skeleton. In

this framework, the cm-rep of a mitral leaflet is obtained by

fitting a deformable medial model, also referred to as a tem-

plate, to its image segmentation. During template deforma-

tion, the branching configuration of the medial axis is

preserved, thus facilitating morphometric comparison of mi-

tral valves of different subjects.

Extending the discrete version of medial representation

presented by Pizer et al.,23 cm-rep models the medial axis as

a combination of continuous parametric medial manifolds

(m: X! R3;X 2 R2) and thickness is parametrically repre-

sented as a scalar field (R: X! Rþ) defined over the medial

manifolds. Here, m and R can be any user-specified mesh,

surface, or function. The object boundary is described as the

envelope of the family of MIBs with centers m and radii R
located on the medial axis. If the medial manifold is locally

parameterized by u 2 R2, the envelope can be expressed as

the set of points b that satisfy the following system of

equations:

Sðb; uÞ ¼ 0
@

@ui
Sðb; uÞ ¼ 0; i ¼ 1; 2;

(
(7)

where Sðb; uÞ ¼ b�mðuÞk k � RðuÞ2, the equation of a

sphere. The first equation is necessary for b to lie on a sphere

centered at m(u), and the second is necessary for b to lie on

the envelope.

Solving Eq. (7) for b, we obtain two solutions, bþðuÞ and

b�ðuÞ, corresponding to surface patches that lie on the oppo-

site sides of the medial axis at m(u)

b6 ¼ mþ R½�rmR6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rmRk k2

q
~Nm�; (8)

where Nm is the unit normal vector to m, and rmR is the

Riemannian gradient of R on the manifold m. The local

geometry of a point on the medial manifold is illustrated for

reference in Fig. 3.

The above equation provides a parametric form of b if m

is the medial axis of b, but for arbitrary {m,R}, applying

Eq. (8) can generate a pair of surfaces that do not form the

boundary of a 3D object. Thus, it does not guarantee a

“valid” boundary, i.e., a surface that encloses a region in R3.

Among the equality and inequality constraints that must be

FIG. 3. The local geometry of a point on the medial manifold. The ball

represents a medial node m(u1,u2), and the vectors @m=@u1 and @m=@u2

span the tangent plane to m. The vector rmR lies in the tangent plane and

points in the direction of maximal change of the radial thickness field R on

m. The points of tangency between a ball centered at m(u1,u2) with radius R
and the boundary of the object are bþ and b�. Unit vectors Uþ and U� point

from m(u1,u2) toward bþ and b� and are perpendicular to the object bound-

ary at these points.
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satisfied for valid medial geometry, which are formally

described in Ref. 24, the most challenging constraint to

satisfy is the one that ensures that the boundary is a closed

surface. Namely, the following equality constraint ensures

that bþðuÞ and b�ðuÞ collapse to a single point for

mðuÞ 2 @m, implying that the whole boundary collapses to

one point along the medial edge

rmRk k � 1 ¼ 0 on @m: (9)

This constraint is a nonlinear function of {m,R}, and it must

hold at an infinite number of points along the medial edge

curves. In deformable modeling applications, this presents a

severely over-constrained optimization problem, since the

number of points where the constraint must be satisfied is in-

finite, while the number of coefficients or control points

defining the medial manifold is finite and preferably small.

As a solution to this problem, we leverage a technique

described in Ref. 36, which models R as a solution of a

fourth-order biharmonic partial differential equation (PDE)

with linear boundary conditions. The biharmonic PDE is a

bijective mapping that transforms points from a vector space,

parameterized by {m,q,s}, into the set of all radial fields R
defined over m that satisfy Eq. (9). In this framework, the

curve forming the boundary of the medial manifold, @m, is

parameterized by the arclength s: cðsÞ : ½0; LÞ ! R3, where

L is the length of @m. The parameter s represents the value

of R along the medial edge: sðsÞ ¼ Rjc, and q is a scalar

field on m. The PDE is not written in terms of R itself, but

in terms of another function, / ¼ R2. Given s> 0 and

jds=dsj< 1 everywhere on c, the function / must satisfy the

following:

D2
m/ ¼ q;

/jc ¼ sz;

@/
@v

����
c

¼ �2s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðds=dsÞ2

q
; (10)

where Dm denotes the Laplace-Beltrami operator on the

manifold m, and v(s) is the outward unit normal vector along

c(s). Provided that the solution / is non-negative everywhere

on m, it can be verified that R ¼
ffiffiffiffi
/
p

satisfies the equality

constraint [Eq. (9)] on the medial edge. Details on the nu-

merical solution of the biharmonic PDE using finite differen-

ces can be found in Ref. 36.

In this study, the valve is modeled as two separate leaf-

lets, where each leaflet is a simple object, one whose skele-

ton consists of a single medial manifold. The combination of

the two leaflets’ medial models is referred to as the medial

representation of the entire valve. Here, the cm-reps of the

two leaflets are parameterized independently, and the leaflets

themselves are not required to connect.

II.B.2.a. Template generation. A particular instance of

the valve is defined by fitting a bileaflet deformable medial

template to the leaflets’ binary segmentations. Therefore, a

deformable template must be generated prior to fitting the

model to a new instance of the valve. Our choice for repre-

sentation of each medial manifold is a triangulated mesh, as

it is a simple representation that can be defined on an arbi-

trary domain. The medial template for each leaflet is con-

structed in a manner similar to that used in Ref. 37. With the

freedom to define cm-reps over arbitrary domains, the tem-

plate can be any hand-created model as long as the topologi-

cal configuration is consistent with that of the anatomic

structure. In this study, a data-driven initial model is

designed and the cm-rep domain X [R2 for each leaflet is

defined by flattening the skeleton of the anatomic structure

under constraints that minimize local distortion.

The template generation process is illustrated in Fig. 4.

One of 14 3D US data sets is arbitrarily selected for template

creation, and binary segmentations of the anterior and poste-

rior leaflets at midsystole are obtained by user-initialized

segmentation (Sec. II B 1). For each leaflet, the Voronoi

skeleton of the binary image is computed using QHull38 and

simple heuristics34 are used to prune away the least salient

branches of the skeleton, as shown in Fig. 4(b). Specifically,

the pruning algorithm deletes faces in the Voronoi diagram

for which the ratio of the geodesic distance between the gen-

erating points to the Euclidean distance between those points

is less than 4. The maximum variance unfolding (MVU)

technique39 is then used to determine a two-dimensional

embedding of the skeletons’ vertices that minimally distorts

the distances between neighboring vertices. The embedding

assigns a pair of coordinates ðu1
i ; u

2
i Þ 2 R2 to each of the

vertices xi in the skeleton [Fig. 4(c)], and low-degree poly-

nomial surfaces are fitted to the data ðxiðu1
i ; u

2
i Þ;

yiðu1
i ; u

2
i Þ; ziðu1

i ; u
2
i ÞÞ to obtain a smooth medial manifold.

The cm-rep domain X is then obtained by rasterizing and

morphologically closing the scatter plot of ðu1
i ; u

2
i Þ, produc-

ing a region homeomorphic to a disc in R2. An outer contour

of this region is obtained by sampling a set of 90 points

along the domain boundary, and an inner contour, just within

the domain boundary, is generated by creating two

samples for each vertex of the outer contour. The purpose of

generating an inner contour in addition to the outer contour

is to create a mesh with a high density of triangles just within

the domain boundary to ensure the stability of finite

difference approximations at the medial edges. Finally, a

constrained conforming Delaunay triangulation of X is com-

puted using the meshing program Triangle.40 The triangula-

tion is performed such that no angle smaller than 32� is

obtained. The resulting bileaflet medial template is illus-

trated in Fig. 4(e).

II.B.2.b. Template fitting. For each of the 14 subjects in

the study, the medial model defined by {m,q,s} is deformed

to fit the binary leaflet segmentations by Bayesian optimiza-

tion (Fig. 5). Template fitting has five stages: one alignment

stage and four deformation stages. During the first (align-

ment) stage, Jenkinson’s FLIRT affine registration tool41,42

is used to obtain a similarity transform that aligns the poste-

rior template with the posterior leaflet segmentation. This

transform is applied to both leaflets simultaneously during

this initialization stage. Then, during the first three deforma-

tion stages, the leaflet medial models are separately
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deformed to fit the binary leaflet segmentations in a multire-

solution fashion. The objective function minimized during

deformation incorporates the volumetric overlap error

between the medial model and binary segmentation, as well

as regularization terms and inequality constraints required

by inverse skeletonization, detailed in the Appendix. To cor-

rect for any intersection of the leaflet models, the medial

models of the two leaflets are combined into a single model

during the final deformation stage. The vertices of the two

leaflets are assigned different labels, indicating which binary

segmentation should be used for overlap computation. Dur-

ing the simultaneous fitting of both leaflets in this stage, a

leaflet intersection penalty term (described in Sec. 6 of the

Appendix) is used to correct and prevent intersection of the

leaflets’ medial models. Figure 6 demonstrates that this final

fitting stage corrects for model intersection along the leaflet

coaptation.

When fitting medial models to binary segmentations, we

do not optimize directly over the vertices of the medial

mesh, as there are too many parameters to optimize in the

early stages of model fitting. For instance, each leaflet repre-

sentation contains several hundred vertices (498 vertices for

the anterior leaflet and 612 vertices for the posterior leaflet),

each of which is associated with five components (m,q,s).

For increased efficiency, we use spectral decomposition of

the medial mesh for a coarse-to-fine fitting strategy. Here,

FIG. 4. Schematic of the template generation process. (a) A 3D US image volume is segmented to obtain binary images of the anterior (top) and posterior (bot-

tom) mitral leaflets. (b) The binary images are skeletonized in 3D. (c) A 2D scatter plot of the skeletons’ vertices in u1,u2 space. (d) The constrained conform-

ing Delaunay triangulation of the region containing the skeletons’ vertices. (e) The combined medial manifolds of the anterior and posterior leaflets used for

deformable modeling.

FIG. 5. A medial representation of the valve is obtained by fitting a valve

template to a binary image of the valve produced by segmentation.
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we define an orthogonal basis on the 3D mesh using the

eigenfunctions of the Laplace operator, the generalization of

the Fourier basis on the plane. These basis functions are a set

of k functions Wk that satisfy DWk ¼ kkWk, where D denotes

the Laplace operator and kk are eigenvalues of the general-

ized eigenvector problem. Using an implementation

described by Belkin and Niyogi,43 the Laplace operator for a

function w on the mesh is estimated at vertex i as

Dwji ¼ �wi þ
1

jN1ðiÞj
X

j2NðiÞ
wj;

where N1(i) denotes the one-ring of i, i.e., the set of vertices

adjacent to i by an edge. Thus, the medial model can be

deformed smoothly by modifying the coefficients of a small

number of basis functions rather than all vertices of the tem-

plate mesh.36 To achieve a coarse-to-fine model fitting, the

number of Laplace basis functions defined on the template is

increased from 10, to 40, to 70 during the four deformation

stages. The target binary images are smoothed by a Gaussian

kernel with standard deviation 0.8 during the first stage, 0.6

during the second stage, and 0.2 during the third and fourth

stages. A total of about 1400 total iterations is required for

the fitting of each leaflet.

II.C. Manual valve delineation

To validate the measurements derived from automated

analysis of the 3D US images, the same 14 image volumes

selected for automated analysis were manually traced by

a trained observer using an Echo-View 5.4 workstation

(TomTec Imaging Systems, Munich, Germany). In each of

14 tracings, the observer marked 36 points on the mitral

annulus and drew freehand curves across the atrial surface of

the leaflets in a series of 2D planes. Each manual tracing

required three to five hours for completion and produced a

500–1000 point data set delineating the atrial surface in three

dimensions. A detailed description of this manual delinea-

tion process can be found in Refs. 9 and 44.

II.D. Feature extraction

Seven features of valve morphology at midsystole, listed

below, were derived from both manual and semi-automated

image analysis:

• Annular area—the area enclosed by the projection of the

annular points onto a least squares plane fitted through the

annulus
• Annular circumference—sum of distances between con-

secutive annular points
• Annular height—maximum distance between two annular

points, where unsigned distance is measured between the

annular point and its projection onto a least squares plane

fitted through the annulus
• Intercommissural width—distance between the anterior

and posterior commissures
• Septolateral length—distance between midpoints on the

anterior and posterior annulus
• Total tenting volume—the volume enclosed by thin-plate

splines fitted through the leaflets and the annular curve
• Percent anterior tenting volume—the tenting volume

enclosed by the anterior leaflet divided by the total tenting

volume, multiplied by 100

These features underscore clinically significant aspects of

valve morphology.5,8,46 Annular dimensions indicate the

presence of annular dilatation and identify whether an indi-

vidual’s annulus is predominantly saddle-shaped or planar.

Leaflet tenting features are indicative of subvalvular remod-

eling. In addition to these seven measurements, leaflet thick-

ness (the radial thickness function R mapped to the medial

manifold) and regurgitant orifice area (the area enclosed by

the projection of the regurgitant orifice onto a least squares

plane fitted through the annulus) were computed from the fit-

ted cm-reps.

Here, annular geometry is extracted directly from the fit-

ted medial model of the valve (Fig. 7). The annulus is

defined by points on the cm-rep boundary mapped to the

outer edges of the medial manifolds of the anterior and pos-

terior leaflets. The annular points on the posterior leaflet are

labeled on the medial template itself, whereas the annular

points on the anterior leaflet are identified geometrically.

Specifically, the anterior annular points are defined as points

on the anterior leaflet cm-rep boundary mapped to medial

manifold edges that are not contained within the convex hull

of the posterior leaflet. The anterior and posterior commis-

sures are identified as points on the annular curve where the

anterior and posterior leaflets meet, a definition that is con-

sistent with the protocol described by Jassar et al.9 and Verg-

nat et al.8 An alternative definition of the commissures is

described by Carpentier et al.,46 wherein several millimeters

of valve tissue separates the free edge of the commissures

from the annulus. Sometimes the commissures exist as sepa-

rate leaflet segments, but more often the area is a subtle

structure. Given that commissures and=or commissural

FIG. 6. Leaflet overlap at the coaptation line (shown on left) is corrected

during the final model fitting stage (shown on right). Magnifications of leaf-

let overlap and leaflet overlap correction are shown below the valves.
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leaflets are difficult to define when the valve is closed, the

commissural definition of Jassar et al.9 and Vergnat et al.8 is

used in this work.

II.E. Comparison of manual and semi-automated valve
delineation

In addition to comparing the manually and automatically

derived features listed in Sec. II D, each manual tracing of

the valve was aligned with the atrial surface of the fitted cm-

rep and the distance between the two surfaces was computed.

Alignment was performed by determining the best rotation

and translation that matched a series of six landmarks identi-

fied on both the manual tracing and semi-automated recon-

struction. These six landmarks included the anterior and

posterior commissures, the anterior and posterior leaflet tips,

the anterior aortic peak, and the midpoint of the posterior

annulus. Here, rigid alignment was necessary prior to surface

comparison since the manual tracings and semi-automated

reconstructions did not share a common origin or image ori-

entation; manual tracing was performed in a commercial

software package, while semi-automated analysis was per-

formed on images that were converted from their native for-

mat into Cartesian coordinates prior to exportation.

II.F. Evaluation of valve shape approximation bias

Two commonly raised concerns regarding mesh-to-

volume registration are: (1) the ability of the deformable

model to approximate the shape of the object, and (2) the

shape approximation bias introduced by template design. To

address the first concern, the Dice similarity coefficient

measuring the overlap between each patient’s valve segmen-

tation and the fitted medial model was computed. To assess

the extent of leaflet shape approximation bias introduced by

template design, image data from two subjects (different

from the subject that was used for template design in Sec. II

B 2 a) were selected to generate two additional templates by

the same method. These two subjects were chosen such that

the three templates created in this study represented the three

categories of MR severity (trace, mild, and moderate to

severe). Using the Bayesian optimization method described

in Sec. II B 2 b, these two templates were fitted to the binary

valve segmentations of all 14 patients, and the clinical meas-

urements described in Sec. II D were automatically derived

from the fitted medial representation of each valve. The

average coefficient of variation of each measurement was

computed from three template fittings for each patient. In

addition, the Dice similarity coefficients of each patient’s bi-

nary valve segmentation and the three corresponding fitted

models were computed.

II.G. ROA sensitivity analysis

To assess the sensitivity of the regurgitant orifice area

(ROA) measurements to user initialization, segmentation

and model fitting were performed on the same 14 3D US

image volumes after applying varying displacements to the

user-initialized points described in Sec. II B 1 a. For each

user-initialized point, a given displacement was added to the

points on the manually traced contours in a random direc-

tion. The displacement values tested were 0.0, 0.5, 1.0, 1.5,

and 2.0 mm. The maximum displacement value of 2.0 mm

was chosen based on the following rationale: if two opposing

annular points were displaced in opposite directions by

2.0 mm, the annular diameter would change by 4.0 mm,

which is more than 10% of the average annular diameter

(�30 mm). Here, it is assumed that interobserver variability

in the measurement of annular diameter is within 10%,

which has been previously confirmed.9 For each displace-

ment value, the average percent difference in the ROA

measurement was computed. Percent difference was defined

as the difference between the manual and automated mea-

surement, divided by the average of the two measurements,

multiplied by 100.

III. RESULTS

III.A. Accuracy of semi-automated valve morphometry

Semi-automated mitral valve reconstructions for six of

the patients in the study are shown in Fig. 8. Each valve is

FIG. 7. Automated extraction of annular geometry. (a) The annulus (bold curve) is identified as points on the valve boundary mapped to the outer edges of the

leaflets’ medial manifolds. Annular landmarks include: (1) the anterior aortic peak, (2) the anterior commissure, (3) the midpoint on the posterior annulus, and

(4) the posterior commissure. The line from (1) to (3) represents the septolateral diameter, and the line from (2) to (4) represents the intercommissural width.

(b) Annular height is plotted as a function of rotation angle, where 0� corresponds to the anterior aortic peak of the annulus.
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shown at midsystole. The three valves on the left are of

patients with trace to mild MR who underwent cardiac sur-

gery unrelated to the mitral valve. The three valves on the

right are of patients with moderate to severe ischemic MR.

These valve reconstructions, generated from image segmen-

tation and model fitting, show patient-specific variations in

valve morphology in regard to annular geometry, regurgitant

orifice size, and regurgitant orifice location.

The range of values and differences in the seven clinically

relevant measurements derived from automated 3D US

analysis and manual delineation of the valve at

midsystole are listed in Table I. The mean absolute

differences 6 standard deviations are shown for each disease

category. Bland-Altman plots comparing manual and auto-

mated measurements are presented in Fig. 9. The mean

biases of the automated model-based approach relative

to manual measurement were �22.4 mm2 for annular area,

�1.8 mm for annular circumference, 0.3 mm for annular

height, �1.2 mm for intercommissural width, �0.6 mm for

septolateral length, 318 mm3 for total tenting volume, and

�3.0% for percent anterior tenting volume.

After alignment, the average Euclidean distance between

the manual tracing and atrial surface of the fitted cm-rep was

roughly 1.3 6 0.7 mm for both the anterior and posterior

leaflets. These differences were comparable to the 3D US

image volume resolution (0.6–0.8 mm) and the radial thick-

nesses of the valves observed in this study (R¼ 0.2–2 mm).

An example of a manual segmentation and fitted cm-rep is

presented in Fig. 10.

To assess the accuracy of automated ROA measurements,

the ROA derived from semi-automated 3D US analysis was

compared to a qualitative assessment of MR severity on

intra-operative clinical radiology. For each of 14 patients,

MR severity was reported as trace or mild, or moderate to

severe based on intraoperative Doppler imaging. By semi-

automated image analysis, the ROA was 0–18 mm2 in

patients with trace or mild MR and 22–55 mm2 in patients

with moderate to severe MR. Figure 11 illustrates the consis-

tency between quantitative measurements of the orifice area

and qualitative assessment of MR severity made on clinical

radiology. By single-factor analysis of variance (ANOVA),

there was a statistically significant difference in the ROA

measurements of the three categories of MR severity

(p¼ 0.002). The sensitivity of the ROA measurements with

respect to user initialization is presented in Table II. For

each level of initialization noise, the p-value obtained by

single-factor ANOVA indicated a statistically significant

difference in the ROA measurements of three categories of

MR severity. As initialization noise increased, the percent

change in the ROA measurement increased, and statistical

FIG. 8. Automated reconstructions of the valves of six patients. All valves are depicted at midsystole. For each valve, an atrial view is shown on top and a side

view is shown on the bottom. The anterior leaflet is on the right, the posterist leaflet on the left. Clinical assessments of MR severity, based on Doppler imag-

ing, are indicated.

TABLE I. The range in valve measurements derived from semi-automated analysis, and the average difference 6 standard deviation in valve measurements

derived from semi-automated and manual 3D US image analysis (shown in italics). The values are shown separately for all subjects, subjects with trace to

mild MR, and subjects with moderate to severe MR. (AA¼ annular area, AC¼ annular circumference, AH¼ annular height, IW¼ intercommissural width,

SL¼ septolateral length, TTV¼ total tenting volume, PATV¼ percent anterior tenting volume).

AA (mm2) AC (mm) AH (mm) IW (mm) SL (mm) TTV (mm3) PATV (%)

All subjects (n¼ 14) 517.0–1421.8 86.6–140.8 2.9–9.1 24.4–39.5 21.9–41.6 762–3678 46.3–71.2

47.1 6 45.4 3.6 6 3.1 0.7 6 0.6 2.8 6 1.9 1.2 6 1.2 432 6 374 7.5 6 4.8

Trace to mild MR (n¼ 8) 517.0–1002.8 86.6–120.0 4.6–8.3 24.4–34.1 21.9–30.4 762–3066 47.3–68.2

56.0 6 52.6 3.8 6 3.8 0.8 6 0.6 2.7 6 1.8 1.3 6 1.4 315 6 193 7.0 6 3.8

Moderate to severe MR (n¼ 6) 770.3–1421.8 96.3–140.8 2.9–9.1 24.6–39.5 27.9–41.6 1040–3678 46.3–71.2

35.1 6 34.5 3.2 6 2.3 0.7 6 0.6 3.0 6 2.3 1.1 6 0.8 587 6 511 8.1 6 6.2

Average percent difference (n=14) 6.0% 3.4% 11.7% 9.7% 4.1% 26.2% 12.2%

942 Pouch et al.: Semi-automated mitral valve modeling using 3D ultrasound 942

Medical Physics, Vol. 39, No. 2, February 2012



FIG. 9. Bland-Alman plots showing the difference between manual and automated measurements as a function of the mean measurement for each of 14

patients. (AA¼ annular area, AC¼ annular circumference, AH¼ annular height, IW¼ intercommissural width, SL¼ septolateral length, TTV¼ total tenting

volume, PATV¼ percent anterior tenting volume).
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significance decreased as initialization noise reached

2.0 mm.

III.B. Accuracy of valve shape approximation
with cm-rep

The Dice similarity coefficients, measuring the overlap

between each binary image segmentation and the fitted cm-

rep, are shown in Table III. Note that the Dice coefficient

examines the suitability of cm-rep as a representation of

valve shape, rather than the accuracy of segmentation. With

the initial valve template designed from the image data of a

patient with severe MR, the average Dice coefficients were

0.908 and 0.881 for the anterior and posterior leaflets, with

all coefficients greater than 0.825. The maximum change in

the Dice coefficient measured using three different templates

was 0.062. The average coefficients of variation in the mor-

phological measurements derived from the three template fit-

tings were 2.0% for annular area, 2.1% for annular

circumference, 12.6% for annular height, 2.7% for intercom-

missural width, 1.7% for septolateral length, 7.7% for total

tenting volume, and 3.4% for percent anterior tenting

volume.

III.C. Clinical relevance of automatically derived leaflet
thickness and curvature measurements

An interesting advantage of the semi-automated 3D US

image analysis technique is that foci of probable secondary

anterior chordal tethering can be easily identified on medial

representations of the valve. In Fig. 12, a ventricular view of

the valve illustrates that these foci manifest as: (a) bulges on

the anterior leaflet, (b) local increases in the radial thickness

field, and (c) regions of high mean curvature convex toward

the left ventricle. One to three such foci were observed on

the medial representation of each subject in the study.

IV. DISCUSSION

IV.A. Contributions

This study introduces a novel approach to valve mor-

phometry that provides a comprehensive, automated assess-

ment of 3D valve geometry by ultrasound image analysis. In

addition to the measurement of valve dimensions, an appro-

priate shape representation for the mitral valve should cap-

ture at least three clinically significant components of valve

geometry: leaflet curvature, a surrogate measure of valvular

stress;44 leaflet thickness, an indicator of myoxomatous

change and marker of secondary chordal attachment; and an-

nular geometry, information which can help optimize valve

repair strategies. In general, features such as thickness and

medial curvature can be derived from the Blum skeleton of

an object, i.e., a surface or set of surfaces produced by thin-

ning the object uniformly, or evolving the boundary at uni-

form speed along the inward normal, until the object

becomes infinitesimally thin.30,47,48 Features derived from

skeletons, however, are challenging to use in morphometric

analysis because the number and configuration of medial

manifolds in the skeleton of the anatomic structure can vary

between subjects, even for structures with simple shape.

This challenge is magnified in ultrasound image analysis,

where the object’s skeleton is deterministically derived from

a characteristically noisy boundary representation. To over-

come this difficulty, Pizer et al.23 leverage a discrete medial

representation (m-rep) approach whereby different instances

of a structure are fitted with a deformable template whose

skeletal branching configuration is preserved during defor-

mation. To generate continuums of skeleton-derived features

with this strategy, Yushkevich et al.24,36 extend the m-rep

approach into the continuous realm, modeling skeletons and

boundaries of objects as continuous parametric manifolds.

Deformable modeling with cm-rep has the advantage of

imposing a shape-based coordinate system on the anatomic

structure which supports a continuous, one-to-one, onto

mapping of the interiors of fitted models to a common

FIG. 10. Semi-automated and manual reconstructions of a mitral valve. (a)

A fitted cm-rep of the valve. (b) Manual tracing of the atrial surface of the

valve in the same image data. (b) Manual tracing (blue) overlaid on the fitted

cm-rep.

FIG. 11. Automated measurement of the regurgitant orifice area (ROA) is

shown as a function of MR severity assessed by intraoperative Doppler

imaging.

TABLE II. Average percent difference in the regurgitant orifice area (ROA)

when noise is applied to the user-initialized points in semi-automated

segmentation. The p-values obtained by single-factor ANOVA indicate a

statistically significant difference in the ROA measurements of three catego-

ries of MR severity (trace, mild, and moderate to severe).

Initialization noise

0.0 mm 0.5 mm 1.0 mm 1.5 mm 2.0 mm

Percent difference

in ROA

— 3.7 6 4.5 8.5 6 6.0 7.6 6 7.9 10.5 6 7.5

p-value 0.002 0.019 0.008 0.001 0.044
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coordinate system. This representation has been effectively

used in morphometric studies of a number of anatomic struc-

tures, including the ventricular myocardium.49 In the studies

of mitral valve morphology, the correspondence between the

skeleton and object boundary established by cm-rep para-

metrization is exploited for annular detection. With cm-rep,

the annulus is the curve formed by points on the object

boundary that map to the edge of the medial manifold. In

sum, cm-rep is an appropriate model for representing mitral

valve shape, as it allows for identification of clinically sig-

nificant components of valve geometry, it establishes points

of correspondence between valves of different subjects, and

it ensures that leaflet topology is consistent for all subjects in

the study.

The segmentation method proposed in this work exploits

the contrast in 3D transesophageal images and uses projec-

tions of 3D data to eliminate the need for the user to navigate

a 3D image volume during initialization. Unlike the semi-

automated methods presented in Refs. 16, 18, 20, 21, our

algorithm provides volumetric representations of valve geom-

etry. Given average Dice overlaps of �0.9, this study demon-

strates that a deformable medial model can accurately capture

patient-specific valve shape. Moreover, the results of this

study demonstrate that user-initialized 3D US image analysis

provides a quantitative valve assessment that is consistent

with manual delineation. The errors and biases in our meas-

urements are within the range of interobserver variability in

manual image analysis presented by Jassar et al.9 and are

within the range of error in annular measurements presented

by Ionasec et al.,18 who use an automated image analysis

technique. While the average percent difference in total tent-

ing volume between manual and semi-automated image anal-

ysis is high (26.2%), the average percent difference in the

contribution of the anterior leaflet to the total tenting volume

is lower (12.2%). This indicates that the relative contributions

of each leaflet to total tenting volume are likely more accurate

than the absolute tenting volume measurement obtained by

semi-automated analysis. Finally, the average distance

between manually traced and semi-automatically derived

surfaces (1.3 6 0.7 mm) is comparable to that reported by

Schneider et al.21 (0.76 6 0.65 mm for the open valve) and

Ionasec et al.18 (1.54 mm for the valve at multiple time

points). This average distance is also consistent with interob-

server variability in manual image analysis, with reported

mean distances of 2.4 6 0.8 and 0.6 6 0.2 mm for the annulus

and mitral leaflets, respectively.9

The advantage of semi-automated image analysis over

manual valve delineation is a significant reduction in user-

interaction time: manual valve delineation requires 3–5 h of

expert interaction, whereas automated image analysis

requires 1 min of user interaction. Automated image analysis

provides localized morphological measurements in three

dimensions, which unlike measurements derived from 2D

ultrasound, are not influenced by scanning plane selection.

The valve reconstructions in Fig. 8 and quantitative ROA

measurements in Fig. 11 illustrate that pathologic variations

in valve morphology can be identified in patients with differ-

ent degrees of MR severity, particularly in regard to the loca-

tion and size of the regurgitant orifice. An added advantage

TABLE III. Dice similarity coefficient measuring overlap between the binary segmentation and fitted medial model using three different templates. The Dice

similarities for the anterior and posterior leaflets are separately computed. S1, S3, and S5 refer to the valve templates generated from image data acquired from

Subjects 1 (severe MR), 3 (mild MR), and 5 (trace MR), respectively.

Dice similary coefficient—Anterior leaflet Dice similarity coefficient—Posterior leaflet

S1 S3 S5 S1 S3 S5

Average 0.908 0.903 0.908 0.881 0.891 0.893

Minimum 0.865 0.847 0.870 0.825 0.864 0.834

Maximum 0.941 0.929 0.928 0.906 0.915 0.918

FIG. 12. Probable foci of anterior chordal tethering are identified on the ven-

tricular side of the anterior leaflet. These foci, marked by black arrows, are

identified as (a) bulges on the valve reconstruction, (b) local areas of thick-

ening on the medial manifold, (c) regions of high mean curvature convex to-

ward the left ventricle.

945 Pouch et al.: Semi-automated mitral valve modeling using 3D ultrasound 945

Medical Physics, Vol. 39, No. 2, February 2012



of this study is that the semi-automated algorithm is applied

to data acquired with a modality that is nonionizing, porta-

ble, widely accessible, and capable of real-time image acqui-

sition. With the ability to noninvasively assess valve

morphology in human subjects, this technique has potential

to build on the knowledge previously obtained with more

invasive tools, like sonomicrometry and biplane radiogra-

phy, that have been used to study mitral valve disease in ani-

mal models.

IV.B. Challenges

There are several challenges that, if addressed, could

enhance the image analysis algorithms presented in this study.

For one, segmentation and model fitting do not fully exploit

prior information of valve shape, which could potentially

enhance the robustness of image analysis by guiding segmen-

tation and template fitting in the presence of image noise.

While the proposed segmentation scheme is useful

for delineating the valve in the absence of a shape prior, it

may be ineffective in data sets with excessive image noise,

signal dropouts, or shadowing artifacts. Second, the method

assumes that the atrial surface of the leaflets is in direct view

along the axial dimension of the image volume. If the mitral

valve were imaged at a different angle, the image projection

Imax in Eq. (1) would have to be computed along an axis per-

pendicular to the plane of the valve to ensure the accuracy of

ROA measurements. Additionally, manual initialization of

the coaptation in a 2D projection image could restrict leaflet

overlap in the coaptation zone. As an improvement to this

method, a regularization scheme could be imposed on the

points detected from the 2D maximum intensity projection

image [Fig. 1(d)] to ensure the accuracy of the 3D mask

image used for segmentation. Or, as an alternative to the

approach described in this study, the cm-reps of each leaflet

could be fitted directly to the 3D US image data, to accom-

plish segmentation and shape modeling in a common frame-

work. Along these lines, previous studies have explored the

use of medial representation for segmentation of anatomic

structures.23,50–53 The incorporation of leaflet shape and

appearance priors in such a framework could aid in identify-

ing features like leaflet overlap and increase the robustness of

segmentation in the presence of common ultrasound image

artifacts.

In this study, the valve was modeled as two separate leaf-

lets, each with a single medial manifold. An advantage of

modeling the leaflets separately is that it circumvents topo-

logical challenges of fitting a single medial representation to

a valve that may or may not have a regurgitant orifice at sys-

tole. A drawback of this technique is that discontinuities at

the commissures require that annular geometry be approxi-

mated at the commissural zones. This approximation likely

explains why the average coefficient of variation for three

template fittings was higher for annular height than for the

other morphological measurements.

Finally, the raw 3D US image data acquired in this study

could not be accessed using commercial software, which

required that automated segmentation be accomplished in

images that were converted from their native format into

Cartesian coordinates prior to exportation. Manual tracings

of the atrial surface were completed in a commercial soft-

ware package in which the image data were uploaded in its

native format. In both cases, the image processing steps and

conversion utilities used to represent the image data in a Car-

tesian format were inaccessible. If access to the raw image

data were available, both manual and automated segmenta-

tion could be implemented in the raw data space to avoid

inaccuracies introduced by interpolation and to enhance

comparison of the two image analysis techniques.

V. CONCLUSIONS

This study demonstrates a novel, noninvasive technique

for mitral valve morphometry. Semi-automated image analy-

sis of 3D US data significantly reduces user-interaction and

yields morphometric features that are consistent with manual

image analysis and qualitative MR severity assessments

made by Doppler imaging. 3D deformable medial modeling

provides a compact, parametric representation of valve

shape, which can be exploited for automated evaluation of

local variations in leaflet and annular geometry. This work

lays the foundation for future statistical studies of time-

dependent valve morphology and dynamics.
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APPENDIX: BAYESIAN OBJECTIVE FUNCTION FOR
DEFORMABLE MEDIAL MODELING

In this work, we fit deformable medial models to binary

segmentations of the mitral leaflets. The objective function

minimized during model fitting takes the following form:

� log p modeljimageð Þð Þ � wlikelihood � Tlikelihood

þ
X5

i¼1

wvalidityi
� Tvalidityi

þ
X2

i¼1

wregularityi
� Tregularityi

;

where w are the relative weights of terms T. The likelihood

term measures how well the model overlaps binary images

of the mitral leaflets, the validity terms enforce inequality
constraints that are required for valid medial geometry, and

the regularity terms regularize the deformable mesh.

Table IV summarizes these terms and weights.
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Note that “valid” medial geometry involves satisfying

both equality and inequality constraints, as described in

Sec. II B 2. While the equality constraint in Eq. (9) is satis-

fied in the linear boundary conditions of the biharmonic

PDE [Eq. (10)], the inequality constraints are incorporated

as soft penalty terms in the objective function. The reason

for enforcing the inequality constraints in this manner is that

conjugate gradient descent is used for optimization. A more

elegant scheme for satisfying medial geometry inequality

constraints would be a constrained optimization problem,

using a software package like IPOPT, where the five validity

terms are specified as constraints, and the objective function

consists of only likelihood and regularity terms. In this work,

however, conjugate gradient descent suffices for

optimization.

Below, a brief summary of each penalty term in the

objective function is presented, along with a description of

how the penalty term is formulated. The validity terms, or

soft penalties that enforce medial geometry inequality con-

straints, are posed as barrier functions such that the penalty

rapidly increases as the term gets closer to violating the

constraint.

1. Tlikelihood: Volume overlap

a. Summary

This likelihood term ensures that the deformable model

overlaps the binary image of each leaflet.

b. Formulation of the penalty term

Each leaflet is represented by a mask image M : R3 ! R,

such that M is positive inside the segmentation and negative

outside. Let C denote the interior of the medial model, i.e.,

the region of space enclosed by the medial model boundary.

Then the overlap likelihood takes the form

Tlikelihood ¼ 1� 1

VM

ð
C

M xð Þdx; where VM

¼
ð
fx:M xð Þ>0g

M xð Þdx:

The integral is computed by numerical integration along the

spokes of the medial model, where each spoke is a line seg-

ment from a node mi on the medial mesh to the correspond-

ing boundary node bþi or b�i . The image M is sampled along

a fixed number of points along each spoke. The volume ele-

ment is computed by interpolating between the average area

of medial triangles adjacent to mi and the average area of

the boundary triangles adjacent to bþi or b�i , and multiplying

by the sampling interval along the spoke. When the leaflet

medial models are combined and fitted simultaneously, each

medial node mi is assigned a label that indicates which bi-

nary image to sample during the overlap computation.

2. Tvalidity1
: Boundary Jacobian constraint

a. Summary

This penalty prevents singularities on the medial model

boundary by ensuring that the Jacobian of the medial-bound-

ary mapping [Eq. (8)] is positive. It additionally penalizes

excessively large values of the Jacobian. Thus, it enforces

the following inequality constraints: Jm!b > 0 and

Jm!b < M, where Jm!b is the Jacobian of the medial-bound-

ary mapping and M is an arbitrarily large value.

b. Formulation of the penalty term

The Jacobian is approximated for each triangle on the

medial mesh. Let mt;0, mt;1, mt;2 be the medial nodes form-

ing a mesh triangle t. The Jacobian for each side of the

boundary is estimated as follows:

Js
t ¼

�
mt;1 �mt;0

� �
� mt;2 �mt;0

� ��
�
�

bs
t;1 � bs

t;0

	 

� bs

t;2 � bs
t;0

	 
�
jj mt;1 �mt;0

� �
� ðmt;2 �mt;0Þjj2

;

TABLE IV. The terms and weights used in the objective function during each stage of model fitting.

Term Description

Fitting phase 1:

10 basis functions,

leaflets fitted separately

Fitting phase 2:

40 basis functions,

leaflets fitted separately

Fitting phase 3:

70 basis functions,

leaflets fitted separately

Fitting phase 4:

70 basis functions,

leaflets fitted simultaneously

Tlikelihood Volume overlap 1 1 1 1

Tvalidity1
Boundary Jacobian constraint 10�2 10�2 10�2 10�2

Tvalidity2
Radial thickness constraint 10�4 10�4 10�4 10�4

Tvalidity3
BoundaryrmR constraint 10�1 10�1 10�1 10�1

Tvalidity4
Loop tangent constraint 10�2 10�2 10�2 10�2

Tvalidity5
Leaflet intersection constraint 10�1 10�1 10�1 10�1

Tregularity1
Medial triangle regularizer 0 10 30 30

Tregularity2
Boundary triangle regularizer 0 10 30 30
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where s denotes the side of the boundary, i.e., þ or –. The

penalty for the given triangle is computed using an exponen-

tial barrier function that penalizes Jacobian values that are

excessively small and excessively large. The total penalty is

integrated over all triangles T in the medial mesh

Tvalidity1
¼
X
t2T

X
s2fþ;�g

e�aJs
t þ ebðJs

t �MÞ;

where M¼ 20, a¼ 10, b¼ 1 are the parameters used in this

work.

3. Tvalidity2
: Radial thickness constraint

a. Summary

This term ensures that the radial thickness field R remains

positive during model fitting, i.e., R > 0.

b. Formulation of the penalty term

The penalty term is posed as

Tvalidity2
¼
XN

i¼1

1

R2
i

;

where N is the number of medial nodes and the Ri is the ra-

dial thickness value at medial node mi.

4. Tvalidity3
: Boundary $mR constraint

a. Summary

This term ensures that each medial node mj that is not at

the medial edge satisfies the constraint rmRj

�� �� < 1. This

penalty term ensures that derivatives of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jjrmRjj2

q
are

well defined on the interior of the medial manifold.

b. Formulation of the penalty term

This penalty term takes the form of the barrier function:

Tvalidity3
¼
XNI

j¼1

a

ð1� rmRj

�� ��2Þ2 ;
where NI is the total number of interior medial nodes and

a¼ 6� 10�5 is the constant used in this study.

5. Tvalidity4
: Loop tangent constraint

a. Summary

This term ensures that mu1 jj=mu2 at medial edge nodes,

where mu1 and mu2 are the partial derivatives on the medial

manifold with respect to a local surface parameterization

(u1,u2). This penalty term is needed because the Loop tan-

gent scheme, based on Hoppe et al.,54 can create degenerate

(parallel) tangent vectors for edge vertices with valence

greater than 4.

b. Formulation of the penalty term

The penalty takes the form of the following barrier function

Tvalidity4
¼
XN

i¼1

sinð20�Þ2

sinðaÞ2
;

where a is the angle between the mu1 and mu2 vectors at the

medial node mi. The reasoning behind this term is that val-

ues of a around 20� are acceptable, but smaller angles may

lead to degenerate tangent vectors and are therefore undesir-

able. In this formulation, the penalty for a¼ 20� is 1, and the

penalty rapidly increases as a approaches 0�.

6. Tvalidity5
: Leaflet intersection constraint

a. Summary

This term prevents overlaps and self-intersections in the

medial model by ensuring that no boundary point in the model

lies inside one of the balls defined by {m, R} on the medial

axis. For every node j,k on the medial mesh, the inequality

constraint is posed as bþk �mj

�� �� > Rj and b�k �mj

�� �� > Rj.

b. Formulation of the penalty term

The penalty term is posed as follows:

Tvalidity5
¼
XN

j¼1

XN

k¼1

1

2
þ 1

2
erf a

bRj � mj � bk

�� ��
Rj

� �� �� �
;

where j,k refer to nodes on the medial mesh and a¼ 10 and

b¼ 0.8 are constants. This penalty function yields a value of

1 when
mj�bkj j

Rj
< 1, which indicates that a boundary point bk

in the model lies inside another ball defined by {mj, Rj}. The

penalty rapidly drops to zero at
mj�bkj j

Rj
¼ 1. The factor a con-

trols the slope of the error function, and the factor b controls

the value of
mj�bkj j

Rj
at which the penalty term falls to zero.

7. Tregularity1
: Medial triangle shape regularizer

a. Summary

This regularity term controls the quality of the medial

mesh by penalizing small angles in mesh triangles.

b. Formulation of the penalty term

The term is formulated as

Tregularity1
¼
X
t2T

X3

k¼1

a

1� cosðht;kÞ2
	 
 ;

where ht;k is the angle at vertex k of triangle t and

a¼ 1� 10�3 is the parameter used in this study.

8. Tregularity2
: Boundary triangle shape regularizer

This regularity term controls the quality of the boundary

mesh by penalizing small angles in mesh triangles. The term

is posed the same as the medial triangle shape regularizer.
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