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Comparison of biometrical models for joint linkage

association mapping

T Wiirschum®?*, W Liul"?>%, M Gowda!, HP Maurer!, S Fischer?, A Schechert® and JC Reif!

Joint linkage association mapping (JLAM) combines the advantages of linkage mapping and association mapping, and is a
powerful tool to dissect the genetic architecture of complex traits. The main goal of this study was to use a cross-validation
strategy, resample model averaging and empirical data analyses to compare seven different biometrical models for JLAM with
regard to the correction for population structure and the quantitative trait loci (QTL) detection power. Three linear models and
four linear mixed models with different approaches to control for population stratification were evaluated. Models A, B and

C were linear models with either cofactors (Model-A), or cofactors and a population effect (Model-B), or a model in which the
cofactors and the single-nucleotide polymorphism effect were modeled as nested within population (Model-C). The mixed
models, D, E, F and G, included a random population effect (Model-D), or a random population effect with defined variance
structure (Model-E), a kinship matrix defining the degree of relatedness among the genotypes (Model-F), or a kinship matrix and
principal coordinates (Model-G). The tested models were conceptually different and were also found to differ in terms of power
to detect QTL. Model-B with the cofactors and a population effect, effectively controlled population structure and possessed a
high predictive power. The varying allele substitution effects in different populations suggest as a promising strategy for JLAM
to use Model-B for the detection of QTL and then to estimate their effects by applying Model-C.
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INTRODUCTION

Joint linkage association mapping (JLAM) holds great potential for
the evaluation of quantitative traits, as it potentially combines the high
power of linkage mapping with the good mapping resolution of
association mapping (Yu et al., 2008; Lu et al., 2010). The combination
of the advantages of both approaches in JLAM is especially promising
in applied plant breeding, where many segregating bi-parental popu-
lations are routinely generated in the course of the breeding program.
As the costs for genotyping are constantly decreasing, it is appealing to
further exploit the collected phenotypic data for quantitative trait loci
(QTL) detection by combining it with genotypic data. In addition,
JLAM in these populations will identify QTL, which are of direct
relevance for the improvement of crop species (Reif et al., 2010).

The mapping resolution of JLAM is determined by the extent of
linkage disequilibrium (LD) in the population of the parents used
to generate the segregating populations (Myles et al., 2009). LD is
affected by different forces such as recombination, selection, migration
and mutation (Flint-Garcia et al., 2003). It is, therefore, population-
specific and must be examined empirically for the data set under
consideration (Rafalski, 2002). In addition, LD in the JLAM popula-
tion affects the QTL detection power and is influenced by the mating
design (Verhoeven et al., 2006).

The bi-parental populations of a JLAM data set result in more
balanced allele frequencies compared with association mapping
populations, thus enhancing QTL detection power while reducing
the potentially confounding effects of population structure (McMullen

et al., 2009). Although the balanced experimental design should render
the correction for population stratification in JLAM unnecessary,
spurious associations may arise if the trait is associated with the
population structure. In contrast to JLAM populations designed for a
scientific purpose, however, JLAM populations from applied breeding
are more unbalanced with regard to population size (Reif et al., 2010).
This raises the question if and how correction for population
stratification should be performed.

Several statistical approaches for JLAM have been suggested based
on linear (Yu et al., 2008; Liu et al., 2011) or linear mixed models
(Stich et al, 2008). In addition, the QIPDT approach has been
suggested (Stich et al., 2006), but the relationship between parents
can better be exploited by using linear mixed models including a
kinship matrix. In analogy to composite interval mapping, Yu et al.
(2008) used cofactors to correct for the genetic background, and
compared this approach in a simulation study with a model including
a general population effect. A lower QTL detection power was
observed for the latter model, indicating that incorporating cofactors
might be advantageous as they control both population structure and
genetic background within populations. Another conceptually
different approach is to model the marker effect as nested within
population (Liu et al., 2011). These three approaches based on linear
models have been compared in a recent analysis based on experi-
mental data and were shown to result in different QTL being detected
(Reif et al., 2010; Liu et al., 2011). Although linear mixed models have
been used to analyze JLAM studies in elite breeding populations

IState Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany; 2Crop Genetics and Breeding Department, China Agricultural University, Beijing, China and 3Strube

Research GmbH & Co. KG, Sollingen, Germany
4These authors contributed equally to this work.

Correspondence: Dr T Wirschum, State Plant Breeding Institute, University of Hohenheim, Fruwirthstrasse 21, Hohenheim, Stuttgart 70593, Germany.

E-mail: tobias.wuerschum@uni-hohenheim.de

Received 3 June 2011; revised 18 July 2011; accepted 29 July 2011; published online 31 August 2011


http://dx.doi.org/10.1038/hdy.2011.78
mailto:tobias.wuerschum@uni-hohenheim.de
http://www.nature.com/hdy

(for example, Stich et al., 2008), they have to our knowledge not yet
been compared with other biometrical models for JLAM.

The availability of these different statistical methods for the analysis
of JLAM data sets has stimulated us to conduct a comparison study
and evaluate the advantages and limitations of the different
approaches. To this end, we combined simulation studies, a cross-
validation approach, resample model averaging (RMA) and empirical
data analyses. In particular, the objectives of our study were to (1)
analyze the population structure and the extent of LD in the popula-
tion underlying this study; (2) assess the LD used by different models;
(3) compare three linear and four linear mixed models empirically
with regard to the number of detected QTL and the proportion of
genotypic variance explained by these QTL, and to evaluate the
number of overlapping and model-specific QTL; (4) implement a
cross-validation approach to assess the predictive power of each of
the models, and an RMA approach to evaluate their precision and
(5) elaborate the advantages and limitations of the evaluated models
and their applicability for JLAM.

MATERIALS AND METHODS

Plant materials and field experiments

This study was based on 441 diploid elite sugar beet (Beta vulgaris L.) inbred
lines, which were randomly derived from 12 crosses between 16 parental inbred
lines (Supplementary Table 1). Testcross progenies were produced by crossing
the genotypes to a single-cross hybrid as tester. All material used in this study
was provided by the breeding company Strube GmbH & Co. KG (Sollingen,
Germany).

The 441 genotypes were evaluated in routine plant breeding trials, with two
replicates at 7 or 8 locations per genotype in 2009. The evaluated traits were
beet yield (BY, mgha™!), sugar yield (SY, mgha™!), sugar content (SC, %),
potassium content-(K, decamol mg~!), sodium content (Na, hectamol mg~1)
and a-amino nitrogen content (N, hectamol mg ™) (Supplementary Figure 1).

Phenotypic data analyses

Lattice analyses of variance (Cochran and Cox, 1957) were performed for all
traits for each environment. Adjusted entry means and corresponding error
mean squares were used in the combined analyses based on the linear mixed
model: y~ Environment+Genotype+Genotypex Environment. Variance com-
ponents were determined by the restricted maximum likelihood method by
using PROC MIXED of the software package SAS by assuming random
genotypic and environmental effects (SAS Institute, 2008). A Wald F-test
(Wald, 1943) was used to test whether variances were significantly greater than
0. Heritability (#?) on an entry-mean basis was estimated as the ratio of
genotypic to phenotypic variance according to Melchinger et al. (1998).
Furthermore, genotypes were regarded as fixed effects and best linear unbiased
estimates were determined for all genotypes and traits. Simple correlation
coefficients (r) were calculated among all traits based on the best linear
unbiased estimates of the 441 testcrosses.

Molecular data analyses

The 441 genotypes were fingerprinted by following standard protocols using
183 single-nucleotide polymorphism (SNP) markers. These markers were
randomly distributed across the sugar beet genome, with an average marker
distance of 3.1 cM and a maximum gap of 33.0 cM between adjacent markers
(Supplementary Figure 2). Map positions of all markers were based on the
linkage map of Strube GmbH & Co. KG with a total map length of 555cM
(unpublished data).

Associations among the 441 genotypes were analyzed by applying principal
coordinate analysis (PCoA) (Gower, 1966) based on the modified Rogers’
distances of the individuals (Wright, 1978). The extent of LD was assessed
among the 16 genotyped parents by the LD measure > (Weir, 1996). Decay of
LD with genetic distance was evaluated by non-linear regression by following
Remington et al. (2001). The 95th percentile of 1% estimates between unlinked
markers was taken as a population-specific critical value for r* owing to genetic
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linkage. LD computations and PCoA were performed with the software package
Plabsoft (Maurer et al., 2008).

Joint linkage association mapping

For the JLAM approaches, an additive genetic model was chosen for the
testcross progenies as described by Utz et al. (2000). A two-step approach was
applied in which the best linear unbiased estimates across locations were
used for the JLAM analysis. We compared seven different statistical models for
JLAM, three multiple-regression approaches and four mixed-model approaches
(Supplementary Table 2). For the regression approaches, we applied a two-step
procedure for QTL detection. In a first step, cofactors were selected by stepwise
multiple linear regression based on the Schwarz Bayesian Criterion (Schwarz,
1978). In the second step, we calculated a P-value for the F-test by using
a full model (including SNP effect) versus a reduced model (without SNP
effect). Model-A contained the selected cofactors and the SNP under con-
sideration. Model-B was identical to Model-A, but in addition included an
effect for the segregating population. Model-C also included the selected
cofactors and a population effect, but the cofactors and the SNP effect were
modeled as nested within population. Cofactor selection was performed by
using Proc GLMSELECT implemented in the statistical software SAS (SAS
Institute, 2008).

Models D, E, F and G were based on linear mixed models. Model-D included
a population effect as a random effect and the SNP effect. In Model-E this
population effect was modeled as a random effect and the variance of this
random population effect was assumed to be PUZPOP, where P was a 12x12
matrix with similarity coefficients that define the degree of genetic covariance
between all 12 populations. Model-F was similar to the K-model applied in
association mapping (Reif et al., 2011a, b; Wiirschum et al., 2011) and models a
random genotypic effect. The variance of this effect was assumed to be
Var(g):Kng, where ng refers to the genetic variance estimated by restricted
maximum likelihood and K was a 441x441 matrix of kinship coefficients that
define the degree of genetic covariance between all pairs of entries. We followed
the suggestion of Bernardo (1993) and calculated the kinship coefficient Kj;
between inbreds i and j on the basis of marker data as Ki=1+(S;;—1)/(1-Tj),
where S;; is the proportion of marker loci with shared variants between inbreds
i and j, and Tj; is the average probability that a variant from one parent of
inbred i and a variant from one parent of inbred j are alike in state, given that
they are not identical by descent. The coefficient Tj; was estimated separately for
each trait by using a restricted maximum likelihood method (Supplementary
Figure 3) (Reif et al., 2011a). In case negative kinship values between inbreds
were obtained, these were set to 0. Model-G is comparable to the QK model
(Yu et al., 2006) and included the first 10 principal coordinates (Price et al.,
2006), and the K-matrix. All mixed-model calculations were performed by
using the software ASReml 2.0 (Gilmour et al., 2006).

For the detection of main-effect QTL, a genome-wide scan for marker—trait
associations was performed. We detected significant main effects with P<0.05
and controlled for multiple testing by applying the Bonferroni-Holm proce-
dure (Holm, 1979). Matrix of pairwise percentage of common QTL among
models was calculated. The resulting similarity matrix was used for PCoA for
model comparison. The total proportion of genotypic variance (pg) explained
by the detected QTL was calculated by fitting all QTL simultaneously in a linear
model to obtain RZ%,4. The ratio pg=RZ%qj/h* yielded the proportion of
genotypic variance (Utz et al., 2000). For a fair comparison of the biometrical
models, the same approach was applied for all seven models.

To estimate the explained genotypic variance among and within popula-
tions, the following strategy was adopted for all seven biometrical models. The
model y~ Population+QTL(Population) was applied, where y represents the
best linear unbiased estimates of the 441 individuals and the QTL detected with
the different models were modeled as nested within population. The sum of the
SSQTLs (Population) divided by SSry vielded the within-population variance
explained by the detected QTL. SSpopylation divided by SStya represents the
among-population variance. To assess how much of that among-population
variance was explained by the detected QTL, each individual was assessed its
population mean. The regression of these assessed population means of each of
the 441 individuals on the detected QTL yielded the proportion of the among-
population variance that could be explained by the detected QTL.
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Cross-validation approach and RMA

To assess the predictive power of the seven models a cross-validation approach
was established. We used a fivefold cross-validation in which 80% of the lines
from each population were used as the estimation set (ES) in which QTL
detection was performed. The remaining 20% of the lines represented the test
set (TS), which was used for validation. For validation the QTL mapping results
from the ES were used to predict the genotypic value of line j in TS Qrs gs;
according to Qrs gsj=Xrs; Brs, where Xrg; is the vector of marker informations
of line j at the QTL positions, and Pgg is the vector of the genetic effects of these
QTL estimated as partial regression coefficients from a simultaneous fit in the
ES (Utz et al., 2000). The proportion of genotypic variance explained by the
QTL in the TS (pg_Ts) was calculated from the adjusted squared correlation
coefficient, Rzadj, between the phenotypic values observed for the lines in the TS
and the predicted genotypic values Qrsgs; on the basis of the results derived
from the ES, divided by the heritability of the trait. The presented results are the
average values from 1000 cross-validation runs. The relative bias in the
proportion of explained genotypic variance was calculated as the reduction
in pg from the estimation set (pg_gs) to the test set (pg_rs) as 1—(pg_rs/
PGES)-

Our RMA approach was similar to the subagging (80%) described by Valdar
et al. (2009). We used re-sampling without replacement as described for the
cross-validation. In contrast to Valdar et al. (2009), we did not use forward
selection to select the multiple-QTL model, but used QTL detection by the
seven biometrical models described above.

RESULTS

The genotypic variances estimated in the population of 441 sugar beet
lines were significantly larger than 0 (P<0.01) for all six traits
(Table 1). Heritability was high and ranged from 0.69 for sugar
yield to 0.85 for potassium content. Absolute values of phenotypic
correlations among the six traits were minimum between beet yield
and potassium content (0.01), and maximum between beet yield and
sugar yield (0.89) (Supplementary Figure 4).

The 12 populations were of varying size, as is typical for popula-
tions from breeding programmes, and in the PCoA showed the
expected pattern, in that progenies from one population clustered
together (Supplementary Figure 5). None of the populations was
clearly separated from the others, and the genetic similarity between
the 12 populations was 0.69, whereas the average genetic similarity
within the populations was 0.83 (Supplementary Table 1). The first
two principal coordinates together explained 29.8% of the total
variation.

LD decayed with genetic map distance and met the population-
specific threshold for LD because of linkage within 10cM (Supple-
mentary Figure 6). The average r* between adjacent markers was 0.12.

Table 1 Mean, minimum and maximum testcross performance of
441 sugar beet genotypes from 12 populations; variances of the
testcrosses for genotypes (62¢), genotypexlocation (62g,(),
residuals (¢2.) and heritabilities (h?) for the six traits

Parameter BY Sy SC K Na n
Mean 76.99 14.11 18.35 43.46 34.05 95.75
Min 63.13 10.97 17.26 38.95 25.16 72.86
Max 84.49 15.22 19.14 50.04 60.21 168.77
0% 5.57** 0.12** 0.07** 1.80** 11.45** 72.30**
e 7.32%* 0.23** 0.07** 1.44**  14.89** 70.08**
02 11.03 0.41 0.14 2.42 25.68 105.34
H 0.78 0.69 0.80 0.85 0.77 0.83

Abbreviations: BY, beet yield; K, potassium content; N, a-amino-nitrogen content; Na, sodium
content; SC, sugar content; SY, sugar yield.
**|ndicates significance at P<0.01.

Heredity

Our simulation study revealed high LD stretching over longer distances
within a bi-parental population and lower LD in the diallel (DIA) and
single round robin (SRR) populations (Supplementary Figure 7). This
was true for both simulation scenarios, the base population in linkage
equilibrium or in LD. The extent of LD between unlinked markers was
lower for the DIA design than for the SRR design.

We performed a full-genome scan for main-effect QTL with all
seven models. The plot of observed versus expected P-values of the
seven models revealed that models A, B, F and G followed the diagonal
line more closely than models C, D and E (Figure 1a). For all traits
there was considerable variation between the models with regard to
the number of detected QTL and the proportion of genotypic variance
explained by these QTL (Table 2). Models D and E generally detected a
much higher number of QTL than the other models, without sub-
stantially increasing the proportion of explained genotypic variance in
the final fit. Models F and G detected the lowest number of QTL, but
these still explained a rather high proportion of genotypic variance.
The highest proportion of explained genotypic variance was always
found for Model-A.

We assessed the predictive power of the seven models in a cross-
validation approach (Table 3). The highest cross-validated proportion
of genotypic variance was again observed for Model-A. The relative
bias in the proportion of explained genotypic variance in the estima-
tion set and in the test set ranged from 3.4 to 39.7% for beet yield
and from 17.1 to 42.9% for potassium content. The only observable
trend was that Model-C always showed the strongest bias. The RMA
approach revealed that models D and E showed the broadest peaks,
whereas the mixed models F and G had the narrowest and best defined
peaks (Figure 2).

The comparison of the detected QTL from the seven models
revealed that there were both overlapping and model-specific QTL.
For example, the beet yield (BY) QTL on chromosome-3 or the
potassium content QTL on chromosome-5 were consistently detected
with all seven models (Supplementary Figure 8). The Venn diagrams
showed that for both the linear models A, B and C, and for the mixed
models D, E, F and G, there were a few overlapping QTL, but the
majority of the QTL were detected only by one or two models (Figures
Ic and d). The same was found for the four-way Venn diagram
comparing models A, B, E and E, which only have a small proportion
of the totally detected QTL in common. The PCoA of the seven
models based on pairwise comparisons between the models with
regard to model-specific detected QTL confirmed this picture and
showed that the examined models were different and have very
distinct properties (Figure 1b). This was also supported by the
correlation plot of the P-values from the seven models (Supplemen-
tary Figure 9).

The QTL detected with the seven models explained different
proportions of among-population and within-population variance
(Figure 3). Model-B QTL explained a high proportion of within-
population variance and only little among-population variance, and
the ratio of within to among-population variance was highest for
Model-B for both beet yield and potassium content.

DISCUSSION

Properties of the JLAM population

The power of QTL detection in JLAM is determined by different
factors, including the population size, the population structure, the
mating design, the extent of LD in the parental population, as well as
the genetic architecture and the heritability of the trait under
consideration (Yu et al., 2008). The present study was based on
experimental data of 441 testcross progenies from 12 segregating
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Figure 1 (a) Cumulative density function plot of all seven models for beet yield (BY) and potassium content (K). (b—d) Comparison of the main-effect QTL
detected for the six traits using the linear models A, B and C, and the mixed linear models D, E, F and G. (b) Principal coordinate plot based on pairwise
comparisons between the models with regard to model-specific detected QTL. (c, d) Venn diagrams for (c) beet yield and (d) potassium content showing

overlapping and model-specific QTL.

populations, and a population structure typical for JLAM populations
appeared to be present in this population. The good quality of the
phenotypic data is reflected by the high heritabilities for all traits
(Table 1). For the model comparison, we focused on beet yield
(BY) and potassium content (K) as both have a high heritability,
represent a yield and a quality trait, and are not correlated
(Supplementary Figure 4).

Mapping resolution is determined by the LD structure in the
parental population of 16 parents (Yu and Buckler, 2006). LD decayed

with genetic map distance, and the non-linear regression of LD and
map distance intersected the population-specific threshold for LD
owing to linkage at approximately 10 cM (Supplementary Figure 6).
This is comparable with a recent JLAM study in sugar beet using the
opposite heterotic pool of the same breeding programme (Reif et al.,
2010). The average map distance of 3 cM and the average r*> between
adjacent markers of 0.1 likely enable the detection of QTL with large
effects, whereas medium- and small-effect QTL may escape detection
with the applied marker density. In summary, the population

Heredity
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Table 2 Comparison of the number of detected main-effect QTL (n)
and the explained genotypic variance (pg in %) of these QTL for the
seven statistical models

BY Sy SC K Na n
Model-A
n 15 10 17 16 15 8
PG 69.9 81.0 89.3 75.3 77.9 88.4
Model-B
n 9 10 4 13 15 7
PG 46.5 69.9 37.4 50.6 74.0 83.6
Model-C
n 13 11 6 17 17 7
o 50.5 63.3 46.8 59.0 52.6 78.4
Model-D
n 40 33 26 17 31 14
o8 65.2 76.2 75.0 60.8 65.8 86.8
Model-E
n 40 34 28 18 29 15
PG 67.5 78.3 79.3 63.4 68.2 87.2
Model-F
n 4 6 4 6 8 5
DG 37.2 58.8 36.0 49.8 48.4 73.8
Model-G
n 4 5 6 5 7 7
PG 34.4 49.0 34.4 48.9 30.9 73.3

Abbreviations: BY, beet yield; K, potassium content; N, a-amino-nitrogen content; Na, sodium

content; QTL, quantitative trait locus; SC, sugar content; SY, sugar yield.

Table 3 Assessment of the predictive power of the seven biometrical

models by fivefold cross-validation with 1000 runs

Model A B C D E F G
BY
QTL 13.7 9.8 9.4 31.9 31.5 3.3 4.6
PG—ES 73.1 52.1 59.0 64.9 66.1 35.5 35.0
PG-Ts 49.9 39.6 35.6 51.9 50.8 31.8 33.8
Bias 31.7 24.0 39.7 20.0 23.1 10.4 3.4
K
QTL 12.4 10.6 7.2 11.1 11.3 3.3 2.2
PG-ES 70.8 52.6 26.6 52.6 58.0 36.3 24.2
PG-TS 57.5 41.3 15.2 43.1 48.1 29.4 15.8
Bias 18.8 21.5 42.9 18.1 17.1 19.0 34.7

QTL, average number of main-effect QTL detected in the estimation set; pg_gs, the proportion

of explained genotypic variance (%) of these QTL in the estimation set and in the test set

(pg_1s), and the relative bias in the proportion of explained genotypic variance for beet yield
(BY) and potassium content (K).

parameters, including the extent of LD, represent a good data set
for the comparison of different biometrical models for JLAM in
unbalanced data sets such as breeding populations.

LD used by different JLAM models and consequences

on the power of QTL detection

QTL detection power and mapping resolution in JLAM are based
on the LD exploited by the biometrical model. The fundamental
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Figure 2 QTL frequency distributions for beet yield (BY) and potassium
content (K) derived from 1000 RMA runs for all seven biometrical models.
The positions of the QTL detected using the full data set are indicated by
arrowheads.

difference between the applied biometrical models is that only the
nested model, Model-C, exploits fully the LD within the segregating
populations and is not affected by the historical LD present in the
parental population (Supplementary Figures 7b and f). Historical LD
in the parental population will in most instances lead to a lower extent
of LD in the global JLAM population as compared with single
segregating populations. Consequently, Model-C counterbalances
the decrease in QTL detection power caused by the higher significance
threshold owing to the higher number of parameters involved in
the test as compared with the other models (Jansen et al., 2003) with
full exploitation of LD within populations. This, however, is achieved
at the expense of a reduction in the mapping resolution owing to the
large linkage blocks within single segregating populations. It should be
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for beet yield (BY) and potassium content (K).

noted that the size of the linkage blocks within populations depends
on the type of the population, that is, on the number of meioses the
population went through. Furthermore, the exclusive exploitation of
LD within segregating populations by Model-C can be regarded as an
advantage as it allows avoiding LD generated by the mating design.
This is especially of interest for highly unbalanced mating designs,
which often occur in breeding programmes.

All tested biometrical models, except Model-C, use both the LD
within populations but also the historical LD, and thus potentially
enable a much higher mapping resolution (Supplementary Figure 7).
It should be noted, however, that even in the case of linkage
equilibrium in the base population, LD between the JLAM parents
will be generated. This follows from population genetics theory and
approximates 1/n, where n is the number of sampled parental lines
(Weir and Hill, 1980). For a base population, which is already in LD,
this is increased further depending on the LD in the base population
(Supplementary Figure 7). It thus follows, that designs with a higher n,
that is, more parental lines, allow a higher mapping resolution.

Apart from the LD generated by the sampling of the parents, LD
will also inevitably arise in designs with multiple segregating popula-
tions owing to the mating design (Verhoeven et al., 2006). Within
segregating populations alleles at unlinked loci will be in linkage
equilibrium, but they will be in LD across populations. This can create
a population structure and thus an inter-chromosomal LD that
was lower in the balanced DIA design than in the SRR design
(Supplementary Figure 7). Verhoeven et al. (2006), therefore, con-
cluded that it is essential to account for population structure in the
biometrical model.

Correction for population structure and false-positive QTL
We compared three linear and four linear mixed models, and plotted
the observed versus the expected P-values (Figure la). Under the
assumption that none of the markers are associated with the trait, the
P-values are expected to show an equal distribution and to follow the
diagonal in the plot of observed versus expected P-values. For real data
sets, this distribution is expected to deviate from the diagonal,
depending on the genetic architecture of the trait. True QTL will
cause a bulge at the left side of the plot. As the true genetic
architecture is not known, the true distribution of P-values also
cannot be predicted. Strong bulges, however, may indicate an inflated
false-positive rate and this plot may thus serve as a criterion for model
selection.

The plot of observed versus expected P-values revealed that for
models A, B, F and G, the distribution followed the diagonal more

closely, which indicates that they might control the background better
than the other three models, resulting in a reduced probability to
detect false-positive QTL with these models. The population effect in
models D and E apparently does not constitute a sufficient control
for population structure. Model-B, which also includes a population
effect, shows a more stringent control of the genetic background,
indicating the power of cofactors as a mean to control for population
structure. Importantly, cofactors not only correct for population
stratification, but also for genetic background noise, thereby increas-
ing QTL detection power (Jansen and Stam, 1994; Zeng, 1994).
The mixed models including the kinship matrix (models F and G)
also closely followed the diagonal in the plot, which indicates
that the kinship matrix controlled the underlying population
stratification. Surprisingly, the nested model, which is expected to
be rather conservative, also showed a P-value distribution far off the
expected diagonal. A possible explanation for this is the selection
of cofactors, which was performed nested within populations,
but the same set of selected cofactors was used in each of the
populations. Thus, the background is controlled efficiently in some
populations in which many of the selected cofactors are segregating
and in which they have a strong effect, but in populations with
only few segregating cofactors or in which the cofactors have only
small effects owing to the genetic background in this population
(Supplementary Table 4), the P-values tend to be lower owing to a
reduced correction.

Comparison of the biometrical models

Previously, different biometrical models for JLAM were compared
based on simulation data (Yu et al., 2008). Simulation studies,
however, face the problem that the underlying assumptions do not
necessarily reflect reality, such that the applicability of the results to
experimental data is not always given. We therefore based our
comparison study on experimental data and evaluated the models
with regard to the number of detected QTL and the proportion of
genotypic variance explained by these QTL. In addition, we imple-
mented a cross-validation approach to assess the predictive power of
the seven biometrical models.

The model with the nested marker effect, Model-C, is the only
tested model, which assumes population-specific QTL effects.
In terms of the number of detected QTL and the proportion of
genotypic variance explained by these QTL, Model-C was most
comparable to Model-B. This was further supported by the PCoA of
the seven models (Figure 1b). For JLAM data sets with only small
populations, the nested Model-C can probably only detect QTL with
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large or medium effect size, and is then expected to perform worse
than Model-A or Model-B.

The second category of models assumes uniform QTL effects
across all populations. We found that models D and E detected
many QTL (Table 2), but the proportion of genotypic variance
was not increased compared with the other models. This indicates
an insufficient control for co-linearity with these two models
(Supplementary Figure 8), and considering the distribution of
observed versus expected P-values, may also reflect an enhanced
false-positive rate.

The mixed models including the kinship matrix, models F and G,
were very similar and detected the lowest number of QTL for all traits,
but these still explained a rather high proportion of genotypic
variance. The low number of detected QTL with these models
indicates that the kinship matrix sufficiently controlled for population
stratification, but may not be an adequate tool to control the within-
population background noise. This inappropriate control of back-
ground noise within populations may be the reason for the reduced
QTL detection power compared with models incorporating cofactors.
This is supported by the observation that Model-F appeared to detect
more QTL with a strong effect, whereas some of the medium and
small effect size QTL that were detected with models A and B escaped
detection using Model-F (Figure 4).

Model-A generally detected more QTL than Model-B, which are
likely QTL due to exploitation of variance among populations
(Figure 3; Liu et al., 2011). This corroborates findings of simulation
studies (Yu et al., 2008) reporting that QTL detection power was
higher for a model including only cofactors (Model-A) compared with
a model, which in addition included a population effect (Model-B).
The adjusted R? values of the cofactors from Model-A and of the
cofactors plus population effect for Model-B were very similar for all
traits (Supplementary Table 3). The addition of the population effect
to the cofactors from Model-A did not increase the adjusted R? values,

indicating that the cofactors selected for Model-A also cover the
variance among populations. In accordance with published simulation
studies (Yu et al., 2008), we observed that Model-A appeared to
possess a higher power than Model-B for some traits, whereas for
other traits, that is, sodium content and o-amino nitrogen content,
models A and Model B were comparable (Table 2). The difference
between Model-A and Model-B with regard to the explained geno-
typic variance was much more pronounced for beet yield, sugar
content and potassium content than for the other three traits
(Table 2). A recent publication indicated that this might be due to
higher associations between the phenotype and the population
structure for some traits, or by higher R? values of the population
effect (Liu et al., 2011). None of these parameters, however, explained
the differences in this data set (Supplementary Table 3). In addition,
we tested the variance among and within populations for the six traits,
but observed no major trends that would explain the difference
between Model-A and Model-B. The most obvious difference was in
the number of detected QTL, which might have led to the observed
differences in explained genotypic variance. The stronger reduction in
the number of QTL and consequently in the proportion of explained
genotypic variance by the inclusion of the population effect in the
model for some traits could not be explained by any of the parameters
estimated here. It may be due to certain QTL alleles being fixed in
some populations with different population means. These QTL would
mainly explain among-population variance that is absorbed by the
population effect fitted in Model-B. In Model-A these loci may be
selected as cofactors, which later become QTL. This is in agreement
with the much higher among-population variance explained
by the QTL detected with Model-A than with Model-B (Figure 3).
Some QTL were consistently detected with all seven models
(Supplementary Figure 8). The comparison of overlapping QTL in
Venn diagrams (Figures 1c and d) showed that for the linear models
there were a few QTL detected with all three models, but many of the
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Figure 4 Proportion of phenotypic variance [R?] of the QTL detected using models A, B and F. The variable width of the box plots indicates the number of
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QTL were model-specific. This appeared less pronounced in the mixed
models even though the much larger number of QTL detected with
models D and E makes this comparison difficult. The PCoA of the
seven models (Figure 1b) and the correlation plot of their P-values
(Supplementary Figure 9) confirmed that each of the models has
specific properties and, thus, the choice of the appropriate model for
JLAM greatly determines the QTL detection results.

Cross-validation and RMA
The fivefold cross-validation approach applied to assess the predictive
power of the seven biometrical models revealed that the average
number of detected QTL in the estimation set as well as the explained
proportion of genotypic variance closely followed those observed with
the full data set (Table 3). The relative bias, that is, the reduction in the
proportion of genotypic variance explained by the detected QTL, was
around 20% for most models. This is comparable to results from QTL
studies of maize for different complex traits (Schon et al., 2004) and
shows the good predictive power of QTL detected in JLAM studies.
To provide a measure of precision and reliability of position
estimates, we implemented a recently described frequentist measure
(Valdar et al, 2009). This subagging approach resulted in QTL
frequency distributions indicating the proportion of times an SNP
was identified as QTL (Figure 2). Some QTL were identified in the
majority of the runs and thus appear more reliable. By contrast, we
also observed for most models that SNPs, which in the analysis of the
full data set were identified as QTL, were only identified as QTL in a
small number of runs and thus must be treated more carefully.
In addition, these QTL frequency distributions may identify the
most likely position of a QTL as the position with the highest peak
in a region of co-linear markers. Broad peaks may point to a long-
ranging LD in that region or to multiple QTL clustering in the
respective chromosomal region.

Choice of a biometrical model for JLAM
The choice of the model greatly depends on the properties of the
population and on basic quantitative genetic assumptions. The main
conceptual decision is whether a model, which assumes a uniform
SNP effect throughout all populations, should be applied or whether
the model allows varying SNP effects between populations. Only the
nested model, Model-C, fulfils the latter assumption. A recent study of
maize has shown that the SNP allele substitution effects vary greatly
among populations and even changed in sign (Buckler et al., 2009;
Liu et al., 2011), which clearly suggests the need for a nested model.
The nested Model-C should, however, only be applied when the
populations of the data set have a certain minimum size, as otherwise
the power for QTL detection with this model is expected to be low.
If a similar SNP effect can be assumed in all populations, the other
six models can be applied. The conclusions derived from the analysis
of this data set should also be valid for data sets with higher marker
densities. Owing to the employment of LD by these models, they
should even profit from a further increase in marker density as
compared with Model-C. Disregarding models D and E, which
appeared inappropriate to sufficiently control the genetic background,
leaves four models to choose from. We observed no major difference
between the models with regard to the number of populations in
which the detected QTL were segregating (Supplementary Table 5).
Models F and G appear to control the population stratification well
but possessed a reduced QTL detection power. In addition, these two
linear mixed models appeared to detect mainly large-effect QTL,
which may be due to an inappropriate control of the background
noise within populations. Model-A had a high predictive power across

JLAM model comparison
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populations, but this can be mainly attributed to among-population
variance, whereas the pg for within-population variance was
comparable to Model-B (Figure 3). QTL with a strong component
of among-population variance, however, are critical in JLAM owing to
a potentially higher number of false positives. Thus, Model-B might be
regarded as an option to reduce the detection of QTL based on
variance among populations and mainly identify QTL of interest
based on within-population variance.

CONCLUSIONS

JLAM is a powerful tool for plant genomics but the results greatly
depend on the choice of the biometrical model. The main conceptual
difference between the tested models is the assumption of a uniform
or population-specific SNP effects. In addition, the nested Model-C
uses exclusively the LD within populations and can be applied to data
sets with large subpopulations. A promising strategy joining the two
concepts might, therefore, be to use Model-B to detect QTL and then
estimate their effects in each of the populations by applying Model-C
(Supplementary Table 6). Generally, a cross-validation strategy should
be applied irrespective of the biometrical model used for analysis,
to obtain unbiased estimates of the QTL detection results in JLAM.
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