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Explaining the structure of ecosystems is one of the great challenges of ecology. Simple models for food

web structure aim at disentangling the complexity of ecological interaction networks and detect the main

forces that are responsible for their shape. Trophic interactions are influenced by species traits, which in

turn are largely determined by evolutionary history. Closely related species are more likely to share similar

traits, such as body size, feeding mode and habitat preference than distant ones. Here, we present a theor-

etical framework for analysing whether evolutionary history—represented by taxonomic classification—

provides valuable information on food web structure. In doing so, we measure which taxonomic ranks

better explain species interactions. Our analysis is based on partitioning of the species into taxonomic

units. For each partition, we compute the likelihood that a probabilistic model for food web structure

reproduces the data using this information. We find that taxonomic partitions produce significantly

higher likelihoods than expected at random. Marginal likelihoods (Bayes factors) are used to perform

model selection among taxonomic ranks. We show that food webs are best explained by the coarser taxo-

nomic ranks (kingdom to class). Our methods provide a way to explicitly include evolutionary history in

models for food web structure.
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1. INTRODUCTION
The consumer–resource interactions, which are the basis

of food webs and ecosystems, are determined by the coe-

volutionary dynamics of the traits of the interacting

species [1,2]. Some interactions are relatively recent—

e.g. relationships between exotic invaders and native

species—while other have arisen deep within the tree of

life (e.g. plant–herbivorous insect trophic interactions),

but all interactions have an evolutionary signature related

to the evolution of species traits. The occurrence of an

interaction is influenced by traits, such as body size,

metabolism, defensive strategies, environmental toler-

ances and behaviour of both the consumer and the

resource. Even though understanding the structure of

ecosystems has been one of the great challenges in ecol-

ogy [3–5], models for food web structure have so far

focused only on one or few, albeit important, traits (e.g.

body size: [6–10]). However, it has repeatedly been

suggested that several traits have to be taken into account

in order to fully understand food web structure [9,11,12].

Because of shared evolutionary history, closely related

species typically have similar traits [13], which in turn

determine their trophic interactions. As such, similar

species are more likely to consume or be consumed by

similar species [8,14,15]. Evolutionary history could

possibly then be used as a surrogate for trophically impor-

tant traits. Therefore, it is likely that we could detect a

signature of evolutionary history in the structure of food
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webs where closely related species should have specific

patterns of interactions. Of course, evolutionary related-

ness may not fully summarize all the traits determining

species interactions, as species are plastic and are not

entirely constrained by their evolutionary history. For

example, species have to adapt to their specific environ-

ment and differentiate themselves from close relatives

owing to competition [8,16]. Nonetheless, evolutionary

history provides the objective, a priori hypothesis, that clo-

sely related species share similar consumer–resource

interactions and clades can be categorized into distinct

trophic groups.

Initially, models for food web structure have dis-

regarded this issue, but the topic has recently received

more attention. The ‘nested-hierarchy’ model [8]

implicitly models phylogenetic similarity among species,

whereas other models include evolutionary dynamics for

the species [14,17–24]. Rezende et al. [15] analysed com-

partments (sets of species that tend to interact

preferentially within the set and not between sets) in a

Caribbean food web [25], and found that, depending

on the taxonomic group (bony fishes versus cartilaginous

fishes), some of the identified compartments in the food

web tended to predominantly contain either closely

related or distantly related species. Also, in mutualistic

networks a strong phylogenetic signal has been detected,

with important consequences for biodiversity [26–28].

Here, we explore the influence of evolutionary history

on species interactions by using species’ taxonomic clas-

sification and exploiting the recently proposed ‘group

model’ [29]. In the group model, the species are assigned

to non-overlapping groups, and the probability that two

species i and j interact is fully determined by the groups
This journal is q 2011 The Royal Society
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to which i and j belong. The model has been previously

used to perform unsupervised classification of species

into groups [29,30]. However, it can be used when the

partition into groups is given, as in this case. We divide

species according to evolutionary history, approximated

by their taxonomic classification. For example, we

divide the species according to kingdoms and recover

the likelihood that such a model would produce the

empirical network. We can do the same for species

grouped by phylum, class, order and so forth. The same

type of analysis can be performed based on species phylo-

genies, where at each bifurcation species are partitioned

anew—at the root, species are divided into two groups,

at the next deepest bifurcation into three groups and so

on until each species is in a distinct group. We can associ-

ate a likelihood with each partition, to estimate how well

current food web structure is explained through evol-

utionary time. Using model selection, we can then find

the age at which most of the currently observed trophic

structure was determined. This tracking of likelihoods

in evolutionary time is somewhat blurred when we

use taxonomy, but clearly division in coarser ranks (e.g.

kingdom) should pre-date that into finer subdivisions

(e.g. family).

Using the group model and partitioning species by

taxonomy or phylogeny, we address the hypothesis that

closely related species can be categorized into trophic

groups. We want to answer two basic questions: (i) how

much of the food web structure can be explained by

the evolutionary history of species? and (ii) which taxo-

nomic ranks can better explain species interactions (i.e.

identify the taxonomic level that provides a balance

between information on food web structure and number

of parameters used)?
2. METHODS
(a) Food webs

We analysed nine published food webs: Caribbean [25],

El Verde [31], Little Rock [32], Mill Stream (Ledger,

Edwards & Woodward, unpublished data, see [11]), Stony

Island [33], Tuesday Lake [34],Weddell Sea [35] and two

versions of Ythan Estuary [36]. The difference between the

two versions of the Ythan Estuary is that in the version

from 1996 parasites are included, whereas in the 1991

version they are not.

Empirical data for each network comprise a binary

adjacency matrix, indicating consumer–resource interactions

and a species list. The species lists can contain Latin bino-

mials or other coarse-grained classifications, such as ‘crabs’,

‘detritus’, etc., as well as unidentified species. In fact, the

level of resolution in published webs varied considerably

both between webs and within webs, where some nodes

were resolved at the species level, whereas others were

coarse aggregates of taxa. Because taxonomic resolution is

crucial for our exercise, we analysed a large set of webs, and

kept only those that displayed a sufficient level of taxonomic

detail. The method used for constructing the networks is

also of importance, because there is a risk of having a circular

argument in which taxonomy is used to build the network and

then to perform inference. All the webs we analyse have been

built using a variety of methods: Weddell Sea, gut contents

and published reports; Caribbean, published reports; Little

Rock, expert knowledge; Ythan Estuary (both versions),
Proc. R. Soc. B (2012)
gut contents and predation observations; Tuesday Lake, gut

contents; Mill Stream and El Verde, gut contents, predation

observations and published reports; and Stony Island, gut

contents. Even though it is likely that taxonomy played

some role in the link assignment in the food webs that were

assembled using ‘expert knowledge’ and ‘published reports’,

none of the original articles explicitly state that this was the

main method used for deciding feeding interactions.

For each food web, we compiled the taxonomy for each

node. To this end, we searched the Integrated Taxonomic

Information System online database (www.itis.gov) using

the information contained in the species list. In each web,

we kept only those nodes for which we recovered a valid king-

dom, phylum, class, order, family and genus. The links

between species were kept only if both the resource and the

consumer were completely classified.

Many of the webs we analysed were heavily simplified by

this procedure. Because the quality of the data is critical for

our analysis, we chose to analyse only the nine webs

for which we recovered a full taxonomy (to genus level) for

more than 65 nodes and for which we retained more

than 200 links. These constraints are strict, and relaxing

them could influence the results (see §2e). However, it is

worth noting the so-called third generation food webs [5],

which are currently being published, typically do contain

hundreds of species-resolved nodes and thousands of links.

Therefore, we are justified in keeping high standards as

they would apply to the more recent data. The results of

the classification are presented in table 1. Thus, we can

produce six taxonomic partitions for each web, dividing the

species into kingdom, phylum, class, order, family and

genus, respectively.

(b) The group model

A food web can be codified as an adjacency matrix A in

which Ai,j ¼ 1 means that species i is consumed by j.

The food web contains S nodes (species) and L connec-

tions (trophic interactions). In the group model [29], the

probability that i is a resource for consumer j is defined as:

pi;j ¼ qGi ;Gj
; ð2:1Þ

where G is a partition of the S nodes in g non-empty groups.

Interactions are therefore determined by Bernoulli trials

that use g2 probabilities (qGi,Gj
, one for each combination

of groups).

This model is based on the idea of ‘trophic roles’: species

in the same group have consistent interaction patterns with

other groups (e.g. in an aquatic food web, species in the

‘benthic herbivores’ group interact with high probabi-

lity with the ‘benthic macrophytes’ group as consumers

and with ‘benthic carnivores’ as resources, but do not

interact with each other).

For any given partition of the species into g groups,

we can set the g2 probabilities qGi,Gj
to their maximum-

likelihood estimates (MLEs):

MLEðqGi ;Gj
Þ ¼

LGi ;Gj

LGi ;Gj
þ ZGi ;Gj

; ð2:2Þ

where LGi,Gj
is the number of interactions (those in the adja-

cency matrix) originating from the species in group Gi and

terminating in species belonging to group Gj, whereas

ZGi,Gj
is the number of interactions not occurring (the zeros

in the matrix) between resources in group Gi and consumers

in group Gj. The likelihood for this model (i.e. the

http://www.itis.gov


Table 1. Statistics for the food webs before and after the search for species with defined taxonomy down to genus level.

(Shows the original (SOr) and final (SFin) number of species, and the original (LOr) and final (LFin) number of links. The
last columns show the number of kingdoms (nK), phyla (nP), classes (nC), orders (nO), families (nF) and genera (nG)
represented in the final food webs.)

food web SOr SFin LOr LFin nK nP nC nO nF nG

Weddell Sea 488 364 15880 9655 3 20 41 89 170 258
Caribbean 249 203 3313 1901 1 1 2 17 60 120
Little Rock 181 156 2375 1832 3 13 16 35 64 137
Ythan96 134 100 598 415 1 7 12 34 58 80

Tuesday Lake 73 66 410 309 3 9 10 20 35 47
Ythan91 92 74 421 299 1 4 9 27 46 62
Mill Stream 80 67 367 280 2 5 9 22 40 54
El Verde 156 70 1510 268 2 4 9 22 40 56

Stony Island 113 74 832 224 2 6 8 22 36 52
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probability of the model generating exactly the empirical

matrix A) can be written as:

LðAjq;GÞ ¼
YS
i¼1

YS
j¼1

p
Ai;j

i;j ð1� pi;jÞ1�Ai;j

¼
Yg
k¼1

Yg
l¼1

q
Lk;l

k;l ð1� qk;lÞZk;l : ð2:3Þ

Note that in the model all links originating from group i

and terminating in group j are distributed independently

and identically.

In our model, the partition G is defined by the taxonomic

classification at a particular rank. For example, suppose that

we have only two kingdoms (Plantae: group P and Animalia:

group A). Then, we need to parametrize four probabilities

(qAA,qAP,qPA,qPP). We can set each one to its MLE. For

example, we can compute the MLE for qPA by counting

how many links go from plants to animals and dividing by

the number of plants times the number of animals. Once

we computed the four MLE, we can use the formula above

to recover the maximum likelihood for the network given

the partition into kingdoms.

(c) Randomizations, likelihoods and overlaps

For each of the nine webs and the six taxonomic partitions,

we computed the maximum likelihood as specified above. We

then produced 106 partitions at random. The random partitions

conserved the number and size of the groups. For example,

the Ythan Estuary food web (the version from 1996, here

named Ythan96) consists of 100 species and seven phyla:

Chordata (43 nodes), Platyhelminthes (22 nodes), Arthropoda

(14 nodes), Mollusca (nine nodes), Annelida (eight nodes),

Acanthocephala (two nodes) and Nemata (two nodes;

figure 1). In the randomizations, we generated random par-

titions of the 100 species in seven groups of size 43, 22, 14, 9,

8, 2 and 2, respectively. For each randomization, we computed

the associated maximum likelihood. We then used the distri-

bution of likelihoods from the randomized partitions to

measure the probability of obtaining a better likelihood than

that produced by the taxonomic split. For the Ythan Estuary

(1996) food web, none of the one million randomizations

based on the phyla group number and sizes produced a likeli-

hood higher than that associated with the partition into phyla.

In the case of the Ythan Estuary (1996) food web, we can

claim that the split into phyla contains important information

on species interactions. For this taxonomic rank, the result is

clear: the majority of the feeding interactions are between
Proc. R. Soc. B (2012)
different phyla, for example Platyhelmintes consumed by

Chordata. Some interactions are also within one phylum,

for example Chordata. If we analyse the division into king-

doms, then the result is quite obvious: Monera and Plantae

act as a resource for the Animalia, while they do not interact

with each other and do not have internal connections.

Animals, on the other hand, can eat each other.

In order to measure the amount of information captured

by the different partitions based on taxonomy, we calculated

the proportion of links each model is able to predict correctly

[11]. If a model proposes K links of which M are present in

the empirical data, then the proportion of correctly proposed

links is V ¼M/K. We also derive a p-value for the V using the

method by Allesina [37].

(d) Model selection

Models based on different taxonomic ranks have different com-

plexities. The number of parameters of the model, in fact, can

only increase when moving from kingdom to genus (given that

taxonomic ranks are nested). When models differ in the

number of parameters, we cannot simply compare the likeli-

hoods, but rather we have to balance the goodness of fit with

model complexity. To this end, various measures have been

devised, including Akaike information criteria, Bayesian infor-

mation criteria, and other information criteria [38], all of which

hold asymptotically. However, because the group model is

quite simple, we can analytically derive its marginal likeli-

hood, which provides an efficient Bayesian model-selection

technique descending directly from Bayes theorem.

Suppose we have a model M1, and the prior probability of

the model is P(M1). We can use the data A to update the

posterior probability of the model using Bayes formula:

PðM1jAÞ ¼
PðAjM1ÞPðM1Þ

PðAÞ ; ð2:4Þ

where P(M1jA) is the posterior probability of M1, P(A) is the

probability of the data and P(AjM1) is the probability of

the data given the model (the likelihood). This formulation

directly translates in Bayes factors [30,39]. For example, if

we have two models, then we can write:

B ¼ PðM1jAÞ
PðM2jAÞ

¼ PðAjM1ÞPðM1Þ
PðAjM2ÞPðM2Þ

; ð2:5Þ

which, assuming we have a uniform prior on the models,

simply becomes:

B ¼ PðAjM1Þ
PðAjM2Þ

: ð2:6Þ



Platyhelminthes

Trematoda

MaxillopodaArthropoda

Animalia

Malacostraca

Chordata

Mammalia

Actinopterygii

Palaeacanthocephala

Annelida Clitellata

Polychaeta

Nemata

SecernenteaBivalvia

Mollusca

Gastropoda

Acanthocephala

Aves

Figure 1. Graphical description of Ythan96 [36] food web. Nested boxes stand for kingdom (black box), phylum (red boxes),

class (green boxes) along with their names and order (different colours). For a matrix description of the same food web, see the
electronic supplementary material, appendix.
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Thus, to select among models, we need to compute

P(AjMi), the marginal likelihood of the data conditioned on

the model Mi. If the model requires a set of parameters Q,

then the (prior) marginal likelihood can be written as a

weighted average of the likelihoods P(AjMi, Qi):

PðAjMiÞ ¼Mi ¼
ð

PðAjMi ;QiÞPðQi jMiÞdQi ; ð2:7Þ

where P(QijMi) is the prior for the parameters and the inte-

gral is taken across all possible values of all the parameters.

An example can help clarify this concept. Suppose we

have a random-directed graph (i.e. we connect any two

nodes with probability p). By assuming a uniform (U[0,1])

prior on p, the marginal likelihood of the data becomes:

MRnd ¼
ð1

0

1 � pLð1� pÞZ dp ¼ bðLþ 1;Z þ 1Þ; ð2:8Þ

where L is the number of ones in the matrix (the links in the

network), Z is the number of zeros and b(.,.) is the beta func-

tion. The marginal likelihood can therefore be seen as the
Proc. R. Soc. B (2012)
expected likelihood when parameters are drawn from their

prior distribution.

For the group model, we can write:

MGroupjG ¼
ð1

0

ð1

0

� � �
ð1

0

Yg
i

Yg
j

p
Li;j

i;j ð1� pi;jÞZi;j dpi;j ; ð2:9Þ

which is the expectation for a product of independent

random variables (the likelihoods of the various sub-

matrices). The expected value of the product of independent

random variables is the product of the expectations.

Therefore, we can solve analytically:

MGroupjG ¼
ð1

0

ð1

0

� � �
ð1

0

Yg
i

Yg
j

p
Li;j

i;j ð1� pi;jÞZi;j dpi;j

¼
Yg

i

Yg
j

ð1

0

p
Li;j

i;j ð1� pi;jÞZi;j dpi;j

¼
Yg

i

Yg
j

bðLi;j þ 1;Zi;j þ 1Þ: ð2:10Þ



Table 2. Log likelihoods (L) and p-values obtained from the randomizations experiments. (Low values mean that the

likelihood obtained from the taxonomic split into kingdom (K), phylum (P), class (C), order (O), family (F) and genus (G),
can be rarely matched or surpassed at random.)

food web LK pK LP pP LC pC

Weddell Sea 231823.1 0 223891.4 0 217706.46 0
Caribbean 27704.5 1 27704.5 1 25223.3 0
Little Rock 25592.3 0 24362.9 0 23720.3 0
Ythan96 21726.8 1 21366.6 0 21237.5 0
Tuesday Lake 2811.8 0 2607.7 0 2527.01 0

Ythan91 21160.1 1 2951.18 0 2830.74 0
Mill Stream 2632.8 0 2608.3 0 2586.2 0
El Verde 21033.8 5.72E201 21023.5 7.69E201 2817.3 1.30E205
Stony Island 2581.7 0 2529.2 0 2518.1 0

food web LO pO LF pF LG pG

Weddell Sea 212679.65 0 26759.9 0 22675.8 0
Caribbean 24840.6 0 23176.1 0 22045.5 4.37E204
Little Rock 22721.1 0 21708.3 0 2336.7 0
Ythan96 2858.0 0 2510.4 0 2276.9 8.74E203

Tuesday Lake 2335.47 0 2214.63 0 2134.99 0
Ythan91 2547.3 0 2300.8 2.00E206 2159.0 5.67E202
Mill Stream 2500.9 0 2303.3 7.30E205 2192.8 1.55E201
El Verde 2553.0 0 2240.9 0 2100.1 1.07E204

Stony Island 2479.5 8.20E205 2280.5 8.00E206 2162.1 1.59E203
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The marginal likelihood penalizes complex models in a

very natural way. For each network and taxonomic rank, we

computed the marginal likelihood using uniform priors as

specified above and used the values to select among taxo-

nomic ranks for each web, with higher values characterizing

better models. We repeated the same exercise using a differ-

ent prior (electronic supplementary material, appendix): the

choice of prior did not affect our results.

(e) Simplification of the food webs

One technical problem with the method presented here is that

the analysed food webs were more or less simplified by the

initial filter, depending on the number of nodes we were

able to define up to the genus level. Another concern is that

the exclusion of nodes could be biased as the resolution is

usually lower at lower trophic levels [5], and a larger pro-

portion of nodes should therefore be excluded at those

levels. In order to investigate whether this problem affected

our results, we performed two complementary analyses.

First, we relaxed the requirements for node-inclusion (taxon-

omy up to family) in order to exclude fewer nodes for the two

webs being most affected by the filter (El Verde and Stony

Island). Second, we randomly removed additional nodes in

the largest web (Weddell Sea). We found that these variations

did not affect the outcome: the same taxonomic classification

as in the original setting was chosen to be the ‘best’ grouping

(electronic supplementary material, appendix).

(f) Using phylogeny

In order to investigate the robustness of our findings, we

additionally examined a more detailed description of species

evolutionary history. For this test, we chose the Caribbean

food web. We were able to partition the Caribbean food web

into phylogenetically defined groups based on a published

phylogeny of the species [15]. The Caribbean food web com-

prised entirely marine fish trophic interactions. Rezende et al.

[15] were able to produce a phylogenetic topology (i.e. a phy-

logeny with arbitrary branch lengths) for 116 of the fishes in
Proc. R. Soc. B (2012)
the dataset. We dated as many nodes as possible on the top-

ology based on Hedges & Kumar [40] and Steinke et al.

[41], and then used the bladj function of PHYLOCOM [42] to

distribute the undated nodes evenly among the dated nodes

to produce a dated phylogenetic tree with branch lengths in

units of millions of years ago. We then partitioned the food

web data at each of the 115 nodes in the tree and calculated

marginal likelihoods for each.
3. RESULTS
Grouping the species of food webs according to taxo-

nomic ranks yielded much better likelihoods than what

one would expect at random (table 2). In fact, besides

the trivial (non-significant) results for kingdoms and

phyla in the webs where only one kingdom (Caribbean,

Ythan91 and Ythan96) or phylum (Caribbean) is rep-

resented, all webs but El Verde produced highly

significant results up to the genus level (table 2).

El Verde did not yield significant results for kingdom

(as the web contains only one plant), nor for phylum

(as 90% of the species belong to Chordata). Mill

Stream and Ythan91 did not yield significant results for

the genus level, whereas the other networks did.

These results show that including information on taxo-

nomic rank can illuminate the patterns of interaction in

the networks. While this is quite trivial for the kingdom

level, we note that most models for food web structure

do not discriminate between plants and animals [6–12]

(but see Rossberg et al. [14,43]).

We then computed the marginal likelihood for each

web and taxonomic rank (table 3). For all webs, the maxi-

mum marginal likelihood was achieved at coarser

taxonomic ranks. For four of the nine food webs we

found that the partition based on class produced the

maximum marginal likelihood, whereas for three webs

the maximum was achieved for the division into phyla

and for two at the kingdom level.



Table 3. Marginal likelihoods for each food web and partition into kingdom (K), phylum (P), class (C), order (O), family

(F) and genus (G). (The last column indicates the taxonomic level giving the highest marginal likelihood.)

food web K P C O F G best

Weddell Sea 231866.8 225244.0 222508.9 228588.9 244541.6 265375.1 C

Caribbean 27710.4 27710.4 25243.0 25573.1 210010.8 218317.1 C
Little Rock 25647.6 24837.2 24425.2 25116.8 27342.1 215110.5 C
Ythan 96 21732.1 21544.6 21637.9 22782.3 24302.7 25792.2 P
Tuesday Lake 2853.4 2845.4 2805.0 21059.3 21769.2 22278.2 C
Ythan 91 21164.9 21014.7 21051.7 21650.3 22516.3 23318.2 P

Mill Stream 2655.3 2682.4 2759.1 21227.2 21979.7 22684.6 K
El Verde 21046.8 21063.3 21009.7 21249.6 22020.2 22758.6 C
Stony Island 2603.8 2626.4 2692.7 21313.2 21986.0 22809.2 K

Table 4. The overlaps between the feeding links predicted by the models and the feeding links provided by the data. (Values
in bold represent the models chosen by the model selection. Triple asterisks indicate a p-value less than 0.001.)

food web V K V P V C VO V F V G

Weddell Sea 0.11*** 0.27*** 0.42*** 0.57*** 0.76*** 0.90***
Caribbean 0.046 0.046 0.29*** 0.32*** 0.46*** 0.63***
Little Rock 0.12*** 0.30*** 0.37*** 0.53*** 0.69*** 0.93***

Ythan 96 0.042*** 0.12*** 0.16*** 0.36*** 0.59*** 0.77***
Tuesday Lake 0.19*** 0.34*** 0.44*** 0.64*** 0.76*** 0.85***
Ythan 91 0.055*** 0.13*** 0.19*** 0.42*** 0.66*** 0.81***
Mill Stream 0.263*** 0.28*** 0.31*** 0.41*** 0.64*** 0.76***

El Verde 0.056 0.059 0.16*** 0.36*** 0.70*** 0.88***
Stony Island 0.19*** 0.25*** 0.27*** 0.32*** 0.58*** 0.74***
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The proportion of correctly assigned links in the

models based on the different taxonomic partitions is

between 12 per cent and 44 per cent for the partitions

chosen as the best from the model-selection procedure

(table 4). Naturally, a larger amount of links are correctly

predicted using finer taxonomic ranks (as overlap does

not balance goodness of fit with model complexity).

The best fit for the phylogenetic partitioning model for

the Caribbean web matched the taxonomic results, which

indicated the class-partitioning model as best fit

(figure 2). In fact, we found the highest marginal likeli-

hood for the phylogenetic model that split the food web

at the root between bony and cartilaginous fishes (i.e.

between classes Actinopterygii and Chondrichthyes).
4. DISCUSSION AND CONCLUSIONS
We here provide a theoretical framework for evolutionary

relatedness that can be used to infer community structure.

Our results clearly indicate that closely related species

tend to interact in a specific way with other groups of clo-

sely related species. This is probably because close

relatives share similar traits and thus are likely to form a

similar pattern of interactions to other groups of close

relatives. Evolutionary history is thus highly relevant to

food web structure.

Our results also suggest that very basic traits could illu-

minate the role species take in ecosystems. Partitioning

species by taxonomy could possibly be recovered using a

combination of traits/characteristics such as metabolic

type, habitat preference and feeding mode. Take for

example the two webs yielding the maximum marginal

likelihood for kingdom (Mill Stream and Stony Island).

These two webs display a vast majority of plant–herbivore
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interactions. Of all the links, 95 per cent of them are of this

type in Stony Island and 98 per cent in Mill Stream. It is

not surprising, then, that model selection chooses the king-

dom partition: as a first approximation, plants only interact

with animals and vice versa, forming a quasi-bipartite

network. But this distinction between plants and animals

could have been found without recurring to taxonomic

units. For example, identifying species that could

photosynthesize would produce the same split. In other

networks that are not almost bipartite, on the other hand,

phylum and class yield better results. However, basic dis-

tinctions between species could yield similar results. For

example, in the Caribbean network, the best split (class)

separates the sharks (belonging to the class Chondrichthyes)

from the bony fishes (Actinopterygii ). Sharks could have

been separated based on other characteristics (e.g. respirat-

ory system or type of skeleton). Similarly, in the Ythan

Estuary webs, the distinction between Chordata, Mollusca,

Arthropoda and so forth could have been produced using a

combination of non-taxonomic species traits.

Most of the information on the occurrence of trophic

interactions can be recovered using basic taxonomic dis-

tinctions (table 4) or, equivalently, with carefully chosen

combinations of species traits. Species could be grouped

a priori based on shared traits and then those groups

could be fitted to food web data using the methods we pre-

sent here. The group model is especially suited for discrete

traits, such as habitat preference or metabolic type, rather

than continuous traits, such as body size. On the other

hand, taxonomic and phylogenetic partitioning could be

performed first to identify significant trophic groupings,

and then one could work backwards formulating hypoth-

eses to be tested based on the characteristics that also

define those groups.
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Figure 2. Phylogenetic tree for 116 species in the Caribbean food web. We report, using the same time axis, the log marginal
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Our result shows that the more complex food

webs (measured as the number of links in the food web

after the simplification procedure) often show a higher

taxonomic level as the most predictive one (table 4;

electronic supplementary material, table S2). For the

three most complex food webs, the model selection chooses

class. This indicates that sampling effort could play a role in

the determination of the ‘best’ taxonomic level. It has been

predicted that as species are removed from food webs, the

phylogenetic signal should become weaker [19]. This is

akin to analysing less and less-resolved webs.

It is worth pointing out that there is a non-negligible

part of the food web structure that is not captured by tax-

onomy. This means that there are additional traits needed

to fully explain food web structure.

Other studies have shown that phylogenetic effects

are important determinants of community structure

[15,26,43–45]. Rezende et al. [15] showed that phyloge-

netic patterns in food webs may be owing to traits such as

body size and habitat selection. However, their results

(based on the Caribbean food web) differ fundamentally

from those presented here. Rezende and co-workers ana-

lysed the modularity of the food web. Modules are

defined as groups of species with dense within-module

interactions and sparse between-modules connections.

They suggested that the food web is highly compartmen-

talized and that closely related species tend to belong to

different modules. Here, we show that when we adopt

the more general definition of ‘trophic group’, clustering

similar species together can yield important insights into

trophic structure.

Cattin et al. [8] constructed a pioneering model where

the diet of all species is a consequence of a combination of

phylogenetic constraints and adaptation. They could

therefore construct food webs with structures relatively

close to empirical data. Bersier & Kehrli [46] further

explored the relationship between trophic and taxonomic

similarity of species in several food webs using the corre-

lation between trophic and taxonomic similarity matrices.
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They found that phylogeny and food web structure are

closely linked. Interestingly, they also found that the corre-

lation differed between consumers and resources, so that

closely related resources tended to be preyed upon by simi-

lar sets of consumers, whereas closely related consumers

tended to prey upon more diverse sets of resources. This

skewed signal has also been detected in analyses of the

intervality in food webs (measuring to what extent the

species in a food web can be ordered in a way such that pre-

dators consume adjacent species) [47] and in the strengths

of host–parasitoid associations [44]. In the group model,

the role of predators and prey of the same group of spe-

cies are kept distinct (i.e. are modelled by two distinct

probabilities), allowing for this differential behaviour.

Rossberg et al. [47] investigated the number of trophic

niche dimensions, i.e. species traits, needed to maximize

intervality. They showed that when evolutionary aspects

were taken into account, food web intervality could be

reproduced with relatively few traits compared with when

phylogenetic constraints were excluded. Additionally, the

same authors provided a framework in which not only

the position of a feeding link between two species, but

also its strength can be determined using species phylogeny

[48]. This suggests that species evolutionary history could

also capture finer details of food web structure.

The results from the analysis including species phyloge-

nies for the Caribbean food web matched those obtained

with taxonomy: class provides the most parsimonious

explanation. This indicates that the bulk of trophic inter-

actions arose early in the diversification of species, owing

to evolution of species-specific traits. Producing phyloge-

netic trees for larger and more diverse webs could further

refine the results found using taxonomy.

It is also relevant to ask the question of how good

the grouping of species based on taxonomy is, compared

with grouping based on other relevant traits. A reasonable

grouping could be, for example, based on body size.

However, this is not a trivial comparison to preform

because taxonomy provides clear splits between the
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groups, whereas body mass is described on a continuous

scale that requires a different splitting method. We pre-

formed a preliminary analysis of groupings based on

body size (data available for three webs) and trophic

level (all webs, see the electronic supplementary material,

appendix). The results are inconclusive: groups based on

trophic level and body size can preform better or worse

than the corresponding taxonomic case.

The evolutionary history of species in food webs clearly

provides important information on their trophic role in the

community and thereby important information about food

web structure as a whole. The taxonomy of species can be

used as a simple surrogate to summarize evolutionary

relationships. The methods described here enable the

search for biologically relevant groups based on other

traits and thus defining which traits, or combination of

traits, are of most importance for food web structure.
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