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Abstract

The level and pattern of nucleotide variation in duplicate gene provide important information on the evolutionary history of
polyploids and divergent process between homoeologous loci within lineages. Kengyilia is a group of allohexaploid species
with the StYP genomic constitutions in the wheat tribe. To investigate the evolutionary dynamics of the Pgk1 gene in
Kengyilia and its diploid relatives, three copies of Pgk1 homoeologues were isolated from all sampled hexaploid Kengyilia
species and analyzed with the Pgk1 sequences from 47 diploid taxa representing 18 basic genomes in Triticeae. Sequence
diversity patterns and genealogical analysis suggested that (1) Kengyilia species from the Central Asia and the Qinghai-
Tibetan plateau have independent origins with geographically differentiated P genome donors and diverged levels of
nucleotide diversity at Pgk1 locus; (2) a relatively long-time sweep event has allowed the Pgk1 gene within Agropyron to
adapt to cold climate triggered by the recent uplifts of the Qinghai-Tibetan Plateau; (3) sweep event and population
expansion might result in the difference in the dN/dS value of the Pgk1 gene in allopatric Agropyron populations, and this
difference may be genetically transmitted to Kengyilia lineages via independent polyploidization events; (4) an 83 bp MITE
element insertion has shaped the Pgk1 loci in the P genome lineage with different geographical regions; (5) the St and P
genomes in Kengyilia were donated by Pseudoroegneria and Agropyron, respectively, and the Y genome is closely related to
the Xp genome of Peridictyon sanctum. The interplay of evolutionary forces involving diverged natural selection, population
expansion, and transposable events in geographically differentiated P genome donors could attribute to geographical
differentiation of Kengyilia species via independent origins.
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Introduction

Duplication is a prominent feature of plant genomic architec-

ture. Genome duplication or polyploidy provides a reservoir of

duplicate genes as substrates for potential evolutionary innovation

[1]. Analysis of the levels of diversity and the patterns of

substitution in duplicate gene not only traces evolutionary history

of polyploids [2], but also provides insight into how the evolu-

tionary process differs between lineages and between homoeolog-

ous loci within lineages [3,4]. Theoretical and empirical

investigation suggested that the diversity of duplicate gene is

unlikely equivalent, and may arise from various forms of natural

selection [3,5–7], population size and history [8], introgression [9],

mating system [10], recombination [11], mutation rate [6], and

gene conversion [12]. It has been reported that transposable

element indels shaped the homoeologous loci, which was

responsible for the patterns of diversity of duplicate gene [13].

In addition, forces acting on the levels and patterns of diversity

also arise from the domestication bottlenecks [14]. Therefore,

differences in the levels and patterns of nucleotide diversity of

duplicate gene may reflect numerous forcing factors. To segregate

the effects of various forcing factors, it is necessary to obtain

evolutionary dynamic data from additional homoeologous loci

within a given phylogenetic framework [3].

Kengyilia Yen et J. L. Yang, a polyploid perennial genus in the

wheat tribe (Poaceae: Triticeae), includes about 22 perennial

species distributed in a different range of natural habitats over the

upper and middle mountain ranges of Central Asia and the

Qinghai-Tibetan Plateau [15]. Cytogenetic evidence suggested

that Kengyilia species arose from two hybridization events followed

by genome doubling of three ancestral diploid species with

different genomes St, Y and P [15–19]. The St and P genomes are

derived from Pseudoroegneria (Nevski) Á Löve and Agropyron Gaertn.,

respectively [20]. It is unknown where the Y genome originates,
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although it is a fundamental Kengyilia genome [19]. Dewey [21]

considered that the Y genome has its origin in Central Asia or the

Himalaya region, and may be extinct. Analysis of some StY

genome species using b-amylase gene sequences yielded distinct

presumed Y-genome starch synthase sequences [22]. Based on

ITS sequence analysis, Liu et al. [23] suggested that the Y genome

might originate from the St genome. However, data presented by

Sun et al. [24] suggested that the Y genome is sister to the W and P

genomes. Therefore, the origin of Y genome is open for further

study.

Previous studies based on RAPD (Random amplified polymor-

phic DNA polymorphism) [25], RAMP (Random Amplified

Microsatellite Polymorphism) [26], C-banded karyotypes [27],

and ITS sequence [28] suggested that the pattern of evolutionary

differentiation of Kengyilia species associated with geographical

origin from Central Asia and the Qinghai-Tibetan plateau. Zhou

et al. [25] speculated that the pattern of evolutionary differenti-

ation of Kengyilia species might genetically arise from its parental

lineages with two different geographical origins (Central Asia and

The Qinghai-Tibetan plateau). Based on the cytogenetic and

geographic data, Yen et al. [19] hypothesized that the biological

factors from diploid Agropyron (P genome) species might play an

important role in influencing the genetic differentiation of Kengyilia

species. While these studies add to our understanding of phylogeny

and genetic differentiation of Kengyilia, little is known about the

evolutionary forces acting on the geographical differentiation of

Kengyilia, and further information on whether the biological factors

from the P genome influences the patterns of genetic diversity of

Kengyilia species is still outstanding.

Phosphoglycerate kinase (Pgk1), a key ATP-generating enzyme

in the glycolytic pathway, catalyzes the conversion of 1, 3-

diphosphoglycerate to 3-phosphoglycerate. Analysis of the Pgk1

gene showed that it is present as a single copy per diploid

chromosome in grass [29]. The Pgk1 gene has been successfully

used to study the phylogeny and evolutionary history of Triticum/

Aegilops complex [30,31]. In this study, three homoeologous copies

the Pgk1 gene were isolated from each the fifteen sampled Kengyilia

species and analyzed with those from 47 diploid taxa representing

18 basic genomes in Triticeae. The objectives were to: (1)

document the patterns of molecular evolutionary divergence

among homoeologues of the Pgk1 gene in hexaploid StYP Kengyilia

and between polyploidy and its diploid genome donor; (2)

determine whether the patterns of Pgk1 sequence variation within

the P genome lineages reflects the geographical differentiation of

Kengyilia species; (3) explore evolutionary forces acting on the

Kengyilia species with different geographical region; (4) identify the

possible origin of the Y genome.

Materials and Methods

Taxon sampling
Fifteen Kengyilia species were included in this study and were

analyzed together with 47 diploid taxa representing 18 basic

genomes in the tribe Triticeae (Table S1). Pgk1 sequences for 9

accessions representing the S, D, I, R and A genomes were

obtained from published data [30]. The remaining Pgk1 sequences

are new data and have been deposited in GenBank. Bromus inermis

L. was used as outgroup. The seed materials with PI and W6

numbers were kindly provided by American National Plant

Germplasm System (Pullman, Washington, USA), while the seed

materials with ZY and Y numbers were collected by ourselves,

which no specific permit is required. The plants and voucher

specimens are deposited at Herbarium of Triticeae Research

Institute, Sichuan Agricultural University, China (SAUTI).

DNA amplification, homoeologous sequence isolate, and
sequencing

DNA extraction followed a standard CTAB protocol [32]. The

Pgk1 gene was amplified with the Pgk1-specific primers PgkF1 (59-

TCGTCCTAAGGGTG TTACTCCTAA-39) and PgkF2 (59-

AAGCTCGCGCCACCACCAGTTGAG-39). PCR was conduct-

ed under cycling conditions reported previously [29]. PCR

products were cloned into the pMD18-T vector (TaKaRa)

following the manufacture’s instruction.

PCR amplicons of single-copy nuclear genes from allopolyploid

species will produce a heterogeneous mix of homoeologues. To

separate the homoeologues of the Pgk1 gene from each Kengyilia

accession, we performed the following process. Firstly, approxi-

mately 30 positive clones from each accession were screened by

direct PCR using primer PgkF1 and M13R (on the side of the

cloning site in the plasmid). Secondly, St-type (59-GGTA-

TTCTTGTGTTCCACACCA-39) and P-type (59-ATCZAGA-

CYTCTAATCAAGCA-39) Pgk1-specific primers were designed

and used each together with the reverse primer PgkF2 to screen

the St- and P-type Pgk1 sequences from above 30 positive clones

with Pgk1 inserts, respectively. The positive clones containing the

Y-type Pgk1 sequences were also obtained. The cloned PCR

products were commercially sequenced in both directions by

TaKaRa Biotechnology Co. Ltd. (Dalian, China), and an

additional internal primer (59-GATGGAGCTGTTTCAAACC-

39) was used to sequence the internal portion of the cloned PCR

products. All the sequences from Kengyilia species were determined

based on at least five independent St-, Y- and P-type clones,

respectively.

Data analysis
Multiple sequences were aligned using ClustalX [33] followed

by manual adjustment. To reduce the size of the matrixes and the

possible impact of PCR artifacts, unique substitutions in single

clones were ignored and several identical sequences were

represented by a single sequence in alignments. Following an

initial phylogenetic analysis, the number of sequences used for

alignment was reduced by keeping only one sequence if more

sequences of the same accession formed a monophyletic group.

To assess the divergence and genetic relationships between

allopolyploids and its diploid progenitors, nucleotide diversity was

estimated by Tajima’s p [34], Watterson’s h [35], the number of

fixed differences (SF) and the numbers of shared polymorphisms

(SS) [36]. Tests of neutrality including Tajima’s, and Fu and Li’s D

statistic were performed as described by Tajima [34], and Fu and

Li [37]. Significance of D-values was estimated with the simulated

distribution of random samples (1000 steps) using a coalescence

algorithm assuming neutrality and population equilibrium [38].

To detect selective constraints on the coding portions (the

introns were excluded) of the homoeologous Pgk1 gene, the ratio of

nonsynonymous to synonymous substitution (dN/dS) were com-

puted using the modified Nei-Gojobori method in MEGA 4.0 [39]

and the single likelihood ancestor counting (SLAC) approach

implemented by the Datamonkey analysis [40]. In the modified

Nei-Gojobori analysis, the significance of difference between dN

and dS was estimated using the Z statistics, with standard errors

based on 1000 bootstrap replicates using MEGA 4.0 [39]. In

SLAC analysis, a 95% confidence interval (95% C.I.) for the ratio

of dN to dS was estimated using profile likelihood [40]. We also

performed the McDonald–Kreitman (1991) test on the coding

portions of the homoeologous Pgk1 gene using DnaSP 4.10.9 [41].

Significance of the test was determined by a Fisher exact test [42].

Phylogenetic analyses were conducted using maximum likeli-

hood (ML) and Bayesian inference (BI). The evolutionary model

Evolution of the Pgk1 Gene in Polyploid Kengyilia
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used for the phylogenetic analysis was determined using

ModelTest v3.0 with Akaike information criterion (AIC) [43].

The optimal model identified was GTR+G+I. ML analysis was

performed using PAUP*4.0b10 (Swofford D L, Sinauer Associates,

http://www.sinauer.com). ML heuristic searches were performed

with 100 random addition sequence replications and TBR branch

swapping algorithm. The robustness of the trees was estimated by

bootstrap support (BS) [44]. BI analysis was performed using

MrBayes v3.0 [45]. Four MCMC (Markov Chain Monte Carlo)

chains (one cold and three heated) were run for 1,000,000

generations. The first 2500 trees were stationary discarded as

‘‘burn-in’’. The remaining trees were used to construct the 50%-

majority rule consensus trees. The statistical confidence in nodes

was evaluated by posterior probabilities (PP).

Clock-like evolution of Pgk1 sequences within Kengyilia and its

putative diploid species was evaluated with a likelihood ratio test

comparing the likelihood scores from the unconstrained and clock-

constrained analyses, implemented in PAUP*4.0b10. Substitution

rates were significantly heterogeneous (x2 = 173.44, df = 67,

P,0.0001), implying a very poor fit to the molecular clock.

Therefore, divergence times with 95% confidence intervals were

estimated using Bayesian relaxed molecular clock method,

implemented in BEAST v1.4.6 [46]. The lack of fossils for

Triticeae precluded a direct calibration of tree topologies. Instead,

molecular dating was based on the intron region of the Pgk1 gene

clock of 0.0051 substitutions per site per MY (million year) [29].

Calibration points were performed using a relaxed uncorrelated

lognormal molecular clock. A Yule speciation tree prior was

furthermore specified, which assumes a constant speciation rate

among lineages, with a log-normal prior for birth rate. MCMC

searches were run for 10,000,000 generations under GTR+I

model (with the associated parameters specified by ModelTest as

the priors). Tracer 1.4 [47] was used to ensure the convergence of

the mixing in terms of the effective sample size (ESS) values and

the coefficient rate. Resulting trees were analyzed using TreeAn-

notator available in BEAST where the burn-in (2000 trees) was

removed and a maximum credibility tree was constructed. Trees

were then viewed in FigTree v. 1.3.1 (http://tree.bio.ed.ac.uk/).

Results

Sequence analysis
Following the screen of Pgk1 homoeologues, three distinct types

of Pgk1 sequences (St-, P- and Y-type) were obtained from all 15

Kengyilia species. At least 15 positive clones (including 5 St-type, 5

P-type and 5 Y-type clones) were sequenced from each accession.

In cases when multiple identical sequences resulted from cloned

PCR products of one accession, only one sequence was included in

the data set. Consequently, 45 unique sequences were obtained

and analyzed together with those from 47 diploid taxa

representing 18 basic genomes in Triticeae.

The DNA sequence of the Pgk1 gene includes 5 exons and 4

introns, which was in agreement with previous studies [29,30].

The sequence comparison from all the species studied here showed

that the length of DNA sequences ranged from 1341 bp to

1484 bp, and the DNA sequences in most accessions were

,1390 bp. Pgk1 sequence matrix including both exons and

introns contains 1522 characters, of which 20.04% (305/1522)

were variable, and 8.74% (133/1522) were parsimony informa-

tive. Sequence alignment showed that an 83-bp insertion was

detected for the P-type sequences at position 1295–1377 in the

intron region from eight Kengyilia species (K. longiglumis, K. mutica, K.

melanthera, K. hirsuta, K. stenachyra, K. rigidula, K. kokonorica and K.

grandiglumis), two Agropyron mongolicum accessions (PI 531543 and PI

499392) and eight Agropyron cristatum accessions (Y2862, ZY08013,

ZY08042, ZY09022, ZY08048, ZY09088, ZY08093 and

ZY09005) (Figure 1, A). Secondary structure analysis indicated

an inverted-repeat region in the 83-bp insertion (Figure 1, B).

BLAST search against the transposable elements (TEs) stored in

the TREP (Triticeae Repeat) showed that the 83-bp insertion

belongs to MITE stowaway element.

Phylogenetic analyses
To reveal the putative genome donors of Kengyilia, the Pgk1

sequences of all the polyploid species were included in the

phylogenetic analyses (ML and BI), together with 47 diploid taxa

representing 18 genomes in Triticeae. ML analysis yielded a single

phylogenetic tree (2Lnlikelihood = 9139.1240), with the following

estimated ML parameters: the assumed nucleotide frequencies A:

0.2682, C: 0.1918, G: 0.2332, T: 0.3068, the proportion of

invariable sites = 0.2519, gamma shape parameter = 0.6693. ML

and Bayesian analyses recovered the same topology. The tree

illustrated in Figure 2 was the ML tree with posterior probabilities

(PP) above and bootstrap support (BS) below branches.

The phylogenetic tree showed that the St-, P- and Y-type

sequences from Kengyilia species were split into three well

supported clades (Figure 2). The Clade I included the P-type

sequences of Kengyilia and the sequences of Agropyron (91% PP and

71% BS). Three subclades (A, B and C subclade) with high

statistical support were recognized in this clade. Subclade A

included all the Kengyilia species and Agropyron cristatum accessions

from the Qinghai-Tibetan Plateau and Agropyron mongolicum from

the Alashan (margin of the Qinghai-Tibetan Plateau)(100% PP

and 87% BS). It was worth mentioning that the sequence in

subclade A had an 83-bp MITE stowaway insertion at position

1295–1377. Subclade B contained all the Kengyilia species from

Central Asia and one A. cristatum accession from Central Asia (PI

486160) (99% PP and 78% BS). Subclade C consisted of four A.

cristatum accessions from Central Asia and three A. cristatum

accessions from East Asia (100% PP and 99% BS). The Clade II

comprised all the St-type sequences of Kengyilia and the sequences

from Pseudoroegneria species and Lophopyrum elongatum (100% PP and

98% BS). In this Clade, Pseudoroegneria spicata and Lo. elongatum were

grouped with six Kengyilia species from the Qinghai-Tibetan

Plateau (100% PP and 83% BS). Kengyilia longiglumis from the

Qinghai-Tibetan Plateau was clustered with all the sampled

Kengyilia species from Central Asia (92% PP and 74% BS). Three

Pseudoroegneria species formed paraphyletic, and Kengyilia stenachyra

was placed at the base of the Clade II. The Clade III included all

the Y-type sequences of Kengyilia and the sequence from Peridictyon

sanctum (100% PP and 86% BS). In Clade III, Kengyilia kaschgarica

was grouped with Kengyilia gobicola with 100% PP and 61% BS,

while the remaining Kengyilia species formed one subclade (100%

PP and 64% BS).

Nucleotide diversity and strength of selection
Two overall measures of nucleotide diversity, p and hw, were

separately calculated for the St, Y and P genomes of Kengyilia, and

for Agropyron (Table S2). The estimates of nucleotide diversity in

the P genome of Kengyilia from the Qinghai-Tibetan Plateau were

p = 0.0105, hw = 0.0128, while in the P genome of Agropyron from

the Qinghai-Tibetan Plateau and its margin region (Alashan), the

estimates of nucleotide diversity were p = 0.0064, hw = 0.0093.

The estimates of nucleotide diversity in the P genome of Kengyilia

from Central Asia were p = 0.0088, hw = 0.0120, while in the P

genome of Agropyron from Central Asia, the estimates of nucleotide

diversity were p = 0.0142, hw = 0.0170. p was also separately

calculated for synonymous and nonsynonymous sites. The overall

Evolution of the Pgk1 Gene in Polyploid Kengyilia
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number of polymorphic sites at homoeologous loci of Pgk1

sequence from Kengyilia St, Y and P genomes was 51, 85, and

82, respectively. The overall number of polymorphic sites in the P

genome of Kengyilia was lower than that in the P genome of diploid

Agropyron. The Tajima [34] and Fu and Li’s [37] tests were

conducted on each of eight data sets (Table S2). Tajima’s and Fu

and Li’s D values of the P genome lineage from the Qinghai-

Tibetan Plateau were 20.9473 (P.0.05) and 20.8423 (P.0.05)

Figure 1. Pgk1 gene sequence analysis. (A) Partial alignment of the amplified sequences of the Pgk1 gene from Kengylia and its putative diploid
species. (B) Secondary structure of MITE elements.
doi:10.1371/journal.pone.0031122.g001
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for Kengyilia, and 21.5089 (P,0. 05) and 21.9190 (P,0. 05) for

Agropyron, respectively. The same parameters in the P genome

lineage from Central Asia were 21.5244 (P,0. 05) and 21.5709

(P,0. 05) for Kengyilia, and 21.2570 (P,0. 05) and 21.2570

(P,0. 05) for Agropyron, respectively.

Speciation genetics suggested that hybridization or differentia-

tion between two species can be inferred through comparisons of

shared nucleotide polymorphisms with fixed differences [48].

Closely related taxa are expected to harbor a relative higher level

of shared polymorphisms because the divergence event has not

lasted long enough to erase all ancestral polymorphisms [36]. The

number of shared and fixed differences at Pgk1 locus between

Kengyilia and its putative diploid donor were shown in Table 1.

Three shared polymorphisms and no fixed difference were

observed between the St-type sequence of Kengyilia and that of

Pseudoroegneria. Thirty-four shared polymorphisms and no fixed

difference were found between the all the sampled P-type sequence

of Kengyilia and that of Agropyron. For the P genome lineage of

sympatric origin, the number of shared polymorphisms was higher

than the number of fixed difference, while for the P genome

lineage of allopatric origin, the number of shared polymorphisms

was lower than the number of fixed difference.

The non-synonymous to synonymous rate ratio dN/dS is

indicative of the change of selective pressures. The dN/dS ratios

of .1, = 1 and ,1 indicate positive selection, neutral evolution

and purifying selection on the coding portions, respectively. Prior

to the estimation of selective constraints on the coding portions of

the Pgk1 gene in Kengyilia St, Y and P genome and its putative

diploid genome donor, the average non-synonymous (dN) and

synonymous (dS) distances with standard errors were calculated

using the modified Nei-Gojobori method (Table S3). Both Z-Test

and SLAC statistics showed that almost all the dN/dS values were

significantly ,1, strongly indicating that the Pgk1 gene in the St, Y

and P genomes of Kengyilia and its putative diploid genome donor

have subjected to purifying selection. Comparison among the Pgk1

coding portions of Agropyron lineages with different geographical

region revealed that the dN/dS value of the Qinghai-Tibetan

Plateau Agropyron was not significantly (Z-test with P = 0.1455)

below 1 and nearly 3-fold higher than that in the Central Asia

Agropyron. The McDonald–Kreitman (MK) test of selective

pressures was performed to compare the Qinghai-Tibetan Plateau

P genome lineage with Central Asia P genome lineage. Total 19

mutations were found in the Qinghai-Tibetan Plateau Agropyron, of

which 11 were nonsynonymous and eight were synonymous.

Among the 19 mutations found in Central Asia Agropyron, six were

nonsynonymous and 13 were synonymous. Significant departure

from neutrality was detected for Agropyron (P = 0.037) from the

Qinghai-Tibetan Plateau.

The BEAST analyses of the intron region of the Pgk1 sequences

from Kengyilia and its putative diploid species generated a time-

calibrated tree (Figure 3). Under a lognormal relaxed clock, the

coefficient of rate variation was estimated to be 0.985 (95% C.I.,

0.653–1.352), indicating that relaxed clock was appropriate. The

birth rate indicated by the Yule prior is 0.474 (95% C.I., 0.323–

0.622). The mean ages with 95% confidence intervals were

indicated in the chronogram (Figure 3). Time calibration analysis

demonstrated that the divergence time of the St, Y, and P genome

lineages was 4.31 MYA (95% C.I., 2.72–7.12), 5.30 MYA (95%

C.I., 3.48–8.25), and 7.31 MYA (95% C.I., 4.72–9.01), respec-

tively. The split between the P genome lineages from the Qinghai-

Tibetan Plateau and from Central Asia took place about 4.59

MYA (95% C.I., 3.42–6.81).

Discussion

Pgk1 homoeologues and evolutionary history of Kengyilia
Cytogenetic analyses have concluded that all the Kengyilia species

contain the StYP genomic constitutions [15–19]. Three homoe-

ologous types of the Pgk1 gene, St-, Y- and P-type, were obtained

from all the polyploid Kengyilia species in the present study.

Phylogenetic analysis showed that the St-type homoeologous

sequences were grouped with the sequences of Pseudoroegneria with

100% PP and 98% BS, and the P-type homoeologous sequences

were clustered with the sequences of Agropyron with 91% PP and

71% BS. Wakeley and Hey [36] pointed out that closely related

species are expected to harbor a relative higher level of shared

polymorphisms than fixed differences. Our analysis of shared/

fixed polymorphisms showed that more shared polymorphisms

than fixed differences were observed between the St-type

sequences and the sequences of Pseudoroegneria and between the

P-type sequences and the sequences of Agropyron. Phylogenetic and

diversity analysis thus indicate that Kengyilia is closely related to

Pseudoroegneria and Agropyron. Combined with previous cytogenetic

studies [16,20], it can be concluded that the Pseudoroegneria and

Agropyron species served as the St and P genome donors during the

polyploid speciation of the Kengyilia species.

The Y genome is represented in all the Kengyilia species and

many Asiatic tetraploid and some hexaploids in Triticeae [21]. No

diploid species containing Y have been identified [49]. Chromo-

some pairing analysis indicated low affinities between the St and Y

genomes [50]. ITS sequence data of Liu et al. [23] showed that the

Y genome may be originated from the St genome. RPB2 [24] and

EF-G [51] data suggested that the Y genome was sister to the W

genome and has a different origin from the St genome.

Chromosome pairing suggested that the W genome has very low

Table 1. Estimation of shared polymorphisms and fixed
differences between Kengyilia and its putative diploid
genome donor based on the Pgk1 sequences.

SS SF

St genome lineage

Kengyilia – Pseudoroegneria 3 0

P genome lineage

Kengyilia (QTPa) – Agropyron (QTP) 6 0

Kengyilia (QTP) – Agropyron (CAb) 5 7

Kengyilia (CA) – Agropyron (CA) 9 2

Kengyilia (CA) – Agropyron (QTP) 3 14

Kengyilia (Overall) – Agropyron (Overall) 34 0

aQTP is the abbreviation of the Qinghai-Tibetan Plateau.
bCA is the abbreviation of Central Asia.
doi:10.1371/journal.pone.0031122.t001

Figure 2. Maximum-likelihood tree inferred form the Pgk1 sequence of Kengyila and its affinitive species within Triticeae. Numbers
with bold above nodes are Bayesian posterior probability values $90% numbers below nodes are bootstrap values $50%. The numbers after species
names refer to the distinct homoeologous copy of the Pgk1 gene. The capital letters in bracket indicate the genome type of the species. Different
color labeled the geographic information of Kengyilia species and its affinitive donors.
doi:10.1371/journal.pone.0031122.g002
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homoeology with the St and Y genome [52]. Considering the

suggestion of Torabinejad and Mueller [52], Sun et al. [51]

pointed out that more sequence data are needed to reveal the

relationship of the Y genome with other genomes in Triticeae. In

this study, phylogenetic analysis indicated that the Y-type Pgk1

sequences were distinct from the St- and P-type sequences, which

provides additional support for the independent origin of the Y

genome. In phylogenetic tree (Figure 2), the Y-type sequences

were grouped with the sequences from Peridictyon sanctum (Xp

genome donor). This is in agreement with recent genealogical

analysis of single-copy nuclear gene Acc1 sequence in the species

with Y genome in Triticeae (Sha et al., unpublished data), where

the Y-type Acc1 homoeologues were clustered with the sequences

from Dasypyrum (V genome) species, Heteranthelium piliferum (Q

genome) and Peridictyon sanctum (Xp genome). Therefore, it

suggested that the Y genome may be closely related to the Xp

genome in Peridictyon sanctum.

Geographical differentiation of P genome
Genus Agropyron is the P haplome donor to Kengyilia and contains

approximately eight diploid (PP) or tetraploid (PPPP) or hexaploid

(PPPPPP) species. Agropyron cristatum and A. mongolicum are the only

two diploid species within Agropyron [21]. Phytogeographically, A.

cristatum is widely distributed in Eurasian temperate region, while

A. mongolicum is restricted in some regions of northern China. The

present Pgk1 gene data showed that the sampled A. cristatum from

East Asia, the Qinghai-Tibetan plateau, and Central Asia did not

form monophyletic group but were scattered into three distinct

subclades (subclade A, B, and C). Genetic differentiation among A.

cristatum population based on pairwise FST estimates was relatively

high, ranging from 14.93% to 65.74% (East Asia – Central Asia:

14.93%; the Qinghai-Tibetan plateau – Central Asia: 51.26%;

East Asia – the Qinghai-Tibetan plateau: 65.74%). These results

indicated that A. cristatum populations from different geographical

origins were genetically heterogeneity. High level of genetic

differentiation and divergent population structure of A. cristatum

could be attributed to restricted gene flow caused by geographical

isolation.

Data from RAPD [25], RAMP [26], C-banded karyotypes [27],

and ITS sequence [28] suggested that Kengyilia species were

geographical differentiated. Our phylogenetic analysis of Pgk1

sequences demonstrated that the separation of the P genomes in

Kengyilia species is in good agreement with their geographical

origins – Central Asia and the Qinghai-Tibetan plateau dis-

tinction. The accessions of Kengyilia species and A. cristatum from

the Qinghai-Tibetan Plateau, and A. mongolicum from Alashan is

differentiated from the accessions of Kengyilia species and one A.

cristatum accession from Central Asia. Second, more shared

polymorphisms than fixed differences (Kengyilia (CA) – Agropyron

(CA): 9 vs. 2; Kengyilia (QTP) – Agropyron (QTP): 6 vs. 0) were

observed between the sympatric P genome lineage, while less

shared polymorphisms than fixed differences (Kengyilia (CA) –

Agropyron (QTP): 3 vs. 14; Kengyilia (QTP) – Agropyron (CA): 5 vs. 7)

were found between the allopatric P genome lineage. Third, an

83 bp MITE element insertion in the Pgk1 gene were found in the

P genome of the Qinghai-Tibetan Plateau Kengyilia species and

their sympatric diploid donors, while this element was absent in

the same position of the sequence alignment in the P genome

lineages from Central Asia. Finally, time-calibrated phylogeny

suggested that speciation event of Central Asia Kengyilia species

(about 3.68 MYA) may be prior to that of the Qinghai-Tibetan

Plateau Kengyilia species (about 2.25 MYA). These different lines

indicated that the P genome in Kengyilia species is highly

differentiated according to their geographical origin. The Central

Asia and the Qinghai-Tibetan Plateau Kengyilia species thus have

independent origins.

Recent studies using genetic markers in many genera suggested

that multiple origins (including independent origin) of polyploid

species are the rule rather than the exception [2,53]. A better

understanding of the potential evolutionary outcomes for poly-

ploid populations of independent origin is of particular evolution-

ary interest. Symonds et al. [53] emphasized that the fates of

polyploid populations of independent origins varied depending on

the amount of genetic variation initially contributed by the diploid

progenitors. The present Pgk1 gene genealogical structure and

patterns of shared/fixed polymorphisms indicated the occurrence

of independent origins of Kengyilia species. This offers an

opportunity to address the potential evolutionary outcomes of

independent origins within Kengyilia. On the basis of Pgk1

sequences of the P genome lineage from the Qinghai-Tibetan

Plateau, the level of nucleotide diversity in Kengyilia (p = 0.0105;

hw = 0.0128) was higher than that in diploid Agropyron (p = 0.0064;

hw = 0.0093), and Tajima’s and Fu and Li’s D statistic suggests a

departure from the equilibrium neutral model at this locus, with

an excess of rare sequence variants in Kengyilia species. Greater

diversity could reflect gene flow from diploid Agropyron population.

For the P genome lineage from Central Asia, the level of

nucleotide diversity in Kengyilia (p = 0.0088; hw = 0.0120) was lower

than that in diploid Agropyron (p = 0.0142; hw = 0.0170), and the

values of Tajima’s and Fu and Li’s D statistic in Kengyilia were

significantly negative and lower than the values of same parameter

calculated from Agropyron. This is compatible with a genetic

bottleneck created by recent polyploidization. Diverged levels of

nucleotide suggested that the P genome lineages of Kengyilia with

independent origin have distinct evolutionary potentials.

Evolution of Pgk1 sequences in Kengyilia
Since gene duplication results in functional redundancy,

divergent selective pressure may act on the duplicated copies that

are critical for the subsequent variation, retention or loss of the

duplicated genes [54]. Isolation and characterization of three

divergent Pgk1 homoeologues from all the hexaploid Kengyilia

species studied here suggested the retention of triplicated Pgk1

homoeologues in Kengyilia species. The dN/dS ratio of three

divergent Pgk1 homoeologues was significantly below 1 (Z-test with

P,0.05; SLAC with 95% C.I.: 0–1), suggesting that the Pgk1

sequences are selectively constrained as most mutations in

functional genes are expected to be disadvantageous.

The dN/dS value of the Qinghai-Tibetan Plateau Agropyron was

nearly 3-fold higher than that in Central Asia Agropyron. Significant

MK test (P = 0.037) between them suggested an excess of

nonsynonymous substitutions, which is traditional viewed as an

outcome of positive selection. This appears paradoxical in light of

the strong signature of purifying selection in Pgk1 sequences.

Relaxed purifying selection, selective sweep, and population

expansion may explain this paradox. The relaxed purifying

selection hypothesis is very unlikely because it did not explain

our result of less significant Tajima’s D values in the high dN/dS

group (P = 0.044) than in the low dN/dS group (P = 0.017). The

deficiency of synonymous polymorphisms in the high dN/dS group

Figure 3. A time-calibrated tree inferred form the intron region of the Pgk1 sequence of Kengyila and its putative donors using a
Bayesian relaxed clock method in BEAST.
doi:10.1371/journal.pone.0031122.g003
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in comparison with the low dN/dS group was also not the result of

relaxed purifying selection. The following evidences support the

hypothesis of selective sweep. First, the dN/dS value of the

Qinghai-Tibetan Plateau Agropyron was significantly higher than

that in Central Asia Agropyron. Significant difference in dN/dS ratio

was considered to be a result of selective sweep [55]. Second, our

result showed less levels of nucleotide diversity in the high dN/dS

group than in the low dN/dS group, which is consistent with the

expectation that sweep results in reduced polymorphism in the

high dN/dS group [55]. Third, Palmé et al. [56] emphasized that

selective sweep would cause more negative Tajima’s D and lower

silent diversity in the high dN/dS group than in the low dN/dS

group. Corresponding to this suggestion, the present result showed

that the Tajima’s D value in the high dN/dS group (21.5089) is

more negative than that in the low dN/dS group (21.2570), and

the levels of silent diversity in the high dN/dS group (p = 0.0089) is

less than that in the low dN/dS group (p = 0.0236). Finally, given

that the Pgk1 gene in the Qinghai-Tibetan Plateau Agropyron

population has undergone selective sweep, it is suggested that the

sweep event for the Pgk1 gene in Plateau may be associated with an

evolutionary adaptation to local cold climate conditions. Recent

study focusing on the responses of plant to cold stress has revealed

that Phosphoglycerate kinase (Pgk1) is an up-regulated response

protein to cold stress, a feature of adaptive evolution [57].

Palaeoclimatic evidence indicated that the cold climate effects of

the Qinghai-Tibetan Plateau resulted from its large-scale uplifting

and consequent glacial cycles during the Quaternary (2.4 MYA to

the present) [58,59]. The present molecular dating suggested that

the divergence time of the P genome lineage including the high

dN/dS Agropyron population from the Qinghai-Tibetan Plateau was

dated to 2.25 MYA, and the divergence time of the P genome

lineage including the low dN/dS Agropyron population from Central

Asia was dated to 3.38 MYA. Considering the conversion of low to

high dN/dS value resulting from selective sweep, the age of

selective sweep might have happened <2.3–3.4 MYA. Therefore,

it is possible that a relatively long-time sweep event allow the Pgk1

gene within Agropyron to adapt to cold climate triggered by the

recent uplifts of the Qinghai-Tibetan Plateau. Because demo-

graphic processes such as range expansion can have a similar

impact on DNA variation to that caused by a selective sweep in a

population [60]. It can also not rule out the possibility that

population expansion might have contributed to the present

significant MK tests and difference in the dN/dS ratio. Analysis of

diversity showed that the levels of diversity in the Qinghai-Tibetan

Plateau Agropyron population (p = 0.0089; hw = 0.0093) is signifi-

cant lower than that in Central Asia population (p = 0.0236;

hw = 0.0170), indicating a recent expansion in the Qinghai-

Tibetan Plateau Agropyron population. This suggestion is further

determinative of the more significant negative Tajima’s and Fu

and Li’s D values. Population expansion in associated with

Pleistocene glacial cycles might have accelerated the fixation of

mildly deleterious replacement mutations that became effectively

neutral in the Qinghai-Tibetan Plateau Agropyron populations.

Duplicate genes in polyploid lineages are often preserved in

function by more strongly purifying selection [61]. Comparative

analyses showed that the dN/dS value in the P genome of the

Qinghai-Tibetan Plateau Kengyilia species was lower than that in

their sympatric diploid relatives, indicating that more strongly

purifying selection acts to conserve the function of the Pgk1 gene in

Kengyilia. However, a slightly elevated dN/dS value in the P

genome of the Central Asia Kengyilia species compared to their

sympatric diploid relatives might suffer from polyploidization

bottleneck as suggested by the present estimate of diversity,

because population bottleneck may result in reduced selection

[62].

It is worth mentioning that the dN/dS value of the P genome of

Kengyilia lineage from the Qinghai-Tibetan Plateau (dN/

dS = 0.2645) was higher than that from Central Asia (dN/

dS = 0.2018). Non-significantly negative Tajima’s D value coupled

with greater diversity in the high dN/dS group excluded the

possibility that selective sweep could resulted in the difference in

the dN/dS value of the P genome of Kengyilia. A highly non-

significant difference between this two dN/dS ratios (P = 0.499 by

Fisher’s exact test) based on the McDonald-Kreitman test was

found, rejecting the hypothesis of relaxed purifying selection.

Considering the difference in the dN/dS value of two allopatric

Agropyron lineages, it is possible that the difference in the dN/dS

value of the P genome of two allopatric Kengyilia lineages may be

genetically from geographically differentiated P genome donors

via independent origins. This difference is not completely erased,

although polyploidization bottleneck might occur in Central Asia

Kengyilia lineages and strong purifying selection might act on the

Pgk1 gene in the Qinghai-Tibetan Plateau Kengyilia lineages.
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