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Abstract
Concentric tube robots are a novel class of continuum robots that are constructed by combining
pre-curved elastic tubes such that the overall shape of the robot is a function of the relative
rotations and translations of the constituent tubes. Frictionless kinematic and quasistatic force
models for this class of robots have been developed that incorporate bending and twisting of the
tubes. Experimental evaluation of these models has revealed, however, a directional dependence
of tube rotation on robot shape that is not predicted by these models. To explain this behavior, this
paper models the contributions of friction arising from two sources: the distributed forces of
contact between the tubes along their length and the concentrated bending moments generated at
discontinuities in curvature and at the boundaries. It is shown that while friction due to distributed
forces is insufficient to explain the experimentally observed tube twisting, a simple model of
frictional torque arising from concentrated moments provides a good match with the experimental
data.

I. INTRODUCTION
Concentric tube robots are currently being designed for a broad range of minimally invasive
surgeries since they can be constructed with diameters of several millimeters and lengths of
20-30 cm. Several specific applications are intracardiac surgery, neurosurgery and lung
surgery [10]. They can be easily designed and constructed to navigate along 3D curves
through body lumens as well as tissue and can manipulate tip-mounted tools. Fig. 1 depicts
an example composed of three tubes with tip-mounted forceps.

In the last few years, substantial progress has been made in developing this technology [1]-
[7]. Mechanics models have been derived for computing the kinematics [1]-[3] and
deformation due to external loading [4],[5]. Solution of the anatomically-constrained inverse
kinematic problem has been considered in [9],[10]. Real-time implementations of position
control [2],[6], and stiffness control [7],[7] have been demonstrated in the laboratory and in
beating-heart intracardiac animal trials.

In all publications relating to kinematics, however, a variety of phenomena have been
neglected in order to simplify the modeling, but with the acknowledgement that these effects
are not necessarily negligible [1],[2]. An important member of this group is friction, and the
evidence suggesting its importance can be seen in experimental data measuring the relative
twist of a pair of tubes of equal curvature and stiffness. While the frictionless model predicts
a single twist angle, experimental results reveal an envelope of twist angles whose
boundaries are produced by different directions of relative rotation [1],[2]. Neglecting the
existence of this envelope can produce tip position errors of about 10% of the length of the
tube pair. For 20 cm long tubes, this is a tip error of 2 cm, which would be unacceptable for
most medical applications.
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The kinematic models [1]-[3] predict two types of interactions forces between the tubes of
the robot. The first consists of the distributed forces along the lengths of the tubes. The
second type consists of concentrated moments that are applied between the tubes at their
ends and at points of pre-curvature discontinuity. These moments force all tubes to share a
common central axis – an assumption that is only exact as the clearance between the tubes
goes to zero. Both types of interaction forces can be sources of friction.

The contributions of this paper are as follows. First, Coulomb friction torque due to the
inter-tube distributed contact forces is incorporated into the kinematic model. Second, it is
demonstrated that this frictional torque is bounded and is insufficient to explain the
experimentally observed tube twisting. Third, while detailed analysis of friction due to
concentrated moments must incorporate the inter-tube clearances and is beyond the scope of
this paper, an approximate lumped Coulomb-type model is proposed and is shown to
provide a good match of experimental results. Furthermore, this model can be efficiently
implemented in a controller and is appropriate for practical robot designs comprised of
telescoping arrangements of fixed and variable curvature sections as proposed in [2].

The paper is arranged as follows. The next section presents the friction models. First, the
frictionless model is summarized. It is then modified to include the Coulomb friction torque
arising from the distributed contact forces between the tubes. Its effect on tube twisting is
examined in the subsequent subsection. Finally, a lumped model is proposed for friction
torque due to concentrated moments that enters the distributed model as a boundary
condition. The third section presents an experimental evaluation of the lumped model.
Conclusions appear in the final section.

II. FRICTION MODELING
There are many possible friction models that can be employed in the control of robotic
systems. Selection of the appropriate model depends both on the machine and its operating
conditions [11]. As currently used in surgical procedures, concentric tube robots possess
lubricated sliding interfaces that experience mm-scale displacements at low velocities. Thus,
it is likely that a Coulomb model will provide sufficient accuracy for current tasks and such
a model is assumed in this paper.

The kinematic models are derived here using the notation of the frictionless model presented
in [1],[2]. It includes bending and torsion for an arbitrary number of tubes whose curvature
and stiffness can vary with arc length. Effects that are neglected include shear of the cross
section, axial elongation and nonlinear constitutive behavior. It is also assumed here that no
external loads are applied to the robot.

In the remainder of the paper, subscript indices i = 1,2,...,n are used to refer to individual
tubes with tube 1 being outermost and tube n being innermost. Arc length, s, is measured
such that s = 0 at the proximal end of the tubes. The total length of each tube is designated
by Li.

As illustrated in Fig. 2, insertion of one tube inside the other causes each to bend and twist
along their length. For each tube, material coordinate frames for each cross section can be
defined as a function of arc length s along tube i by defining a single frame at the proximal
end, Fi(0), such that its z axis is tangent to the tube's centerline. Under the unrestrictive
assumption that the tubes do not possess initial material torsion, the frame Fi(s) is obtained
by sliding Fi(0) along the tube centerline without rotation about its z axis (i.e., a Bishop
frame [12]). As the tubes move, bend and twist, these material frames act as body frames
tracking the displacements of their cross sections. It is also useful to define a reference
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frame, F0(s), which displaces with the cross sections but does not rotate about its z axis
under tube torsion.

As the ith tube's coordinate frame Fi(s) slides down its centerline, it experiences a body-
frame angular rate of change per unit arc length given by

(1)

in which (uix,uiy) are the components of curvature due to bending and uiz is the curvature
component due to torsion. A circumflex on a curvature component is used to designate the
initial pre-curvature of a tube.

The kinematic input variables consist of the rotation and translation of each tube about and
along the common centerline of the combined tubes. The rotation angle, θi(s, is defined as
the z-axis rotation angle from frame F0(s) to frame Fi(s). The translation variable, li, is
defined as the arc length distance from frame F0(0) to the initially coincident frame Fi(0). In
the rest of the paper, all vector , quantities associated with tube i , e.g., ui(s), are written with
respect to frame Fi(s).

In the subsection below, the frictionless kinematic model of [1],[2] is summarized. The two
friction models are then developed in the context of this model.

A. Frictionless Model
The frictionless kinematic equations can be derived by combining four equations – (1) a
constitutive model relating bending moments to changes in curvature of individual tubes, (2)
a compatibility equation relating the individual curvatures of the assembled tubes to their
combined curvature, (3) the equilibrium of bending moments and shear forces on the cross
sections of the assembled tubes, and (4) a differential equation that expresses how shear
force and bending moment propagate along a curved rod. These are summarized below
along with the resulting model from [1],[2].

(1) Constitutive Model—When a tube with initial curvature ûi(s) is deformed to a
different curvature ui(s), a bending moment is generated. Assuming linear elastic behavior,
the bending moment vector mi(s) at any point s along tube i is given by

(2)

Given the coordinate frame convention described above, all vectors are expressed with
respect to frame Fi(s), and Ki is the frame-invariant stiffness tensor given by

(3)

in which Ei is the modulas of elasticity, Ii is the area moment of inertia, Ji is the polar
moment of inertia and Gi is the shear modulus of tube i.

(2) Compatibility of Deformations—Assuming that the clearance between each pair of
adjacent tubes is just sufficient to enable relative motion, all tubes must conform to the same
final x-y (bending) curvature. For this to be true, we assume that concentrated moments are
generated over negligibly short lengths at discontinuities in pre-curvature and at the ends of
tubes.
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Each tube is free, however, to twist independently about its z axis. The z component of

curvature, , equates to the rate of change of twist angle with respect to arc length,
,

(4)

The resulting bending curvatures can be equated when written in the same frame.
Expressing tube curvatures in terms of the robot frame curvature, u0, results in

(5)

in which RZ(θi)∈ SO(3) is a rotation about the z axis by angle z angle θi and ez = [0 0 1]T.

(3) Equilibrium of Bending Moments—On each cross section, the bending moments in
each tube must sum to the robot's net bending moment, m0(s), which is zero absent external
loading.

(6)

As in (5), RZ(θi) is used to transform tube bending moments from frame Fi(s) to frame F0(s).

(4) Propagation of Shear Force and Bending Moment—The equilibrium equation
of the special Cosserat rod model [13]-[15] provides body-frame equations for a curved rod
undergoing distributed loading of  torque per unit length and force per  unit
length. It can be applied to each tube.

(7)

Derivatives are with respect to arc length along the rod, s, and  are the bending
moment and shear force vectors acting on the tube's cross section. Here, and in the
remainder of the paper, the square brackets on any vector denotes the skew-symmetric form

(8)

Consistent with the previous notation,  are the angular and linear strain rates
per unit arc length, respectively, experienced by the tube's cross section. Thus, as described
previously, ui(s) has the units of curvature. Similarly, the x and y components of vi(s) are the
shear strain components of the cross section while the z component is viz = 1 + εiz in which
εiz is the longitudinal strain. Given the assumptions of negligible shear and longitudinal
strain,

(9)

In (7), the frictionless assumption together with the tight-clearance assumption used in
compatibility constrain the interaction forces and torques that the tubes can exert on each
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other along their length. The distributed force, fi(s) , exerted between a pair of tubes must be
directed radially with respect to the cross section and so fiz(s) = 0. Furthermore, the tubes
cannot apply distributed moments to each other and so τi(s) = 0. Recall, however, the
compatibility does require the existence of concentrated moments generated over negligibly
short lengths at discontinuities in pre-curvature and at the ends of tubes. These concentrated
moments enter (7) as boundary conditions.

Combining (2)-(9) results in the following second order system of differential equations in
the n twist angles, θi, of the individual tubes.

(10)

For simplicity it is assumed that neither the initial curvatures nor the stiffnesses vary with
tube length. In (10), the bending curvatures of the tubes are described by the algebraic
equations,

(11)

The boundary conditions for the state variables  are split between the proximal and
distal ends of the robot.

(12)

The boundary condition  indicates that no torques are applied to the distal ends of
the tubes.

Note that when referring to a robot consisting of only two tubes it is occasionally convenient
to use the values:

(13)

B. Modeling Friction Torque Due to Distributed Forces
We consider here the effect of frictional forces associated with rotation of the tubes. Fig. 3
shows the distributed forces and torques applied to a tube by its outer neighbor. With respect
to (7), the total distributed force fi(s) is given by

(14)

The normal contact force fni(s) is the only force that the tube experiences in the frictionless
case.

For ease of exposition, the notation for the remainder of the paper will not reference the arc
length (s) in variables.
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Assuming that the relative rotation of tube i with respect to tube i + 1 is about the z-axis,
Coulomb friction introduces both a force and torque at the interface given by

(15)

Given this description, the distributed forces and torques have the following nonzero
components.

(16)

(17)

Combining equations (14),(15) and taking the magnitude,

(18)

Thus (15) can be rewritten purely in terms of fi:

(19)

To modify the governing equations to include the friction force and torque, we need to
incorporate their effect into the expression for u̇iz(s) in (10).

From [1] and [2], this expression was obtained using the z component of the moment
equation in (7) with mi and ṁi replaced by ui and u̇i, respectively obtained from the
constitutive model (2). This results in

(20)

Substituting τiz = τfiz to combine (19) and (20) yields

(21)

We now need an expression for computing fi. Recall the shear force equation from (7),

(22)

In this equation we first solve for ni using the rearranged moment equation of (7),

(23)

Due to fact that ni here is premultiplied by [v], this equation only yields explicit values for
nix and niy. The value of niz can be found by integrating the z component of the shear force
equation,

(24)

Lock and Dupont Page 6

IEEE Int Conf Robot Autom. Author manuscript; available in PMC 2012 February 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



using the values of nix and niy found above. Note that this adds a new state variable per tube
to the overall integration. We now solve for fi by premultiplying (22) by [v],

(25)

taking the derivative with respect to arc length of (23),

(26)

and finally setting the right-hand sides equal to yield:

(27)

Note that only the x and y components of üi are required to solve for fi and recall that the
curvature at a give cross-section is given by

(28)

Using the formula for the rotation matrix derivative about z,

(29)

the derivative with respect to arc length of (28) is

(30)

and the second derivative is:

(31)

The value in the ith tube's own frame is:

(32)

Substituting (31)-(32) into (27) gives an equation for fi in which the only unknown is u̇iz.
When combined with (21), the result is an implicit equation in u̇iz that must be solved
(presumably by root-finding) at each step of the integration.

C. Effect of Distributed-force Friction on Tube Twisting
Simulation was used to evaluate the frictional kinematic model derived above for pairs of
tubes comparable to those described in the experiments of section III. These tubes are of
equal pre-curvature and bending stiffness. Consequently, their combined curvature varies

Lock and Dupont Page 7

IEEE Int Conf Robot Autom. Author manuscript; available in PMC 2012 February 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



between the pre-curvature value and zero as they are rotated with respect to each other. It
was found that as frictional torque due to distributed forces is varied (0 ≤ μ ≤ ∞), there is
little change in the twisting of the tubes.

As an example, the tube parameters of tube pair B given in Table 1 and Table 2 were used to
compute the configuration in which the tubes are rotated by π/2 with respect to each other at
their base. As shown in Fig. 3 for the frictionless case, the distributed forces between the
tubes are close to their maximum values and, consequently, the effect of friction due to these
forces should also be maximized. Using the equations from section II.B, the total distributed
force, f1, distributed normal force, fn1, and distributed friction torque, τ1z, were computed
and their magnitudes are plotted as a function of friction coefficient in Fig. 4. It can be
observed that, as the friction coefficient μ is increased, the distributed normal force
magnitude asymptotically approaches zero while the distributed friction torque
asymptotically approaches a finite value. Surprisingly, the total distributed force magnitude
remains constant.

Examining the normal and tangential components of the distributed force vector reveals that,
as the friction coefficient increases, the components vary so as to maintain the direction and
magnitude of the total distributed force vector on the cross section. This is depicted in Fig. 5.

Further study of the simulation data revealed that the distributed friction torque when
integrated over the length of the tubes was two orders of magnitude less than the torque
applied at s = 0 to produce the tube rotation α(o) = π / 2.

This is illustrated in Fig. 6 that plots tube twist rate, , (proportional to cross sectional
torque) as a function of arc length. Despite an unrealistically large friction coefficient of μ
=105, the change in twist rate produced by friction is negligible.

Finally, we numerically examined the effect of large distributed frictional torques on the
robot's tip position and similarly showed no appreciable difference.

In summary, for the tubes pairs considered, the frictional torque due to distributed forces has
negligible effect on the shape of the tubes. This conclusion is reinforced by the observation
that when manually twisting a pair of tubes of equal curvature and stiffness, the maximum
friction force is experienced at α(0) = α(L) = π when the curvatures oppose each other and
the tubes are straight.

As shown in Fig. 3, however, the magnitude of the distributed force at the tip (also along the
entire length of the tubes) is zero at this configuration. Recall that the kinematic model also
prescribes that each tube apply concentrated bending moments to the other at their ends.
These moments, proportional to the change in curvature of a tube, take on their maximum
values when the tubes are straight.

D. Lumped Model for Frictional Torques Due to Concentrated Moments
The second potential source of friction torques are the concentrated moments that arise from
the compatibility condition at the boundaries of the tubes and at points of discontinuous pre-
curvature. A concentrated bending moment is, of course, an idealization that follows from
the modeling assumptions. As shown in Fig. 7 for the end of a tube pair (s = L), a
concentrated bending moment can be produced by a force couple acting over a small length
of the tubes.

(33)
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In the limit of zero clearance between the tubes, the force goes to infinity and the moment
arm goes to zero such that the product produces a finite bending moment given by (33).

Each of these concentrated forces will produce a concentrated frictional torque acting on the
tubes. The magnitudes of both are inversely proportional to changes in the moment arm, ε.
To accurately solve for both F and ε would involve modeling the finite clearances between
the tubes and solving for where along the length contact occurs between the tubes.

A simpler alternative approach is to make the assumptions that the moment arm ε is both
small and approximately constant as the tubes are rotated. The force magnitudes can then be
taken as proportional to the bending moment. This results in a very simple formulation for
computing friction torque arising from the concentrated bending moments

(34)

Since this torque is applied at the ends of the tubes and at points of discontinuous curvature,
it enters the equations as a boundary condition with the second equation of (12) replaced by

(35)

As with standard friction coefficients, the value of  should be estimated from
experimental data.

III. EXPERIMENTS
A sequence of experiments was performed to compare the predictions of the frictionless
model with the lumped friction model of section II.D. Two tube pairs of nearly equal
curvature and stiffness were used as depicted in Fig. 9. The diameters of the tubes are given
in Table 1 and the dimensions of the fabricated tubes are given in Fig. 8 and Table 2. To
solve the forward kinematics, [1],[2] require the bending and torsional stiffnesses of the
tubes. Given that the tubes are of the same alloy and were processed similarly, the stiffness
of the tubes should be computable from moments of inertia and the Young's modulus.
Stacking the tolerances for inner and outer diameters of tube pairs, however, produces large
variations in stiffness ratio. Instead, the stiffnesses of the outer tubes were computed as
above and the stiffnesses for the inner tubes were calculated from the calibrated stiffness
ratios. These calibrated stiffness ratios were computed by measuring the individual tube pre-
curvatures and the pair-wise combined curvature for αi(s) = π using a camera measurement
system (Vision Appliance, Dalsa, Inc.).

For these tube dimensions, tip deflection due to gravity (< 0.3 mm) was within the
measurement error of the camera system (±0.5 mm) and so its effects were neglected in the
experiments.

Experiments were performed on two tube pairs (labeled A and B) of identical cross sections
(Tube 1 and 2 stock) and length, but of different pre-curvatures as shown in Fig. 8 and
described in Table 2. Each tube is glued into a collar as shown and mounted in the motor
drive system as shown in Fig. 9. Motor positioning accuracy is better than 0.1 degrees. It is
necessary to relate α2(0) measured at the proximal end of the curved portion of the tubes to
the relative angle measured by the motor encoders at the tube collars, α2m.This is given by
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(36)

To measure the twist at the distal end of the tubes,α2(L), a circular graduated disk was
attached over the last 2 mm of the outer tube (Fig. 9). A 2 cm long straight wire was
attached to the tip of the inner tube to enable measurement of the tip tangent direction. A
twist pointer was attached perpendicular to this wire adjacent to the disk for twist
measurement and zeroed for the configuration in which the curvature of the tubes is aligned.
The error in measuring tip angle was estimated to be ±2 degrees.

The relative error of the models in predicting tube tip position and tangent direction was
measured using a stereo camera system (Vision Appliance, Dalsa, Inc.) during the twist
experiments described above. The tangent direction at the tip was computed from the
coordinates of the points at the base and tip of the tangent pointer of Fig. 9.

Experimental data for tip twisting, position, and orientation was collected by rotating the
tube pairs quasistatically through a complete revolution in the positive and negative
directions at steps of .

Poisson's ratio (ν) controls how flexible the tubes are in bending versus torsion. This value is
commonly reported as 0.3-0.35 for solid Nitinol specimens. It was determined, however,
that a value of ν = 0.6 provides a much better fit to the frictionless torsional model as shown
in Fig. 10 and so this value was used for the evaluation of the friction model.

A. Torsional Twisting of the Tubes
Fig. 11 and Fig. 12 show the collected data and model predictions for the torsional twisting
from the base to the tip of the tubes. The frictional model is dependent on the direction of
rotation, and thus produces a pair of s-shaped ‘envelope’ curves. These predictions match
well the experimental envelope that is also shown in the figures.

These figures clearly demonstrate the predictive capability of the frictional model in
comparison to the frictionless torsional model. They also validate that the experimental
‘envelope’ can be explained in large part by tip friction.

B. Tip Position and Tangent Direction
Table 3 reports position and tangent direction error for the two sets of tubes at six values of
α2m. The mean, standard deviation and maxima are also reported for the complete data sets
of Fig. 11 and Fig. 12. To visualize the workspace of the tube pairs, Fig. 13 depicts the
torsionally rigid solutions [2] for Tube Pair B at the six values of α2m reported in the table.

As can be seen from Table 3, the frictional and frictionless models are in agreement at α2m =
0, while they diverge significantly at α2m = π where the concentrated bending moments at
the tips of the tubes, and hence friction, are largest. Note also that the frictional model shows
both a larger absolute and relative improvement over the frictionless model in tube pair B
(which has a larger pre-curvature).

IV. CONCLUSIONS
In this paper, the frictional contributions of two types of tube interaction forces have been
studied. It has been shown that the frictional torques arising from distributed contact forces
between the tubes can be included in the kinematic model at the expense of solving a root
finding problem at each step of integration with respect to arc length. It was also observed,
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however, that this source of friction produced a negligible amount of tube twisting and so
could not explain the experimentally observed behavior.

A second model was also introduced to predict the frictional torque associated with
concentrated bending moments. In this case, the frictional torques are incorporated into the
kinematic model as boundary conditions. For the experimental tube pairs, this model
provides an improvement in overall position and orientation accuracy, and greatly reduces
maximum error.
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Fig. 1.
Concentric tube robot composed of three telescoping sections with tip-mounted forceps.
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Fig. 1.
Tube coordinate frames are denoted Fi(s). The relative z-axis twist angle between tube frame
F0(s) and frame Fi(s) is θ(s).
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Fig. 2.
Distributed forces and torques applied to tube i by outer neighbor tube i + 1

Lock and Dupont Page 14

IEEE Int Conf Robot Autom. Author manuscript; available in PMC 2012 February 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Distributed force magnitude at s = L versus relative rotation angle at s = 0 for tube pair B.
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Fig. 4.
Numerically computed values of distributed friction torque,τ1z ×103 (dashed line), total
distributed force,  (solid black line) and normal distributed force,  (grey line), versus
friction coefficient μ. Values are for the tip of tube pair B(s = L)when rotated to α(0) = π/2.
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Fig. 5.
Distributed normal, tangent, and total forces on a cross section for two values of friction
coefficient. Total force direction and magnitude is preserved.
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Fig. 6.
Simulated tube twist rate, , without friction (solid)and with friction (dashed, μ =
105)versus arc length, s, for α(0) = π/2. Tube parameters are from experimental tube pair B.
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Fig. 7.
Distal end of tube pair showing concentrated moment modeled as a force couple.
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Fig. 8.
Dimensions of tube pairs
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Fig. 9.
Tube pair showing graduated disk, twist pointer and tangent pointer.
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Fig. 10.
Effect of Poisson's ratio on relative torsional twist angle versus motor angle. Calculated
using the frictionless kinematic model for Tube pair B. v = 0.6 (solid black line) and v = 0.3
(dashed line).
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Fig. 11.
Effect of boundary friction modeling on relative torsional twist angle versus motor angle for
tube pair A. Circles are data collected with clockwise rotation, diamonds are data collected
with counterclockwise rotation. The middle solid s-curve represents the frictionless torsional
model and the lower and upper dashed lines represent the frictional model with clockwise
and counterclockwise rotation respectively.
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Fig. 12.
Effect of boundary friction modeling on relative torsional twist angle versus motor angle for
tube pair B. Data and curves as in Fig. 11.
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Fig. 13.
Illustration of six points shown in Table 3 as calculated by the torsionally rigid frictionless
model for tube pair B.
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Table 1

Tube Stock Used in Experiments.

Tube 1 2

Outer Diameter (mm) 2.77+/-0.01 2.41+/-0.01

Inner Diameter (mm) 2.55+/-0.01 1.97+/-0.01
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Table 2

Tube pair parameters.

Tube Pair A B

r1 (mm) 231 154

r2 (mm) 243 154

Stiffness (tube 1 / tube 2) 0.0334/0.427 0.0334/0.0511
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