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Meiosis in triploids faces the seemingly insuperable difficulty of dividing an odd number of chromosome

sets by two. Triploid vertebrates usually circumvent this problem through either asexuality or some

forms of hybridogenesis, including meiotic hybridogenesis that involve a reproductive community of differ-

ent ploidy levels and genome composition. Batura toads (Bufo baturae; 3n ¼ 33 chromosomes), however,

present an all-triploid sexual reproduction. This hybrid species has two genome copies carrying a nucleo-

lus-organizing region (NORþ) on chromosome 6, and a third copy without it (NOR2). Males only

produce haploid NORþ sperm, while ova are diploid, containing one NORþ and one NOR2 set. Here,

we conduct sibship analyses with co-dominant microsatellite markers so as (i) to confirm the purely

clonal and maternal transmission of the NOR2 set, and (ii) to demonstrate Mendelian segregation and

recombination of the NORþ sets in both sexes. This new reproductive mode in vertebrates (‘pre-equalizing

hybrid meiosis’) offers an ideal opportunity to study the evolution of non-recombining genomes. Elucidat-

ing the mechanisms that allow simultaneous transmission of two genomes, one of Mendelian, the other of

clonal inheritance, might shed light on the general processes that regulate meiosis in vertebrates.

Keywords: biased genome transmission; clonal; Mendelian segregation; recombination; triploid

vertebrate; Bufo viridis subgroup
1. INTRODUCTION
According to Mendel’s second Law [1], alleles of different

genes assort independently of one another during gamete

formation. In sexually reproducing species, random trans-

mission of paternal and maternal genomes is achieved by

the independent segregation of chromosomes during

meiosis. Some animal genomes, however, display trans-

mission biases, often according to parent of origin, and

usually as a consequence of ancient hybridization [2].

Hybrid lineages of ants, for instance, carry two indepen-

dently evolving genomes, which are transmitted either

meiotically [3] or clonally [4,5]. Similar processes occur

in hybridogenetic vertebrates: in diploid hybridogenesis,

one genome is transmitted clonally through the hybrid

lineage, while the other is transmitted sexually by one of

its parental species [6]. In meiotic hybridogenesis, both

of the hybridizing genomes can be transmitted sexually,

through crosses between diploid and triploid hybrids of

different genomic compositions (figure 1; [14,16]).

Bisexual reproduction of pure triploids is constrained

because of the problem of equally distributing three
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chromosome sets in meiosis [17], for a review see [18].

Hybrids in Poeciliopis, for instance, are hybridogenetic in

their diploid forms, but become gynogenetic as triploids

[19,20]. As an alternative to gynogenesis or parthenogen-

esis (figure 1; [7–9,21]), some triploid vertebrates

combine clonal and sexual elements in their reproductive

modes—e.g. kleptogenesis or different forms of hybrido-

genesis [10,22–24], including meiotic hybridogenesis,

which requires a reproductive community of different

ploidy levels and genome composition.

In this context, Batura toads (Bufo baturae) are excep-

tional in being sexually reproducing triploids [25]. This

species of hybrid origin inhabits the high mountains

of northern Pakistan (greater than 1500 m a.s.l.). Its

genome (3n ¼ 33; [25,26]) is composed of two chro-

mosome sets carrying a nucleolus-organizing region

(NORþ) on chromosome 6, and another set without

such a region (NOR2; figure 2). Males only produce

haploid NORþ sperm, suggesting elimination of the

NOR2 set (11 chromosomes) before the onset of meiosis.

In contrast, ova are diploid (2n ¼ 22) with one NORþ
and one NOR2 sets. Immature oocytes exhibit 22

lampbrush chromosome bivalents [25].

Therefore, it has been assumed that the NOR2 set

undergoes purely maternal and clonal transmission.

However, it remained unknown, whether and how the
This journal is q 2011 The Royal Society
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Figure 1. Reproductive modes of triploid vertebrates. Shown are the parental, gametic and offspring genomes (rows) under
different reproductive modes (columns). A, B: genomes of different parental species. Bold coloured symbols indicate clonally

transmitted copies, while thin black symbols with superscripts indicate different (recombined) copies. True parthenogenesis:
clonal (males absent), restricted to reptiles [7,8]; Sperm-dependent parthenogenesis (i.e. gynogenesis): clonal, embryogenesis
requires trigger from allospecific sperm that is not incorporated (rare ‘paternal leakage’ might incorporate subgenomic amounts
of paternal DNA), occurs in teleost fishes and urodelan amphibians [9]; Kleptogenesis: females acquire full or partial genomes
from their mates by a not fully understood mechanism, allowing them to purge genomes from deleterious alleles (here BB);

described from urodelan amphibians [10]; Unnamed form of hybridogenesis: clonal diploid eggs are fertilized by sperm from a
recombining sexual species that can be diploid or triploid (as in meiotic hybridogenesis); occurs in anuran amphibians and
teleost fishes [11–13]; Meiotic hybridogenesis: may occur in triploid males and/or females; found in teleost fishes and anuran
amphibians [14,15]; ploidy elevation of the diploid offspring, which might produce diploid hybrid gametes, can occur in

the next generation (becoming then e.g. ABB0) to restore triploidy (similar to preceding form of hybridogenesis); Pre-equalizing
hybrid meiosis: occurring in Batura toads: Both sexes are triploid and exhibit Mendelian segregation and recombination in the B
genomes (equivalent to NORþ; this paper), while the A genome (i.e. NOR2) is clonally transmitted by the mother.
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Figure 2. Scheme of the reproductive system in triploid Batura toads with hypothetical mechanisms (a) and (b) for oogenesis
and (c) and (d) for spermatogenesis. Blue NOR2 symbol: unrecombined (clonal) chromosome set without NORs. Red or
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1294 M. Stöck et al. Pre-equalizing meiosis in triploid toads
NORþ sets recombine. For females, two hypotheses

(figure 2) can be envisaged: (a) One NORþ set is elimi-

nated (either randomly or depending on parent of origin),

followed by endomitotic auto-duplication of the two

remaining sets. Meiosis thus only occurs between

pseudo-bivalents [27], and produces one or at most two

classes of otherwise clonal diploid ova. Alternatively (b),

the NOR2 set is auto-duplicated before meiosis, during

which the two NORþ sets recombine normally.

For males, similarly, a first hypothesis (figure 2c) is that

the whole maternal complement (NORþ, NOR2) is elimi-

nated, followed by paternal NORþ duplication through

pre-meiotic endomitosis. Meiotic pairings (NORþ/NORþ;
Proc. R. Soc. B (2012)
[25]) would thus represent pseudo-bivalents, implying

clonal transmission of one NORþ set. Spermatocytes

would comprise a single multi-locus genotype (or at most

two, if NORþ elimination were random). Alternatively

(figure 2d ), only the NOR2 set is eliminated, and the two

NORþ sets undergo normal meiosis and recombination.

From multi-locus fingerprint data, Stöck et al. [25]

identified several genotypes among the offspring from a

single family. However, dominant multi-locus markers

are not always straightforward to interpret, and thus

shed little light on the underlying mechanisms. In the

present paper, we performed sibship analyses with 15

co-dominant microsatellite loci to evaluate genome-wide



Table 1. Inheritance patterns of NOR2 alleles at five loci (rows) in five 3n families (columns). Given are the numbers of

offspring with maternal NOR2 allele/numbers of informative events. ‘ni’ indicates not informative, (—) indicates analyses
not performed. Across loci and families, we counted 139 cases of maternal inheritance out of 139 informative events. Full
data are provided in electronic supplementary material, dataset S1.

locus\family 1 2 3 4 5 all

D105 17/17 6/6 ni ni 13/13 36/36
C224 17/17 ni ni ni — 17/17
D5 15/15 6/6 25/25 10/10 — 56/56
C203 17/17 ni ni ni 13/13 30/30

D103 ni ni ni ni — ni
across loci 66/66 12/12 25/25 10/10 26/26 139/139
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patterns of transmission and segregation. Our results

clearly confirm the purely clonal and maternal trans-

mission of one set of chromosomes (NOR2), and show

independent segregation and recombination of the two

other sets (NORþ) in both males and females. This

reshuffling of genetic material should allow efficient pur-

ging of the two sets of NORþ chromosomes as in normal

sexual reproduction. This is the first example of parallel

clonal and meiotic transmission of chromosome sets

within the same lineage of vertebrates.
2. MATERIAL AND METHODS
Animals used in controlled breeding experiments were col-

lected from three localities in northern Pakistan (electronic

supplementary material, table S1) during three periods of

fieldwork ( June–July 1996, 1997 and 2000). We performed

five breeding experiments involving triploid Batura toads. In

addition, we crossed one Batura female with both a diploid

Bufo variabilis male from Syria (2n ¼ 22, with two NORþ
sets) and a tetraploid Bufo oblongus male from Iran (4n ¼

44, including two NORþ and two NOR2 sets; [28]).

Twenty to 100 offspring were raised in tanks up to a larval

length of 2–3 cm (Gosner-stages 30 to 38, [29]). A total of

85 tadpoles from the seven crosses were sampled for genetic

analyses. Tadpoles were either karyotyped or their ploidy

level determined by flow cytometry; DNA was extracted as

described in Stöck et al. [30].

We tested a series of microsatellites markers from a geno-

mic library enriched for repetitive elements from the Batura

toad, some of which were previously used in other species

(electronic supplementary material, table S2). Alleles were

amplified, scored with GENEMAPPER v. 3.7 (Applied Bio-

systems), and named according to their lengths in base

pairs as described [30]. Alleles from the NORþ and

NOR2 sets, as well as null alleles (0), were identified from

inheritance patterns (see §3). Linkage analyses were perfor-

med with GENEPOP (http://genepop.curtin.edu.au/; [31,32])

under default parameters, and potential linkage groups

were checked by visual inspection. Given the manageable

size of the dataset, progeny genotypes were also visually

inspected for cases of recombination. The number of recom-

bination events was normalized to the number of informative

events per family, and departures from random segregation

were tested for significance (using a x2-test).
3. RESULTS
(a) Inheritance patterns in Batura toads

A total of 15 microsatellites primer pairs amplified

products in one or more families.
Proc. R. Soc. B (2012)
Five of them (D103, D105, D5, C224 and C203; elec-

tronic supplementary material, dataset S1) displayed up

to three alleles per individual, which implies product

amplification from both the NOR2 and the two NORþ
sets. NOR2 alleles were easily identified, being always

homomorphic among offspring from a family, identical

to the maternal copy, and different from the paternal

one whenever parental copies differed (table 1 and elec-

tronic supplementary material, table S3 and dataset

S1). Both NORþ sets, by contrast, displayed biparental

inheritance and Mendelian segregation (electronic sup-

plementary material, table S3 and dataset S1). Each

heterozygous parent transmitted its two alleles with

equal probability (binomial tests). The 10 other markers

presented a maximum of two alleles per individual, with

biparental inheritance and Mendelian segregation, follow-

ing expectations from meiotic NORþ sets (electronic

supplementary material, dataset S1).

Four linkage groups could be identified, involving two

markers each (table 2). Out of 199 informative events, we

detected a total of 25 cases of recombination (table 2),

occurring in both sexes (electronic supplementary

material, dataset S1 and table S3). All other pairs of mar-

kers were transmitted independently, generating a high

diversity of multi-locus genotypes per family. Interest-

ingly, the five markers amplifying a NOR2 product

were assigned to different linkage groups in the NORþ
genome (table 2 and electronic supplementary material,

dataset S1), supporting genome-wide distribution of the

NOR2 markers.

(b) Inter-ploidy crosses

Locus D105 could also be amplified from the progeny of a

female B. baturae with (i) a diploid B. variabilis male (2n ¼

22, comprising two NORþ sets) and (ii) a tetraploid

B. oblongus male (4n ¼ 44 including two NORþ and

two NOR2 sets). All offspring sired by the B. variabilis

father were triploid and inherited the maternal NOR2

allele at locus D105, while the two NORþ sets displayed

biparental inheritance with Mendelian segregation in

both parents. The offspring sired by the B. oblongus

father were tetraploid, and presented four allelic copies

at locus D105, corresponding, respectively, to two

NOR2 and two NORþ sets. One NOR2 allele was iden-

tical to the maternal copy, while the other was randomly

inherited from the two paternal NOR2 copies. The two

NORþ sets also showed biparental inheritance, with

Mendelian segregation in both parents. Hence in both

crossings, the Batura toad mother produced 2n oocytes

with a clonally transmitted NOR2 and a recombined

http://genepop.curtin.edu.au/
http://genepop.curtin.edu.au/


Table 2. Recombination patterns at four linkage groups. Rec., recombination observed; non-rec., no recombination observed.

Expected values assuming independence are provided in italics. Total indicates total number of informative events over
families and sexes.

linkage group rec. non-rec. total rate x2 p

D106/D124
observed 16 53 69 0.23 19.84 ,0.001
expected 34.5 34.5

C224/C123
observed 2 38 40 0.05 32.4 ,0.001
expected 20 20

C111/D103
observed 5 27 32 0.16 15.12 ,0.001
expected 16 16

D11/D107
observed 2 56 58 0.03 50.27 ,0.001

expected 29 29

total 25 174 199
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NORþ. The B. variabilis male produced haploid sperm

with a recombined NORþ, while the B. oblongus male

produced diploid sperm with recombined NORþ and

NOR2 sets (see also [25,33]).
4. DISCUSSION
Our results show purely maternal and clonal transmission

of all NOR2 markers. Offspring inherited only the

maternal copy at the five markers (D5, D103, D105,

C224 and C203) that amplified a NOR2 allele. As we

show, these five markers are localized on different linkage

groups on the NORþ genome (electronic supplementary

material, dataset S1), supporting the view that the whole

NOR2 set of chromosomes undergoes clonal and

maternal transmission.

Furthermore, our results provide evidence for NORþ
recombination in both sexes. The 15 markers that ampli-

fied NORþ alleles were assigned to 11 different linkage

groups (corresponding to the haploid number of chromo-

somes in Batura toads), which displayed random and

independent segregation in both sexes (electronic sup-

plementary material, dataset S1). Heterozygous adults

always transmitted their two alleles with equal probability,

indicating random segregation of paternal and maternal

NORþ chromosome sets in both sexes (figure 2: path-

ways (b), (d)). In addition, recombination also occurred

in both sexes, among loci from the same linkage groups

(table 2).

Altogether, our results rule out hypothesis (a) for

oogenesis (which assumes clonal production of NORþ/

NOR2 oocytes) and (c) for spermatogenesis (which

assumes clonal production of NORþ sperm). These find-

ings raise important issues with respect to both the

proximate mechanisms and evolutionary consequences

associated with this unusual mode of reproduction.

(a) Proximate mechanisms

The NOR2 genome of Batura toads is eliminated in

males, but duplicated in females before meiosis. Premeio-

tic elimination and/or duplication of genomes have

already been documented in hybridogenetic vertebrates,

such as in the water frog Rana (Pelophylax) esculenta, a
Proc. R. Soc. B (2012)
hybrid between Rana ridibunda (RR) and Rana lessonae

(LL) [33,34]. When associated with R. ridibunda,

R. esculenta females (RL) drop their paternal genome

(R) from the germ line while doubling their L genome

by pre-meiotic endomitosis. The ensuing meiosis thus

involves completely homozygous pseudo-bivalents (LL),

and produces non-recombined haploid (L) oocytes [35].

Mating with a R. ridibunda male then restores the RL

genome. Hence, one set of chromosomes (R) recombi-

nes in the parental species, while the other set (L) is

transmitted clonally by the hybrid.

Both sets of chromosomes recombine during meiotic

hybridogenesis [15,36], which involves a reproductive

community of hybrids of different ploidy levels and geno-

mic compositions (RRL, LLR and RL). Triploids RRL

drop their L genome from the germ line, and produce

recombined haploid R gametes by normal meiosis. Tri-

ploids LLR similarly drop their R genome before

meiosis, producing recombinant haploid L gametes.

Finally, RL diploids form clonal diploid RL gametes

after endomitosis [11]. Combining these gametes restores

the original diploid and triploid genomes [36–38]. Simi-

lar mechanisms have been documented in several

hybridogenetic teleost fishes [39–44].

Thus, the pre-meiotic elimination of NOR2 in male

Batura toads, followed by normal diploid meiosis of the

two NORþ sets, shares similarities with some processes

occurring during meiotic hybridogenesis and other

forms of hybridogenetic or kleptogenetic reproductive

modes known from triploid vertebrates (figure 1). Simi-

larly, the duplication of the NOR2 in female Batura

toads occurs through a gametogenetic mechanism

(premeiotic endomitosis) that is well known from parthe-

nogenetic and hybridogenetic vertebrates [23,45,46].

However, the Batura toad system seems unique among ver-

tebrates in that (i) meiotic processes differ between sexes,

and (ii) females simultaneously transmit one genome that

is clonally duplicated, and another that undergoes normal

meiosis. The closest system seems to be found in plants,

such as heathers and dog roses, in which pollen only

transmits a sexually reproducing genome, while ovules

transmit clonally reproducing genomes in addition

[47–49]. There is, however, no pre-meiotic duplication of
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clonal genomes in these cases. To our knowledge, auto-

duplication of one entire chromosome set (NOR2) in the

presence of a foreign diploid genome (NORþ/NORþ’;

which remains pre-meiotically unchanged and is later

transmitted in a Mendelian manner) has not been shown

so far (figure 1).

(b) Evolutionary aspects

Batura toads display remarkably homogeneous (within-

species) mitochondrial sequences [50], suggesting a

unique and recent origin (though none of its potential par-

ental species occurs within the species range, which

encompasses three river drainages from northern Paki-

stan). Although triploids may directly arise from a cross

between a diploid and a tetraploid parental species, the

complex meiotic processes documented here (including

the duplication of a whole genome in females and its

elimination in males) might not have evolved right at the

initial hybridization event. Intermediate steps may have

included a period of hybrid interactions between lineages

of different ploidy levels and genomic compositions, simi-

lar to the situation occurring now in northern Kyrgystan,

where some triploid males, resulting from natural crosses

between 2n Bufo turanensis mothers and 4n Bufo pewzowi

fathers, backcross with females from either parental

species [30]. Such mechanisms must be rare, however,

owing to the low probability of meeting the complex genetic

requirements necessary to achieve stable hybrid combi-

nations of clonal and Mendelian genomes, as recently also

hypothesized for old lineages of gynogenetic fish [51].

This reproductive mode also raises questions regarding

selective processes and evolutionary fate. Polyploid (3n,

4n) lineages of green toads, which evolved several times

independently, are clearly associated with harsh habitats

[50]. Batura toads, in particular, live in extreme con-

ditions of altitude and xericity [52]. One might

speculate that the clonal reproduction of the NOR2

genome allows preserving epistatic components of fitness,

which may matter when selection stems from abiotic and

predictably harsh environmental factors [53]. As a matter

of fact, asexual lineages often occur in marginal habitats

with more extreme conditions (colder, dryer, higher alti-

tude and higher UV-radiation) than their sexual relatives

[54–57]. An important question in this context is

whether both genomes are expressed, and, if so, whether

expression is differential (tissue-specific) as observed in

allo-polyploid fishes [58] and plants [59].

This exceptional mode of NOR2 inheritance should

also have detrimental evolutionary consequences. First,

its purely maternal transmission opens opportunities for

genomic conflicts. We expect, in particular, feminizing

factors to evolve on the matrilineal NOR2, to be then

counter-balanced by masculinizing factors evolving on

the biparentally transmitted NORþ. This might result

in sex-ratio biases, as observed in the hybridogenetic R.

esculenta, where the maternally transmitted clonal R

genome harbours feminizing factors only [60]. Similarly,

mutations that are deleterious only in males are not coun-

ter-selected and might accumulate, such as found in other

maternally transmitted mitochondrial [61] or nuclear

[62] genomes.

Second, the non-recombining NOR2 set should pro-

gressively accumulate deleterious mutations, under the

conjugate forces of enhanced drift, selective sweeps,
Proc. R. Soc. B (2012)
background selection and Muller’s ratchet [63–65], as

happens to sex chromosomes (Y or W), and to the non-

recombining genomes of hemiclonal vertebrates [66].

Batura toads, however, may have arisen too recently for

such mutational meltdown or genomic conflict over sex

determination to be detectable [25,50].

By contrast, the Mendelian segregation and recom-

bination found in the NORþ genome should prevent

its evolutionary decay, ensuring the long-term evolution-

ary potential of Batura toads, as found in sexually

reproducing vertebrates with normal meiosis.

Comparing gene sequences of the NOR2 genome of

B. baturae with those of its parental species, as well as

those of tetraploid green toad lineages as B. oblongus and

B. pewzowi, where the NOR2 genomes also recombine

according to cytological [28] and microsatellite (this

study) evidence, might help gaining information, not

only on the phylogenetic history of the NOR2 set, but

also on the patterns of selection occurring in this non-

recombining genome. This might also allow investigating

potential conflicts in sex-determination pathways, as well

as possible intergenomic recombinations, such as obser-

ved in kleptogenetically reproducing Ambystoma [67].
5. CONCLUSIONS
The reproductive mode of B. baturae differs from those

known so far in other vertebrates (figure 1) not only

because the meiotic processes differ between sexes, but

also because females display clonal and sexual reproduc-

tion simultaneously (pre-meiotic auto-duplication affects

one chromosome set, while the others undergo normal

meiosis). We hereby name this process ‘pre-equalizing

hybrid meiosis’. Elucidating the mechanisms underlying

these peculiarities might shed much light on the general

processes that regulate meiosis in vertebrates. Batura

toads also offer intriguing opportunities to compare evol-

utionary forces in recombining and non-recombining

genomes within the same organism.
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