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A popular hypothesis for human running is that gait mechanics and muscular activity are optimized in

order to minimize the cost of transport (CoT). Humans running at any particular speed appear to natu-

rally select a stride length that maintains a low CoT when compared with other possible stride lengths.

However, it is unknown if the nervous system prioritizes the CoT itself for minimization, or if some

other quantity is minimized and a low CoT is a consequential effect. To address this question, we gen-

erated predictive computer simulations of running using an anatomically inspired musculoskeletal

model and compared the results with data collected from human runners. Three simulations were

generated by minimizing the CoT, the total muscle activation or the total muscle stress, respectively.

While all the simulations qualitatively resembled real human running, minimizing activation predicted

the most realistic joint angles and timing of muscular activity. While minimizing the CoT naturally

predicted the lowest CoT, minimizing activation predicted a more realistic CoT in comparison with

the experimental mean. The results suggest a potential control strategy centred on muscle activation

for economical running.
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1. INTRODUCTION
A popular hypothesis concerning human movement is

that natural movement patterns are selected because

they coincide with the minimum metabolic cost [1,2].

Metabolic cost can be expressed as the cost of transport

(CoT)—the amount of metabolic energy consumed per

unit displacement of the body’s centre of mass. This

hypothesis has ancient origins in the natural sciences,

dating at least to Aristotle [3], who noted that nature

does nothing uselessly.

In the present work, we evaluated this minimum-

energy hypothesis within the context of human running.

To run at a particular speed (m s21), humans can poten-

tially use many different combinations of stride length (m)

and stride frequency (s21; Hz). While it is unclear if the

CoT is sensitive to running speed [4–6], the preferred

stride length (or frequency) chosen to run at a given

speed incurs a low CoT compared with other potential

choices [7,8]. This relationship suggests that the

CoT governs the selection of stride mechanics in

human running, thereby serving as an optimality criterion.

However, the CoT itself does not necessarily need to be

minimized to produce economical running. The meta-

bolic energy consumed by muscles is a function of

many variables, such as the activation level [9], which
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could also be potentially minimized to incur a relatively

low CoT. Thus, it is not clear what specific quantity the

neuromuscular system prioritizes for minimization, if

minimization of the CoT governs all salient biomechani-

cal features of running, or if any quantity at all is

absolutely minimized [10].

Therefore, the purpose of the study was to evaluate a

set of potential optimality criteria for human running.

Because it is impossible to control, manipulate and quan-

tify potential criteria with in vivo experiments on human

runners, we used a computer simulation approach to

test three candidate criteria. The simulation results were

evaluated against experimental data from experienced

human runners who were presumably optimizing the

true (but unknown) criterion. Based on previous exper-

imental studies [7,8], we hypothesized that minimizing

the CoT would produce the most realistic simulation.
2. MATERIAL AND METHODS
We studied the task of running at a steady, submaximal speed

over level ground. Our approach was to (i) measure exper-

imental data from experienced human runners, (ii) develop

a computer model for simulating human running, (iii) per-

form a ‘data-tracking’ simulation to establish the model’s

ability to replicate the salient biomechanical features of

human running, and (iv) generate predictive (non-tracking)

simulations to investigate optimality criteria.

(a) Experimental data

Experimental data were recorded from a group of 12

adult female runners (mean+ s.d.: age ¼ 27+6 years,
This journal is q 2011 The Royal Society
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Figure 1. Schematic of the musculoskeletal model. Swing leg
muscles are not shown.
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height ¼ 1.66+0.05 m, mass ¼ 61+4.7 kg; training ¼

24.8+6.4 km wk21). All subjects gave informed written

consent prior to participating.

Subjects ran along a level 30 m runway at a self-selected

‘normal and comfortable’ speed. The sagittal angular posi-

tions and velocities of the trunk and right hip, knee and

ankle were calculated from the coordinates of reflective

markers placed on the joint centres [11]. Marker positions

were sampled at 200 Hz using an eight-camera optical

motion capture system (Oqus 300, Qualisys, Gothenburg,

Sweden). Ground reaction forces (GRFs) were sampled at

2000 Hz from a strain gauge force platform (OR6-5,

AMTI, Watertown, MA, USA) located near the centre of

the runway. Electromyograms (EMGs) were sampled at

2000 Hz from seven muscles of the right leg (gluteus maxi-

mus, vastus lateralis, tibialis anterior, soleus, rectus femoris,

biceps femoris (long head), medial gastrocnemius; [12])

using bipolar surface electrodes and a portable data-logging

unit worn by the subject (Myomonitor 4, Delsys, Boston,

MA, USA). EMG linear envelopes were calculated by apply-

ing sequentially a bandpass filter (20–300 Hz), full wave

rectification and a recursive lowpass filter (10 Hz), followed

by scaling to amplitudes from maximum isometric con-

tractions. One full stride was recorded in each of five

trials per subject. Data were averaged over trials and then

over subjects.

During treadmill running at the same speed as their over-

ground trials (+0.1 m s21), oxygen and carbon dioxide

exchange rates were measured using a metabolic cart

(TrueOne 2400, ParvoMedics, Sandy, UT, USA). Gross

rates of metabolic energy consumption were computed

from the gas exchange data, by considering the respiratory

exchange ratio [13]. The CoT was calculated by dividing

the gross metabolic rate by the running speed.

(b) Musculoskeletal model

A two-dimensional (sagittal plane) forward dynamics model

of the human musculo-skeletal system was developed in the

form of a Fortran computer program (figure 1). The skeleton

had nine rigid segments (trunk and bilateral thigh, shank,

foot and toes) connected at the hip, knee, ankle and metatar-

sophalangeal (MTP) joints. Joint ranges of motion were

softly constrained by torsional spring-dampers representing

the passive elastic characteristics of joint structures [14].

GRFs were generated by three contact elements beneath

the heel, toe and MTP joints. Each element generated a ver-

tical force as a nonlinear spring-damper [15] and a horizontal

force as a Coulomb friction approximation [16]. A vertical

sinusoidal force on the upper trunk represented the

supportive effect of arm swing [17].

Each leg was actuated by nine Hill-based models of

skeletal muscle [18] (iliopsoas, glutei, rectus femoris, vasti,

biceps femoris (short head), hamstrings, tibialis anterior,

soleus and gastrocnemius) with geometry, activation and

contractile dynamics as described earlier [19]. The metabolic

energy consumed by each muscle model was calculated using

equations that predict the Hill model’s thermal and mechan-

ical energy liberation, motivated by observations on muscles

in humans and other mammals, and comparisons between

simulated and measured metabolic data [20,21]. The entire

model’s gross metabolic energy rate was the sum of the

muscle rates, plus the average measured rate while subjects

stood upright and swung their arms at the step frequency

from the running trials (1.93 W kg21).
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Each muscle was controlled by a neural excitation signal

that was a piecewise linear function of 21 nodal values

spaced evenly over the stride time [22]. To ensure periodicity,

the 21st node was assigned the same value as the first node.

Left leg excitations were identical to the right leg excitations

but phase-shifted by half the stride duration.

The model’s parameters were derived primarily from

measurements on the human subjects, and in some cases

from human or cadaver data in other studies. A description

of the parameter assignments is presented in the electronic

supplementary material. Additional details on the model

and the simulations are available in the study of Miller [23].

(c) Simulations

Simulations of one stride were generated by optimizing the

model’s control variables to minimize an objective function J.

The 191 control variables were the nodal right leg muscle

excitations (9 � 20 ¼ 180), seven initial angular velocities

(MTP joint velocities were assumed to be zero), the ampli-

tude and phase shift of the arm swing force, the angular

stiffness of the MTP joints and the stride duration. The

objective function was:

J ¼ OCi þ ð0:011u þ 0:00011v þ 0:0011pasÞ

where OCi is one of four optimality criteria and the other

right-hand side terms are penalty terms. 1u and 1v are the

sums of the squared differences between the initial and

final segment angular positions and velocities, respectively,

and encouraged periodic kinematic states. 1pas is the sum

of the squared passive joint moment integrals, and dis-

couraged extreme joint angles. The penalty weighting

coefficients were adjusted in preliminary simulations and

set to the smallest values that produced a stride that was

periodic to within 58 and 308 s21 on average. To reduce com-

putational time, one stride was reconstructed from

simulations of one step by assuming bilateral symmetry [23].

The first simulation used a data-tracking approach, with

OC0 defined as the average ‘tracking error’ between the
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simulated and mean experimental hip, knee, and ankle angles

and horizontal and vertical GRFs:

OC0 ¼
Pn

j¼1

P5
i¼1ðX

exp
ij �X sim

ij =SDiÞ2

5n
;

where X sim
ij and X

exp
ij are the values of simulated and mean

experimental variable i at timestep j. SDi is the between-

subjects standard deviation of variable i averaged over one

stride, and n is the number of data points per stride. For

this simulation, the stride duration was set to the average of

the human runners (0.690 s).

The second set of simulations used a ‘predictive’

approach. No experimental data were tracked, although the

data-tracking solution was used as an initial guess for the

control variables. We evaluated three different optimality cri-

teria that were selected based on their prevalence in previous

studies for predicting optimal human movements and muscle

forces during locomotion (e.g. [15,21,24,25]). Criterion 1

was the CoT:

OC1 ¼
E

mbodyDxCoM

� �2

where E is the gross energy expenditure, mbody is the mass

of the model (61 kg) and DxCoM is the change in horizontal

position of the model’s centre of mass. The rationale for

this criterion is that humans appear to maintain a low CoT

by running with a preferred stride kinematics [7].

Criterion 2 was based on muscle activations:

OC2 ¼
1

tf

Xm

i¼1

ðtf

0

A2
i dt

� �

where Ai(t) is the time-varying activation of the ith muscle in

an m-muscle system, and tf is the stride duration. This cri-

terion is based the concept that low activations avoid

fatiguing any one muscle, regardless of its size and strength

[15]. Division by tf discourages the use of high stride fre-

quencies just to reduce the activation integrals. The

optimal muscle activations predicted by different non-unity

integer powers within this criterion (e.g. A2
i , A3

i , A4
i ) are

generally similar when compared with solutions predicted

by different criteria [15].

Criterion 3 was based on muscle stresses:

OC3 ¼
1

tf

Xm

i¼1

ðtf

0

Fi

PCSAi

� �2

dt

" #

where Fi(t) is the force in the ith muscle and PCSAi is its

physiological cross-sectional area [26]. The rationale for

this criterion is based on empirical evidence that the sustain-

able time under tension is a nonlinear function of the relative

muscle force, and that maximum muscle force is a function

of the PCSA [27]. Similar to criterion 2, the patterns of opti-

mal muscle forces are not highly sensitive to the choice of

stress squared, cubed, etc. [25,27]. These three predictive

simulations will be referred to as MinCoT, MinAct and

MinStress, respectively. All optimality criteria were scaled

so that their magnitudes were approximately equal to that

of the data-tracking solution, giving the penalty terms similar

effects on each simulation’s solution domain.

The initial segment positions and velocities were taken

from the mean experimental data at the last timestep

before right heel-strike. The initial angular velocities and

the stride duration were allowed to vary within 1 s.d. of the
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means. The initial muscle activations were calculated by sol-

ving the activation dynamics over the time for one stride.

Initial contractile component lengths were calculated assum-

ing an isometric state. The metatarsal joint stiffness could not

exceed 300 Nm rad21, and the arm swing force amplitude

could not exceed 25 per cent of the model’s weight.

The control variables were optimized using a parallel-

simulated annealing algorithm [28] on a cluster of eight

3 GHz CPUs (Pentium 4, Intel, Santa Clara, CA, USA).

Optimizations were terminated when 100 000 evaluations

did not improve the optimal solution by 1 per cent, which

required a total of 500–600 CPU hours per simulation.

(d) Evaluation

The simulations were evaluated by comparing their mechan-

ical and metabolic outputs with the means of the analogous

experimental data. To enable comparisons of variables with

different dimensions, deviations were expressed in multiples

of the between-subjects standard deviation of the experimen-

tal data. Temporal similarity between the simulated muscle

activations and the EMG linear envelopes was assessed by

zero-lag cross-correlations. The simulation that overall most

closely matched the experimental data based on these

comparisons was deemed the most accurate.
3. RESULTS
(a) Human running

The human subjects ran at an average speed (mean+
s.d.) of 3.80+0.50 m s21, using a stride length of

2.61+0.27 m and a stride frequency of 1.45+
0.08 Hz. The average CoT was 4.24+0.90 J m21 kg21.

(b) Data-tracking simulation

The data-tracking simulation matched the mean joint

angle and GRF profiles of the human subjects to within

1.3 s.d. on average (1.0, 0.9 and 0.6 s.d. for the hip,

knee and ankle angles, respectively; 2.2 and 1.6 s.d. for

the horizontal and vertical GRFs). This accuracy is com-

parable with other similar tracking simulations (e.g. [29]).

The tracking simulation ran at 3.76 m s21 with a stride

length of 2.59 m. Both values were within 0.1 s.d. of

the experimental means even though neither variable

was explicitly tracked. However, the tracking simulation

expended metabolic energy at an unrealistically high

rate (9.8 J m21 kg21, 6.2 s.d. above the mean).

(c) Predictive simulations

All three simulations visually resembled real human run-

ning (see electronic supplementary material for

animations) and ran at speeds within 0.3 s.d. of the

human subjects mean (range: 3.64–3.67 m s21). Stride

lengths, stride frequencies and costs of transport for all

three simulations were within 1 s.d. of the experimental

means (figure 2). The CoT for MinAct (4.4 J m21 kg21,

þ0.3 s.d.) was closest to the human mean, followed by

MinStress (4.7 J m21 kg21, þ0.5 s.d.) and MinCoT

(3.6 J m21 kg21, 20.7 s.d.).

For the joint angles and GRFs (figure 3), root mean

squared errors (r.m.s.e.) between the simulated and

mean experimental data were calculated. Root mean

squared errors for the hip, knee and ankle angles were

1.0, 1.3 and 1.5 s.d. for MinCoT; 0.9, 0.8 and 0.8 s.d.

for MinAct; and 1.6, 0.7 and 1.3 s.d. for MinStress.
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Figure 2. (a) Speeds, (b,c) stride parameters and (d) costs of transport (CoT) for the human subjects and the simulations. Error

bars are 1 s.d. between subjects.
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Differences appeared mainly in the swing phase. The

peak hip flexion angle in mid-swing (60–80% of the

stride) was 148 smaller for MinStress than for MinAct

and MinCoT. MinStress flexed the hip in late swing

(90–100% of the stride), while MinAct and MinCoT

extended the hip. The peak knee flexion angle in mid-

swing was 168 smaller for MinCoT than for MinAct

and MinStress. The peak angle dorsiflexion angle in
Proc. R. Soc. B (2012)
swing was 98 smaller for MinCoT than for MinAct and

MinStress. In contrast, peak joint angles during stance

differed by less than 58. The GRFs in the predictive simu-

lations (figure 3) were less realistic than the joint angles,

mainly due to the stance durations (31% of the stride

on average) that were briefer than the human subjects

(38+5%). Root mean squared errors for the horizontal

and vertical GRFs were 2.8 and 4.8 s.d. for MinCoT,
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3.2 and 4.3 s.d. for MinAct, and 2.7 and 5.1 s.d. for

MinStress. The average vertical GRF was within 1.5 per

cent of the body weight for all simulations, owing to

small aperiodic deviations in the kinematics.

The predictive simulations in general had lower magni-

tudes of muscle excitations and activations than the

tracking simulation (figure 4). Cross-correlations between

the muscle activations and the EMG linear envelopes

averaged 0.58+0.36, 0.67+0.36 and 0.59+0.39 for

MinCoT, MinAct and MinStress, respectively. For com-

parison, cross-correlations for the linear envelopes

between the human subjects (i.e. each subject compared

with every other subject) averaged 0.65+0.35. In all

three predictive simulations, the lowest cross-correlation

was for rectus femoris (average: 0.16) and the highest

were for the plantarflexors (average: 0.94). The data-

tracking simulation excited all muscles to at least 97 per

cent (permitted ranges were 0–100%) at some point

during the stride, while the predictive simulations excited
Proc. R. Soc. B (2012)
only two to four muscles above 80 per cent. The peak

stance phase activation of vasti was greater for MinAct

(62%) than for MinCoT (49%) and MinStress (24%).

Compared with MinAct and MinStress, MinCoTavoided

activating the large thigh muscles (vasti and hamstrings)

during swing, and avoided using soleus to position the

foot for heel-strike in late swing. MinCoTalso had shorter

durations of activation for iliopsoas from late stance to

mid-swing and for hamstrings in stance. MinAct and

MinStress featured similar muscle-activation strategies,

although MinStress had higher tibialis anterior activations

in mid-swing and extended the hip in late swing with

both hamstrings and glutei, while MinAct primarily

used hamstrings.
4. DISCUSSION
It has been suggested that humans run in a way that mini-

mizes the CoT [30]. To date, this theory has been
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motivated primarily by measurements on humans run-

ning under various natural and perturbed conditions

[6–8]. However, the present simulations indicate that a

variety of variables can be minimized to incur a realisti-

cally low CoT, even if the CoT itself is not explicitly

minimized. All three predictive simulations had CoTs

well within the range of values for the human runners.

Although different optimality criteria predicted different

running mechanics (figure 3), differences were generally

within the range of the observed human performances,

indicating that multiple different optimality criteria can

predict reasonably realistic running motions. Therefore,

the hypothesis that minimizing the CoT would result in

the most realistic simulation was not supported.

While none of the predictive simulations deviated dra-

matically from the salient features of human running

(figures 2 and 3), minimizing muscle activations

(MinAct) predicted the hip, knee and ankle angles,

CoT and muscle activity timing that were closest to the

mean values of the experimental data. Most of the kin-

ematic differences in the simulations appeared in the

swing phase (figure 3), which may seem paradoxical if

the metabolic cost of the swing phase is presumed to be

minimal. However, recent studies have suggested that

the cost of leg swing in locomotion comprises a substan-

tial portion (up to 30%) of the total metabolic cost

[21,31,32]. The body is also less mechanically con-

strained during swing, affording more freedom of

motion. The brief stance period is the only opportunity

to generate forces offsetting the gravitational force,

which may limit the range of possible kinematic strategies.

Although we did not evaluate an exhaustive set of

potential optimality criteria, these results suggest that

maintaining low levels of muscle activation is an impor-

tant priority of the neuromuscular system for running.

Recent simulations of walking reached a similar con-

clusion [15], but did not evaluate metabolic energy

consumption or make comparisons with data from walk-

ing humans. We cannot state conclusively that optimal

human running is consistent with minimum activation

rather than minimum metabolic cost. However, the

results demonstrate the potential for economical running

(i.e. a relatively low CoT) through targeted modulation of

factors other than the CoT itself. While minimal meta-

bolic cost is a commonly cited criterion for human

movement (e.g. [1,2,30]), examples from the literature

suggest that preferred motion patterns are not always con-

sistent with strategies predicted by minimizing metabolic

energy consumption [33–35]. It may be that a MinCoT

strategy is held in reserve for ‘survival’ situations where

extremely low energy expenditure is needed. Although

the CoTs for both the MinAct and MinCoT simulations

were statistically within the range of the experimental

data, their difference (0.8 J m21 kg21) is quite large

from a biological perspective. For a given caloric allow-

ance (say 1000 kcal), the running model could travel

nearly 20 per cent further with the MinCoT strategy

(19.2 km) than the MinAct strategy (15.4 km). It is diffi-

cult to evaluate these model-based predictions empirically

because muscle activation is largely a conceptual variable

that cannot easily be measured in vivo [36], although it

could perhaps be computed for selected muscles from

EMG data [37]. Alternatively, subjects could be trained

to run with the kinematic features predicted by the
Proc. R. Soc. B (2012)
simulations (figure 3) while measuring changes in the

metabolic cost.

All of our subjects were recreationally active runners

who were well accustomed to treadmill running, and had

participated in similar laboratory experiments previously.

Even so, a potential confounding factor is our use of

treadmill-based metabolic data in comparison with simu-

lations of overground running. There is surprisingly little

evidence on the metabolic costs of overground and tread-

mill locomotion. Heart rates during overground and

treadmill walking are similar [38,39]. Morgan et al. [33]

argued that treadmill running underestimates the meta-

bolic cost of overground running, which would shift our

metabolic results further in favour of the MinAct and

MinStress simulations.

Differences between MinAct and MinStress were rela-

tively small in comparison to differences with MinCoT,

suggesting that maintaining low mechanical stresses of

the muscles are also an important control priority for

human running. Both MinAct and MinStress weigh all

muscles equally in the objective function as activation

and stress vary over the same range for all muscles.

MinCoT places more emphasis on larger muscles that

consume more energy. Although MinAct was quantitat-

ively more realistic than MinStress in comparison with

the experimental data, in reality, the central nervous

system (CNS) may consider multiple simultaneous cri-

teria for controlling running dynamics. It presumably

has knowledge of muscle activation resulting from

motor unit recruitment and rate-coding, and may also

have knowledge of muscle stress. Tendon force is presum-

ably known from Golgi tendon organs, but muscle stress

would require internal representations of physiological

cross-sectional areas. Calculating the CoT in the simu-

lations required the metabolic rate of each muscle and

the speed of the centre of mass. It seems unlikely that

the CNS performs this same calculation based on the

sheer number of variables and parameters needed, but

it may not need explicit knowledge of all these quantities

to modulate the CoT. For example, the whole-body meta-

bolic rate correlates fairly well with perceived exertion

[40], which the nervous system could use to calculate

an analogous CoT if the speed of the centre of mass

was known. Some modulation could also take place at

the peripheral level, without direct involvement of CNS.

In the predictive simulations, the stance duration was

on average 1.4 s.d. shorter than the mean of the human

subjects, requiring vertical GRF peaks 2.5 s.d. above the

mean to provide the necessary vertical impulse. Although

these deviations are still within the statistical range of the

human population (approx. 3 s.d.), the GRFs were visu-

ally and quantitatively less realistic than other simulated

variables. Other predictive simulations of human running

have had similar issues with short stance times [41,42].

The model is capable of generating more realistic GRF

with its existing dynamics, as seen in the data-tracking

simulation (figure 3). We elected not to penalize these

GRF deviations in the predictive simulations because

there is no convincing evidence that running humans

optimize their gait on these features. Future work will

investigate model adjustments (e.g. foot-floor contact

model) needed to produce more realistic GRFs without

penalty functions, and the corresponding effects on

metabolic cost and other relevant criteria.
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In addition to the pure scientific interest of assessing the

optimality criterion for human running, the predictive

simulation approach may also be useful for future applied

work. Predictive simulation has long been promoted as a

method for improving human health and performance

[43], but reports of applications and actual results to this

end are scarce [44]. Many runners are frequently affected

by debilitating musculoskeletal injuries that prevent them

from obtaining the health benefits of running or optimal

race performances. Predictive simulations could be useful

in the future for theoretically testing the effects of various

training interventions (e.g. muscular strength and power,

weight loss, technique adjustments) on musculoskeletal

loading, injury potential and performance limits.

A final point relates to data-tracking, which is a

common approach for generating simulations of human

movement [19,45,46]. Although the joint angles and

GRFs of the tracking simulation were the most accurate

in this study, the metabolic energy rate was extremely

high and unrealistic. Large amounts of energy were

expended because of near-maximal activation of most

muscles and high amounts of antagonistic co-activation

(figure 4). Antagonism allows for a greater degree of con-

trol over shaping the joint torques to reduce the tracking

error, but exacts an unrealistically high metabolic cost.

Muscle-actuated tracking simulations should include a

mechanism to avoid over-estimating antagonistic co-

activation [46] and metabolic energy expenditure. Even

if energy expenditure is not directly related to the research

questions, a model of muscle energy expenditure [20] is

still useful for comparisons with human metabolic data.

In conclusion, simulations of human running were

sensitive to the form of the optimality criterion defined

as a movement objective. A tracking simulation estab-

lished the ability of the model to run with realistic

mechanics, but over-estimated metabolic energy expendi-

ture. Minimizing muscle activations predicted the

metabolic cost and joint motions closest to the average

values measured from human subjects. These simulations

suggest that minimizing the total amount of muscle acti-

vation in the lower limb is an important priority of the

neuromuscular system during running, and indicates the

potential for economical running to arise from prioritized

minimization of quantities other than the CoT itself.
All protocols were approved by the University of Massachusetts
Amherst institutional review board.
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