
Positional and temporal clustering in serial order memory

Alec Solway,
Princeton University, Princeton, NJ, USA

Bennet B. Murdock, and
University of Toronto, Toronto, ON, Canada

Michael J. Kahana
Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
Michael J. Kahana: kahana@psych.upenn.edu

Abstract
The well-known finding that responses in serial recall tend to be clustered around the position of
the target item has bolstered positional-coding theories of serial order memory. In the present
study, we show that this effect is confounded with another well-known finding—that responses in
serial recall tend to also be clustered around the position of the prior recall (temporal clustering).
The confound can be alleviated by conditioning each analysis on the positional accuracy of the
previously recalled item. The revised analyses show that temporal clustering is much more
prevalent in serial recall than is positional clustering. A simple associative chaining model with
asymmetric neighboring, remote associations, and a primacy gradient can account for these
effects. Using the same parameter values, the model produces reasonable serial position curves
and captures the changes in item and order information across study-test trials. In contrast, a
prominent positional coding model cannot account for the pattern of clustering uncovered by the
new analyses.
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Associative chaining and positional coding constitute the two classic models of serial order
memory. Although associative chaining was the implicit theory in Ebbinghaus’ (1885/1913)
seminal studies of serial learning, early scholars also recognized that people can remember
the positions of list items, and that this positional information was often used to aid the
learning process (Ladd & Woodworth, 1911). During the 1950s and 1960s, a great deal of
research was focused on identifying the functional stimulus in serial learning—the prior
item, as predicted by chaining theory, or the item’s position, as predicted by positional
coding theory. This work was generally inconclusive, with various experiments lending
partial support to one or the other account (for a review, see Young, 1968).

In recent decades, as the emphasis shifted from the study of multitrial serial learning to the
study of immediate serial recall, theorists have largely rejected the possibility that chaining
plays an important role in serial-order memory (Burgess & Hitch, 2006; Farrell &
Lewandowsky, 2002; Henson, Norris, Page & Baddeley, 1996.) Instead, most modern
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accounts of serial order memory emphasize the importance of positional information as the
major retrieval cue.

One of the major sources of evidence for the positional coding view is the phenomenon of
positional clustering (also known as positional gradients, and the locality constraint). While
many recalled list items appear in their correct serial positions, items that are recalled out of
order tend to migrate to neighboring serial positions (e.g., Estes, 1972; Lee & Estes, 1977;
Nairne, 1992). This phenomenon would be expected if the retrieval cue is a memorial
representation of each item’s list position. When the positional cue fails to correctly retrieve
the appropriate item, it activates items from neighboring list positions.

In addition to positional clustering, other critical evidence for position-based models comes
from findings of protrusions (erroneous recall of an item from the same position in a prior
list) and confusions among phonologically similar items occurring in distinct list positions
(e.g., Baddeley, 1968). Although some experiments have demonstrated a role for associative
processes in serial learning (e.g., Kahana, Mollison, & Addis, 2010; Serra & Nairne, 2000),
the striking effects of positional clustering seen in all serial recall tasks suggest that any
contributions of associative chaining are secondary to the more prominent role of positional
information.

Recent work has shown that serial recall also exhibits a high degree of temporal clustering,
with responses tending to come from positions near that of the just-recalled item (Bhatarah,
Ward, & Tan 2006; Klein, Addis, & Kahana, 2005). Whereas positional clustering lends
support to position-based models, the temporal clustering effect lends support to chaining-
based models. In the present article, we examine the interaction between these effects and
show that they are confounded. We alleviate the confound by examining a subset of
responses, and find that temporal clustering, rather than positional clustering, is more
prevalent in serial recall. Moreover, we show that a simple strength-based chaining model
provides a better fit to the overall pattern of positional and temporal clustering than does a
positional coding model (Burgess & Hitch, 2006).

Method
To reevaluate the positional and temporal clustering effects in serial recall, we focused on
three studies (Golomb, Peelle, Addis, Kahana, & Wingfield, 2008; Kahana & Caplan, 2002,
Experiment 2; Kahana et al., 2010). All three studies had participants study and vocally
recall lists of common words. Table 1 contains a summary of these studies. For details, see
the Appendix.

Clustering analyses performed on the two studies that use longer lists (Kahana & Caplan,
2002; Kahana et al., 2010) focused on the middle list items (4–16 for 19-word lists, and 4–
10 for 13-word lists). Edge items were excluded because they cannot appear at all of the
distances that were analyzed. However, including all items produced comparable results.
Clustering analyses performed on the Golomb et al. (2008) study, which used shorter lists,
included all items.

Results
Estes (1972) reported that list items are more likely to be recalled in their correct serial
position than in any other output position. Furthermore, items recalled in the wrong position
cluster closely around the correct position. This result may be seen in the top row of Fig. 1,
which shows that the probability of recalling an item decreases as a function of its distance
from the correct position. The probability of recalling an item at each distance was
conditioned on the number of times each distance was available. As an illustrative example,
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consider a list with four items. If a participant recalls all four items in their correct order, the
items would all be at distance 0 because their output positions would match their list
positions. On the other hand, if a participant recalls the sequence 1–2–4, the fourth item
would be at distance -1 because it appears one position early. Similarly, if the participant
recalls the sequence 1–3–2, then the second item would be at distance +1 because it appears
one position late.

Klein et al. (2005) reported that in serial learning tasks, participants exhibit a strong
temporal clustering effect analogous to the forward-asymmetric contiguity effect frequently
reported in studies of free recall. This can be seen in the top row of Fig. 2, which shows the
degree of temporal clustering around prior recalls. Here, a distance of +1 means that a
recalled item had the same predecessor both in the recall sequence and in the list. A distance
of +2 means that there was one item in the list separating the recalled item from the
preceding recall, and so forth. Negative distances correspond to filling in skipped over
items. As before, the probability of recalling an item at each distance was conditioned on the
number of times each distance was available. The strong temporal clustering effect
illustrated in the top row of Fig. 2 has also been demonstrated in other serial recall
experiments (Bhatarah et al., 2006; Bhatarah, Ward, & Tan, 2008; Klein et al., 2005).

Joint findings of strong positional and temporal clustering may seem contradictory given
that the two phenomena have been associated with very different theoretical models.
However, it is important to recognize a critical confound in this comparison. Consider what
happens after a participant recalls the first two items of a four-item list. If the participant
recalls Item 3 next, its distance from the correct output position would be 0, and its distance
from the preceding response would be +1.If, instead, the participant recalls Item 4 next, its
distance from the correct output position would be −1, and its distance from the preceding
response would be +2. In general, for recalls up to and including the first-order error, there is
a one-to-one relationship between each item’s distance from the correct output position and
from the prior recall, given by the function

Fortunately, one can alleviate the confound by restricting the clustering analyses to items
following the first-order error on each trial.1 For example, in the recall sequence 1–3–4,
Item 4 is included because Item 3 was recalled early. Plots of positional and temporal
clustering for items following the first-order error are displayed in the bottom rows of Figs.
1 and 2, respectively. Figure 1 shows that such recalls do not cluster around the correct list
position. On the other hand, Fig. 2 shows that, although attenuated, the temporal clustering
effect is preserved. After committing the first-order error, participants tend to pick up with
the list item that follows the item recalled out of order.

Strength-based associative chaining model
We next asked whether an associative chaining model that lacks any direct representation of
positional information can account for this pattern of positional and temporal clustering. In
previous work, associative chaining models (e.g., Lewandowsky & Murdock, 1989) have
been successfully applied to several key features of serial recall and serial learning data, but

1On some trials, intrusion(s) precede the first order error. Discarding such trials produces comparable results. We cannot consider
items following intrusions because their distance from the prior recall (the intrusion) is undefined.
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have generally not been applied to the positional clustering effects that have been a critical
source of evidence for positional coding theories (although see Shiffrin & Cook, 1978)

To address this question, we developed a reduced form chaining model that incorporates the
two classic assumptions of associative chaining theory: (a) that the strength of association
between items is a (exponentially) decreasing function of their distance, and (b) that forward
associations (i.e., those between earlier and later items in the chain) are encoded more
strongly than backward associations (Ebbinghaus, 1885/1913; Raskin & Cook, 1937).
Consistent with other models, we assume a primacy gradient in item encoding strength to
simulate participants’ tendency to allocate greater attention to early list items (Brown,
Preece, & Hulme, 2000; Henson, 1998; Jensen, 1962; Lewandowsky & Murdock 1989;
Page, & Norris, 1998). At test, the model simulates recall probabilistically according to a
Luce choice rule (Luce, 1959) and can choose to stop at any position. As in other strength-
based recall models, we use matrices to store the strengths of interitem associations (e.g.,
Kimball, Smith, & Kahana, 2007; Sirotin, Kimball, & Kahana, 2005); we do not explicitly
model item representations themselves.

In addition to asking whether our associative chaining model can account for the pattern of
positional and temporal clustering, we sought to examine whether the model could
simultaneously account for two other critical aspects of serial recall and learning data,
specifically: the multi-trial serial position curves (Ward, 1937) and the gains and losses of
item and order information across trials (Addis & Kahana, 2004).

In most modeling studies, different experiments from the literature are used to illustrate
different empirical phenomena. As such, separate model parameters are estimated for each
experiment, and one cannot be sure whether it is the model’s mechanisms or its free
parameters that are doing the work of fitting the empirical regularities. In order to assess
whether the model can account for each of the findings using a single set of parameter
values, we fit data from a single experiment (Kahana & Caplan, 2002, Experiment 2).

Participants in this experiment learned each list to a criterion of one perfect recall (see the
Appendix). Because the number of study-test trials varied across lists, we restricted our
analyses to the first three study-test trials and excluded lists that were learned in fewer than
three trials.

Summary of parameters
As an illustrative example of the model’s dynamics, consider the list in Fig. 3. During study,
each item is bound to all of the preceding items. The strength of the associations between
nearest neighbors has a Gaussian distribution with an exponentially decaying mean (the
primacy gradient; cs controls the gain, ds the decay rate, and minas the lower bound) and
with variance σas. The primacy gradient allows the model to mimic the way in which
participants learn lists: Items from the beginning of the list are remembered on the first trial,
and items from later in the list are progressively added on subsequent trials (Slamecka,
1964).

The strength of associations between nonadjacent items decays exponentially as a function
of distance. The rate of the decay is Gaussian with parameters μbs and σbs (note the
increasingly lighter shades of gray between nonadjacent items in Fig. 3). Remote
associations allow the model to skip ahead and later return to omitted items. Without remote
associations, the only type of errors the model would be able to produce are errors of
omission. The strengths of backward associations are scaled to wb times the strengths of
forward associations, where 0 < wb < 1.
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In addition to being bound to one another, list items are bound to an additional nonlist item
that marks the beginning of a list. During recall, this start marker serves as the initial
retrieval cue. Retrieval is probabilistic and follows a Luce choice rule with softmax
parameter γ (see Eq. 5). When γ = 1, the probability of retrieving an item is proportional to
the strength of the association between the retrieval cue and the item. As γ approaches ∞,
only the item that is most strongly associated with the cue will be recalled (i.e., the winner
takes all).

If a list item is successfully retrieved, it then serves as the retrieval cue for the subsequent
position. Recall may also terminate at any list position if a second competing nonlist item is
selected. The strength of this item is controlled by the parameter stop and is independent of
the retrieval cue.

Table 2 provides a summary of the model’s parameters together with their best-fitting
values. A formal description of the model can be found in the Appendix.

Modeling positional and temporal clustering
Figures 4 and 5 show that the chaining model can capture the major qualitative features of
both positional and temporal clustering, computed in the standard way (top rows), and
conditional on the prior recall being an order error (bottom rows). Although the model lacks
a direct representation of positional information, it can successfully account for the
positional clustering effect because of the confound with the temporal clustering effect.

The chaining mechanism, together with the parameter values shown in Table 2, provide a
simple and direct account of these results. The mean rate at which the strength of remote
associations decays as a function of distance (μbs) is high throughout the list. On average,
the strength increment between an item and another item more than two positions away is
very low (<0.0001). Combined with strong forward asymmetry (wb), these values result in a
strong temporal clustering effect. The model slightly overestimates the magnitude of the
effect as compared with the data, especially in later trials. Because the first order error most
often involves skipping over a single item (see Fig. 10a), temporal clustering and positional
clustering are still partially confounded, leading the model to also overestimate the
percentage of items recalled one position early (bottom row of Fig. 4).

Modeling serial position curves over trials
Serial position curves for the data are shown in Fig. 6a. Values for these curves were
computed using relative order scoring (i.e., a recalled item was considered correct if the
prior recall was the item’s immediate predecessor in the list). This scoring method is well
suited to the experimental paradigm that we are modeling. Rather than being forced to make
a response at each serial position (e.g. saying “pass” for serial positions that cannot be
recalled), participants were free to recall only the words that came to mind. Using relative
order scoring allows items from later serial positions to be marked correct even if items from
earlier serial positions were omitted (a common occurrence for long lists using spoken
recall). In contrast, absolute, or strict, positional scoring (i.e., considering an item to be
correct only if it is recalled in the same position in which it was studied) heavily penalizes
recall of midlist and end-of-list items.

As shown in Fig. 6b, the chaining model captures the extended primacy effect and the
change in both the level and shape of the serial position curve across trials. The primacy
effect is a result of: (a) the inherent interdependencies that exist between items, and (b) the
primacy gradient in encoding strengths. On the first trial, midlist items exhibit low levels of
recall because the stop item acts as a formidable contender. Although the value of the stop
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parameter is low (see Table 2), it has a strong influence, on average, because the variance of
strength increments (σas) is relatively high in comparison. This effect is progressively
reduced in later trials as interitem associations are reinforced. Learning is a result of the
variability in encoding strength (σas and σbs), coupled with a closed-loop learning rule (see
the Appendix).

The primacy gradient is not necessary to fit the general shape of the serial position curve.
Because successful retrieval of each item is dependent on the successful retrieval of the
previous list item, chaining provides a natural account of the progressively lower levels of
recall seen in later list positions. We tested this notion by fixing the parameters cs and ds to 0
and fitting the model with the reduced set of parameters. Although the fits were not quite as
good, the model was still able to capture the qualitative features of the serial position curves
and the pattern of clustering.

Modeling gains and losses of item and order (GLIO)
There are two types of information a participant can recall about an item: its membership in
the list (item information) and its position in the list (order information). Each type of
information may be gained, lost, or stay the same between two consecutive trials (Fig. 7).
For example, if an item is recalled on the first trial in the wrong serial position (using
relative order scoring, as in the previous section), it follows transition+I from state none to
state item. If an item is recalled in the correct position, it follows transition+IO and ends up
in state item and order. If item information, order information, or both are lost in a later trial,
the item transitions back to one of its previous states. In all, there are six transitions of
interest:

+IO Gaining item and order information

+I Gaining item information, incorrect order information

+O Gaining order information, maintaining item information

−IO Losing item and order information

−I Losing item information, did not have order information

−O Losing order information, maintaining item information

Figure 8a shows the probability of gaining item and order information together (+IO) at
each serial position on the first three trials. The data show a large primacy effect and small
recency effect on Trial 1 (this is equivalent to the Trial 1 serial position curve shown in Fig.
6a). In later trials, a primacy effect is no longer apparent2 and instead there is an increase for
groups of items from progressively later in the list. As is shown in Fig. 8b, the model is able
to capture the pattern of combined item and order gains for beginning and midlist items. The
primacy items are learned first due to the interdependent nature of interitem associations and
the gradient in encoding strength. Further strength increments on later trials allow the
midlist items to be learned.

The probability of gaining item and order information separately is below 0.15 at almost all
serial positions. We aggregate these results across serial positions and summarize them in
Table 3. Here we see a trade-off occur over trials, with some items gained out of order in
earlier trials and then supplemented with order information in later trials.

2We did not condition on the availability of transitions because it would make it appear as if more items are gained on later trials than
on earlier trials. For a discussion of this issue, see (Addis and Kahana 2004).
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As is shown in Table 3, the model is able to capture the low levels of separate item and
order gains compared with the higher levels of combined gains. The proportion of combined
gains relative to separate gains is controlled by the parameter wb, which determines the
likelihood of backward transitions, the parameters μbs and σbs, which control the strength of
remote associations, and the parameter γ, which controls the frequency with which weakly
associated items are selected for recall. The low value of wb (see Table 2) and the high
values of μbs, σbs, and γ together make combined gains more frequent.

The probability of losing information of any type is below 0.05 at all serial positions. We
aggregate these results across serial positions as well, and also summarize them in Table 3.
Once an item is placed in its correct position, that position is seldom lost. Item information
by itself is also seldom lost and is instead supplemented with order information on a later
trial. In the model, the same parameters that make combined item and order gains most
frequent also ensure that there is very little chance of retrieving a remote item or the stop
marker once the associations between nearest neighbors are sufficiently strong.

Comparison with a positional coding model
We also examined whether a prominent positional coding model (Burgess & Hitch, 2006)
could fit the pattern of positional and temporal clustering. The Burgess and Hitch (2006)
model features a neural network architecture in which different contexts, items, and
phonemes are represented in separate layers of the network. During study, items become
bound to a slowly varying list context, with proximal items bound to overlapping context
signals. At test, the list context is played back and used as the retrieval cue. Because the
Burgess and Hitch (2006) model has not been applied to multitrial serial learning data, we
restrict our analysis to the first study-test trial.

The serial position curve predicted by the model is shown in Fig. 6c. The model captures the
extensive primacy, the attenuated recency, and the overall level of recall seen in the data.
Shown in the top row of Fig. 9, the model is also able to capture the major qualitative
features of the traditional positional and temporal clustering effects. The model fails,
however, to capture the pattern of conditional positional clustering (Fig. 9c). Instead, it
incorrectly predicts that after committing an order error, participants are still most likely to
recall the item from the proper list position.

Although one would not ordinarily expect a positional coding model to predict the
conditional temporal clustering effect, the Burgess and Hitch (2006) model provides a very
good fit to the data (Fig. 9d). We can gain insight into the model’s ability to fit this effect by
examining the probability that the first-order error is a given distance from the correct
position (Fig. 10a). Here, we see that the first-order error most frequently involves skipping
over a single list item and recalling the next item one position early. Although we did not fit
either model to this aspect of the data, both the chaining model and the Burgess and Hitch
model can account for this effect. With the Burgess and Hitch model, an error of this kind
represents a special case in which the subsequent recall is dependent on the identity of the
error item. Consider what happens after the Burgess and Hitch model recalls the sequence
1–2–4. After recalling each item, the model inhibits the corresponding item node. The
contextual retrieval cue most strongly matches the item from the fourth list position, but that
item was recently recalled and inhibited, and is unlikely to be retrieved again. Because the
context signal is autocorrelated, the item to most likely be recalled next is Item 5 (lag +1),
followed by Item 3 (lag −1), and so on, producing the pattern of temporal clustering shown
in Figure 9d. Such a dependence between consecutive recalls is not a general property of the
Burgess and Hitch model. If the model recalled any item other than Item 4 in the third

Solway et al. Page 7

Mem Cognit. Author manuscript; available in PMC 2012 February 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



output position, Item 4 would not undergo inhibition and would be the item to most likely be
recalled next, regardless of which item was recalled in the third output position.

In order to examine the predictions of both models outside of this special case, we repeated
the conditional temporal clustering analysis, but this time excluding trials in which the first
order error involved skipping over a single list item. Figure 10b shows that while the
chaining model still correctly predicts the temporal clustering effect, the Burgess and Hitch
(2006) model does not. It is possible that the Burgess and Hitch model could fit the pattern
of results shown in Fig. 10b using another set of parameter values. In order to test for this
possibility, we refit the model, this time including the results of Fig. 10b. The best-fitting
parameter values were similar to those of the initial fit, leaving the pattern of results shown
in Fig. 10b unchanged.

General discussion
In recalling sequences of items, people tend to cluster their responses around the correct list
position. Items are most likely to be recalled in the correct position and are progressively
less likely to be recalled in positions that are further away. This positional clustering effect
has been well documented in many recall paradigms and has been used to support the
positional coding theory of serial recall. According to positional coding theory, people
associate each list item with a positional marker and use those markers as cues to guide
recall.

In contrast to positional coding theory, the chaining theory of serial order memory posits
that people associate each list item with the preceding item or items, and that during recall,
the items serve as a cue for their neighbors. Consistent with this account of serial-order
memory, people show a strong temporal clustering, or contiguity, effect. In serial recall, this
is seen in the tendency for recalls to be items studied in proximity to the just-recalled item.
Because positional information does not play an explicit role in chaining theory, it has
generally been assumed that chaining models are unable to account for the positional
clustering effect (although see Shiffrin & Cook, 1978).

The presence of prominent temporal and positional clustering in serial recall would seem to
support a role for both chaining and positional coding. However, the analyses reported here
demonstrate that positional and temporal clustering are highly confounded. Much of the
confound is driven by the first several recalls on each trial, which both appear in their
correct serial positions (distance 0 in Figs. 1 and 4) and are by definition each one list
position away from the prior recall (distance +1 in Figs. 2 and 5). A similar ambiguity exists
for the first item on each trial recalled in the wrong serial position. For these items, it is
unclear whether recall is driven primarily by positional or by temporal information. An
associative chaining model that makes no explicit use of positional information can exhibit
significant positional clustering (see Figure 4a–c), providing a good fit to the levels
observed in the data. Likewise, a positional coding model (Burgess & Hitch, 2006) that
makes no explicit use of temporal information can exhibit significant temporal clustering
(see Fig. 9b).

Conditioning the positional and temporal clustering analyses on an incorrect prior recall
allowed us to alleviate the confound. We found that while the temporal clustering effect
persists following an order error, the positional clustering effect is no longer apparent (see
the bottom rows of Figs. 1 and 2). After making an order error, participants were most likely
to recall the item on the list following the just-recalled item and not the item from the proper
list position. Because chaining theory posits that each recall serves as the subsequent
retrieval cue, our chaining model is also able to capture these effects (see Figs. 4d–f and 5d–
f). However, because retrieval in the Burgess and Hitch (2006) model is driven primarily by
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positional information, their model incorrectly predicts that recalls following the first order
error cluster around the correct list position (see Fig. 9c).

Surprisingly, the Burgess and Hitch (2006) model was able to capture the conditional
temporal clustering effect (see Fig. 9d). We were able to better understand the model’s
ability to fit this aspect of the data by analyzing the probability of committing the first-order
error as a function of its distance from the correct position (Fig. 10a). Consistent with the
data, the first-order error most often involves skipping over a single list item and recalling
the next list item one position early. However, because items recalled by the Burgess and
Hitch model are inhibited following recall, an item that is recalled one position early is
unlikely to be repeated in the next output position, even though it best matches the positional
retrieval cue. Instead, the next recall depends on the identity of the item that was recalled
early, with higher weight given to neighboring items in the list. This type of dependence
between adjacent recalls is not a general property of positional coding models or of the
Burgess and Hitch model in particular, but rather, represents a special case of the model’s
behavior. Repeating the conditional temporal clustering analysis while excluding the trials
on which this type of order error occurred showed that the Burgess and Hitch model cannot
match the pattern of temporal clustering beyond this special case.

Our findings point to a contiguity-based associative mechanism as the primary factor
underlying positional clustering effects in serial recall. However, these findings do not
exclude the possibility that positional information would assert itself in other aspects of
serial order memory, especially situations in which interference caused by similarity or item
repetitions must be overcome (Baddeley, 1968; Chance & Kahana, 1997; Henson et al.
1996; Kahana & Jacobs, 2000). Furthermore, contiguity-based associations may be indirect.
For example, in the temporal context model (Howard & Kahana, 2002; Polyn, Norman, &
Kahana, 2009; Sederberg, Howard, & Kahana, 2008), list items are associated with an
overlapping context signal similar to the Burgess and Hitch (2006) model. However, unlike
the Burgess and Hitch model, where contextual drift is independent of the list items that are
experienced (i.e., either studied or recall), in the temporal context model, the context
previously associated with each experienced item is incorporated into the model’s time
varying context signal. In this way, each list item becomes indirectly bound to its
predecessors. Future work will need to investigate the potential of such hybrid models to
bridge the gap between the results that we have presented and previous work suggesting the
need for positional information.
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Appendix

Associative chaining model
In this appendix, we provide a concise description of our strength-based associative chaining
model of serial recall and serial learning. MATLAB computer code used to run the
simulations can be obtained from http://memory.psych.upenn.edu.

Study phase
Our chaining model uses two matrices to hold the strengths of associations between items,
one for forward associations and one for backward associations. For simplicity, we assume
that list words are not semantically related and that there are no associations across lists, so
we set the initial strengths to zero. Similar to the Lewandowsky and Murdock (1989) model,
a start marker is used to simulate the way in which participants access the beginning of a
list. The start marker acts as list item 0 and is associated with each subsequent item.

Following the study of list item i on trial T, we increment the strength of the forward
association from the immediately preceding item, i − 1, according to the storage equation:

(1)

where F(i − 1, i)T−1 is the strength of the association on the previous trial and as is a random
variable (Gaussian with parameters μas and σas) that controls the change in strength on the
current trial. We do not allow the model to unlearn previous strength increments, so we
clamp negative values of as to zero. We assume a primacy gradient in encoding strength and
reduce the mean of as exponentially across serial positions to an asymptotic minimum of
minas:

(2)

where i indexes the serial position of the item. σas in Eq. 1 and cs, ds, and minas in Eq. 2 are
model parameters.
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Equation 1 implements a closed-loop learning rule (Lewandowsky & Murdock, 1989): The
increment in strength is proportional to the amount of association already in memory. The
strength of the backward association from item i to item i − 1 is computed by scaling the
forward increment by wb, a parameter that ranges from 0 to 1:

(3)

This allows the model to mimic the forward asymmetry that is typical of serial recall
(Bhatarah et al., 2006, 2008; Golomb et al., 2008; Klein et al, 2005).

In addition to forming associations between nearest neighbors, our model also forms remote
associations by incrementing the strength between item i and each earlier list item, i − x,
according to the more general storage equation:

(4)

Here, as is the same as above, and bs is a random variable (Gaussian with parameters μbs
and σbs) that determines the strength of remote associations relative to nearest neighbors.
The minimum value bs can take is clamped to one. μbs and σbs are both model parameters.
Note that when x = 1, this equation reduces to Eq. 1. During list study, as is sampled once
for each item and bs is sampled once for each list. The strength of remote associations is
reduced exponentially as a function of the lag, x, which ranges from the previously studied
item (x = 1) to the start marker (x = i). As with nearest neighbor associations, we assume
that remote associations are formed in both the forward and backward directions, with the
backward strength increment scaled by wb.

Test phase
At test, the start marker serves as the first retrieval cue for each list. After the first position,
each successfully retrieved item serves as the cue for the next position. Assuming that the
model recalled item i, the next item, j, is chosen by the Luce choice rule (Luce, 1959):

(5)

where S = F + B, k ranges over all unrecalled items, and stop sets the probability of retrieval
failure. Both stop and γ are model parameters. Our assumption that items are not repeated
does not preclude the use of inhibition or other more realistic repetition suppression
mechanisms. We have purposefully left this aspect of our model underspecified in order to
focus on the role that is played by the chaining mechanism itself. For this same reason, we
have also excluded learning during the test phase.

A numerical example
Consider the behavior of the model on the first trial of a four item list, using the following
parameter values: wb = 0.15, minas = 0.10, ds = 0.55, cs = 0.60, μbs = 1.20, stop = 0.02, γ =
1.00. For simplicity, variability of encoding is omitted. All associations are set to zero at the
beginning of the simulation. We begin the study phase by applying Eq. 2 to determine the
increment in associative strength between the start marker and the first item:
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Equation 4 is used to update the strength matrix. Since there is no encoding variability and
no prior learning, the increment is exactly 0.700 in the forward direction and 0.105 in the
backward direction (0.700·wb). The rest of the list is presented in a similar manner, and
Table 4 shows the resulting associative strength matrices. Here, we combine the forward (F,
located in the upper triangle) and backward (B, located in the lower triangle) matrices for
ease of presentation.

At test, the probability of retrieving the first item is computed using Eq. 5:

The probability of retrieving each of the remaining items is computed in a similar fashion,
and an item is selected by sampling from this distribution. If an item is successfully
retrieved (i.e., the stop marker is not sampled), the next recall is selected by sampling from
the distribution formed by conditioning the remaining items on the first recall. Recall
proceeds in this manner until either the stop marker is selected or all of the items are
recalled. In the case of choosing the stop marker, the study-test cycle is repeated (for a
maximum of ten trials). If the list is correctly recalled, the strength matrix is reset to zero
and simulation of the next list begins.

Parameter estimation
The chaining model parameters shown in Table 2 were found by using a genetic algorithm
(Mitchell, 1996) to minimize the mean root-mean squared deviation (RMSD) between the
data and the model for the three aspects of the data described in the main text (the clustering
measures, the serial position curves, and the gains and losses of item and order information).
We evolved a population of 20,000 initially random parameter values for 10 generations.
We then reduced the size of the population to 1,000 and ran the algorithm for 20 more
generations. The parameter values that were in the top 10 percent of each generation were
carried over to the next, and new parameter values were computed by sampling from and
perturbing the surviving values. The best-fitting parameter values are shown in Table 2, and
the simulations described in the main text were performed using these values.

We fit the model of Burgess and Hitch (2006) to the clustering measures and to the first trial
serial position curve using the same approach, varying all of the parameters listed in Table
A1 of Burgess and Hitch (2006) except for na2 and α (these two parameters relate to the
grouping of items during presentation, which we do not consider here).

Experiment details
Golomb et al. (2008)

Thirty-six young and 36 older adult participants performed the experiment over two
sessions. Half of the participants performed a free recall task during the first session and a
serial recall task during the second session, and the other half performed the tasks in the
reverse order. We focused our analysis on the data from the younger participants performing
serial recall.

Words were drawn from a collection of 846 two-syllable nouns (for details, see Golomb et
al., 2008). Each list consisted of 10 words, with each word appearing on the screen for 1 s.
ISIs were either 800 ms, 1,200 ms, or 2,400 ms, and were constant within each list. At test,
participants were given up to 1 min to vocally recall the list in the presented order.
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Participants received four practice lists, followed by 36 test lists. The practice lists were not
included in our analysis. Because lists in the Golomb et al. (2008) study were shorter than
the lists in the other two studies, we included all items in our analysis, including edge items,
in order to maximize the amount of data on which each result is based.

Kahana and Caplan (2002), Experiment 2
Sixty participants performed the experiment over the course of five sessions. The first
session consisted of one 10-word, one 15-word, and two 19-word practice lists, which were
not included in our analysis. The remaining four sessions each consisted of five 19-word
lists. Words were drawn from the Toronto Word Pool (Friendly, Franklin, Hoffman, &
Rubin, 1982) without replacement and were presented aurally at a rate of 1.5 s. After
studying a list, participants were asked to vocally recall the list in the presented order. The
cycle of study and test was repeated for each list until it was recalled perfectly.

In order to avoid edge artifacts, we focused our analysis on list positions 4–16. Comparisons
across trials (see the section strength-based associative chaining model) were restricted to
the first three trials of each list. Lists that were learned in fewer than three trials (about 17%)
were excluded.

Kahana et al. (2010)
Forty-two participants performed the experiment over the course of four sessions. Each list
consisted of 7, 13, or 19 words drawn from the Toronto Word Pool (Friendly et al, 1982)
without replacement and were presented aurally at a rate of 1 s. At test, participants were
given 1 min to vocally recall the list in the presented order, and the study and test cycle was
repeated for each list until it was recalled perfectly.

The experiment consisted of two conditions. In the constant start condition, participants
studied each list in the usual manner, starting at the same list position. In the spin-list
condition, participants studied each list starting in a random position on each trial. We
conducted our analysis on the data from the constant start condition only.

The first session of the experiment consisted of practice lists and was not included in our
analysis. Subsequent sessions consisted of three lists of each possible length under one of
the two starting conditions (the order of conditions was counterbalanced across participants).
Four subjects were excluded because they failed to learn any lists within a predetermined
maximum number of trials. In order to avoid edge artifacts, we focused our analysis on
positions 4–10 for lists of length 13 and positions 4–16 for lists of length 19. We excluded
lists of length 7 because they did not yield enough data to condition the clustering analyses
on the prior recall being an order error.
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Fig. 1.
Probability of recalling an item as a function of its distance from its correct position.
Negative values correspond to recalling an item too early, and positive values correspond to
recalling an item too late. Missing data points indicate that the corresponding condition did
not occur. Error bars indicate 95% confidence intervals computed using the method of
Loftus and Masson (1994). Panels in the top row were computed based on all recalls, while
panels in the bottom row were computed based only on recalls following the first order
error. Each column is based on data from a different experiment. a and e Golomb et al.
(2008) b and f Kahana and Caplan (2002, Experiment 2) c and g Kahana et al. (2010, 13-
word lists) d and h Kahana et al. (2010, 19-word lists)
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Fig. 2.
Probability of recalling an item as a function of its distance from the prior recall. Negative
values correspond to recalling an earlier item from the list, and positive values correspond to
recalling a later item from the list. Error bars indicate 95% confidence intervals computed
using the method of Loftus and Masson (1994). Panels in the top row were computed based
on all recalls, whereas panels in the bottom row were computed based only on recalls
following the first order error. Each column is based on data from a different experiment, as
in Fig. 1
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Fig. 3.
Illustration of direct and remote associations in the chaining model
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Fig. 4.
Probability of recalling an item as a function of its distance from its correct position.
Negative values correspond to recalling an item too early, and positive values correspond to
recalling an item too late. The solid curve was computed based on the data from Kahana and
Caplan (2002, Experiment 2), and the dotted curve was computed based on data simulated
using the chaining model. Model parameters are given in Table 2. Error bars indicate 95%
confidence intervals computed using the method of Loftus and Masson (1994). The three
columns correspond to the first three trials of each list. a–c Based on all recalls. d–f Based
only on recalls following the first order error
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Fig. 5.
Probability of recalling an item as a function of its distance from the prior recall. Negative
values correspond to recalling an earlier item from the list, and positive values correspond to
recalling a later item from the list. The solid curve was computed based on the data from
Kahana and Caplan (2002, Experiment 2), and the dotted curve was computed based on data
simulated using the chaining model. Model parameters are given in Table 2. Error bars
indicate 95% confidence intervals computed using the method of Loftus and Masson (1994).
The three columns correspond to the first three trials of each list. a–c Based on all recalls. d–
f Based only on recalls following the first order error
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Fig. 6.
a Serial position curves for Trials 1–3 of a 19 word list (Kahana & Caplan, 2002,
Experiment 2). Error bars indicate 95% confidence intervals computed using the method of
Loftus and Masson (1994). b Simulated values obtained using the chaining model. Model
parameters are given in Table 2. c Simulated values obtained using the Burgess and Hitch
(2006) positional coding model. Only the first trial is modeled
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Fig. 7.
State diagram representing the possible gains and losses of item and order information
between consecutive trials. The three states correspond to omitting an item, recalling an item
out of order, and recalling an item in the correct order. Items transition between states in
response to changes in item and order information. It is also possible that no change takes
place, in which case an item stays in the same state (not shown)
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Fig. 8.
a Probability of gaining item and order information together at each serial position on Trials
1–3 of a 19-word list (Kahana & Caplan, 2002, Experiment 2). b Simulated values obtained
using the chaining model. Model parameters are given in Table 2
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Fig. 9.
a Probability of recalling an item as a function of its distance from its correct position. The
solid curve was computed based on the data from Kahana and Caplan (2002, Experiment 2),
and the dashed curve was computed based on data simulated using the model of Burgess &
Hitch (2006). Error bars indicate 95% confidence intervals computed using the method of
Loftus and Masson (1994). b Probability of recalling an item as a function of its distance
from the prior recall. c–d same as in a–b, respectively, but based only on recalls following
the first order error
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Fig. 10.
a Probability of committing the first-order error as a function of distance from the correct
position. Negative values correspond to recalling an item too early, and positive values
correspond to recalling an item too late. b Probability of recalling an item as a function of its
distance from the prior recall, based only on recalls following the first-order error on trials in
which the error did not involve skipping over a single item
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Table 1

Summary of the analyzed studies

Presentation Modality Response Modality Number of Lists List Length Study-Test Trials

Golomb et al., (2008)

 Visual Spoken 1,296 10 1

Kahana and Caplan (2002)[Exp. 2]

 Spoken Spoken 1,200 19 Criterion

Kahana et al., (2010)

 Spoken Spoken 189 13 Criterion

 Spoken Spoken 189 19 Criterion
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Table 2

Model parameters

Parameter Value

cs 0.945

ds 0.318

minas 0.000

σas 0.645

μbs 5.473

σbs 9.930

wb 0.134

stop 0.001

γ 9.169
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Table 3

Probabilities of gaining and losing item and order information

Trial Beh. Data Simulation

+IO 1 0.232 0.223

2 0.218 0.222

3 0.154 0.168

+I 1 0.114 0.126

2 0.079 0.079

3 0.041 0.036

+O 1 — —

2 0.061 0.050

3 0.083 0.062

−IO 1 — —

2 0.011 0.004

3 0.016 0.007

−I 1 — —

2 0.012 0.013

3 0.010 0.010

−O 1 — —

2 0.012 0.005

3 0.017 0.010
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