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Abstract

Species identification via DNA barcodes is contributing greatly to current bioinventory efforts. The initial, and widely
accepted, proposal was to use the protein-coding cytochrome c oxidase subunit I (COI) region as the standard barcode for
animals, but recently non-coding internal transcribed spacer (ITS) genes have been proposed as candidate barcodes for
both animals and plants. However, achieving a robust alignment for non-coding regions can be problematic. Here we
propose two new methods (DV-RBF and FJ-RBF) to address this issue for species assignment by both coding and non-
coding sequences that take advantage of the power of machine learning and bioinformatics. We demonstrate the value of
the new methods with four empirical datasets, two representing typical protein-coding COI barcode datasets (neotropical
bats and marine fish) and two representing non-coding ITS barcodes (rust fungi and brown algae). Using two random sub-
sampling approaches, we demonstrate that the new methods significantly outperformed existing Neighbor-joining (NJ) and
Maximum likelihood (ML) methods for both coding and non-coding barcodes when there was complete species coverage in
the reference dataset. The new methods also out-performed NJ and ML methods for non-coding sequences in
circumstances of potentially incomplete species coverage, although then the NJ and ML methods performed slightly better
than the new methods for protein-coding barcodes. A 100% success rate of species identification was achieved with the
two new methods for 4,122 bat queries and 5,134 fish queries using COI barcodes, with 95% confidence intervals (CI) of
99.75–100%. The new methods also obtained a 96.29% success rate (95%CI: 91.62–98.40%) for 484 rust fungi queries and a
98.50% success rate (95%CI: 96.60–99.37%) for 1094 brown algae queries, both using ITS barcodes.
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Introduction

DNA barcoding has become increasingly popular as a tool for

species discrimination and identification [1–19], although some

aspects remain controversial [20–34]. As of October 2011, there

were 1, 381, 970 barcodes from 114, 873 species in the Barcode of

Life Database (BOLD, www.barcodinglife.org), covering a very

wide spectrum of species from algae, fungi, bacteria and plants to

invertebrates and vertebrates. The COI barcode has proven to be

a successful species-discriminator in most animal groups, but is

generally less successful elsewhere. BOLD therefore also includes

internal transcribed spacer (ITS) sequences for fungal identifica-

tion and the two chloroplast-encoded genes ribulose bisphosphate

carboxylase (rbcL) and maturaseK (MatK) for plants.

A fundamental issue in DNA barcoding is how best to assign a

query sequence from an unknown specimen to the correct species

in the reference sequence database [15,19,24,25,35–43]. Current-

ly, most empirical studies employ traditional phylogenetic methods

such as Neighbour-joining [1,2,44] to construct an evolutionary

tree with both query and reference sequences. A sequence visually

falling in a single-species clade is treated as the conspecific of that

species. However, if the query falls into a polyphyletic or

paraphyletic clade, assignation to correct species becomes

ambiguous.

More recently, other statistical approaches to assignation have

been suggested including decision theory [11] and Bayesian

methods [36,38,39]. Zhang and colleagues have proposed a neural

network based approach [15,45]. Neural networks were originally

developed to model the function of connected neurons in the brain

[46]. However, their utility as a general computational tool was

realized with the development of the back-propagation method

[47–50]. It has been applied successfully in many fields, including

speech synthesis, handwriting recognition and medical diagnostics.

In molecular genetics it has been applied to some aspects of DNA/

RNA and protein sequence analysis [51,52], such as protein and

ribosomal RNA classification [53–55] and phylogenetic recon-

struction [56]. Some machine learning techniques have also been

proposed for the analysis of DNA sequences, including Classifi-

cation and Regression Trees (CART) [57,58], Random Forest

(RF) [58,59], and Support Vector Machines [60]. All these
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methods, and those based on tree construction, require a prior

alignment of sequences. Sequence alignment is generally straight-

forward for protein-coding regions, such as the COI sequence

proposed as the universal animal barcode, but can be difficult

when barcodes are based on non-coding regions such as 28 S or

ITS which have variable length and indels (gaps). A robust

alignment of non-coding regions can be extremely hard to achieve.

Even if an alignment can be obtained using existing algorithms,

such as those employed in ClustalW (http://www.clustal.org/)

[61], the computation of genetic distances among sequences is still

problematic since there is, so far, no molecular evolutionary model

which simulates the evolution of DNA sequences with indels. The

indels are generally removed or treated as missing data in the

subsequent analysis. Sometimes, indels may be coded as fifth states

or given other codes, introducing extra assumptions. While it is

necessary, for some taxa, to incorporate non-coding barcodes into

the BOLD system, it would be advantageous to eliminate the need

to align these sequences for species identification.

In an attempt to overcome these difficulties, we propose here a

new species identification strategy taking advantage of both

bioinformatics and machine learning as an extension of our prior

back-propagation neural network application [15]. It is especially

aimed at identifying species with non-coding barcodes, a topic

little explored in the current barcoding literature. We test our

methods with four empirical datasets, two representing typical

protein-coding COI barcodes and two using the non-coding

barcode ITS, and compare the results to those from two

traditional barcoding strategies, Neighbor-joining (NJ) [44] and

Maximum likelihood (ML) [62]. We used more than 21,220

random queries against the corresponding reference libraries. We

demonstrate that the new procedures outperform the two

traditional barcoding methods and BP-based methods [15]. This

is largely because sequence alignments are no longer required - a

big advantage for non-coding sequences - and to the saving of

computational time compared to previous BP-based methods [15].

Results

Neotropical bat and Marine fish COI datasets
In total, 8,120 random queries from 766 bat COI sequences were

examined with two traditional methods (NJ and ML) and the two

newly proposed methods (DV-RBF and FJ-RBF) against corre-

sponding reference libraries. 5,180 of these queries were carried out

using 5 repeated random splits, representing complete/balanced

species coverage in the reference library (meaning that all species

from the original database remain in the reference library, see

Materials and Methods). The remaining 2,940 queries were

conducted using five-fold cross-validation, representing incom-

plete/unbalanced species coverage in the reference library (meaning

that some species from the original database might be absent from

the reference library). For the two new methods, 4,122 queries were

performed against the corresponding reference databases (Table 1,

Table S1). In the case of balanced species coverage, both DV-RBF

and FJ-RBF methods achieved 100% success rates (95% CI: 99.70–

100%) with 1,295 random queries each (Figure 1a), while the NJ

and ML methods obtained success rates of 95.75% (95% CI: 94.51–

96.72%), and 87.25% (95% CI: 85.33–88.96%) respectively. For

unbalanced species coverage, with 766 random queries for each of

DV-RBF and FJ-RBF, the NJ method outperformed all other

methods (94.86% with a 95% CI: 92.93–96.28%) compared with

ML 88.97% (95% CI: 86.53–91.01%); DV-RBF 86.18% (95% CI:

83.53–88.46%) and FJ-RBF 81.54% (95% CI: 78.61–84.14%)

(Figure 1a). The slightly better performance of ML than either DV-

RBF and FJ-RBF was without statistical significance (Figure 1 1a).

More than 10,000 (10,040) random replications of queries were

performed for the fish dataset against the corresponding reference

libraries. 6,340 random queries were carried out with 5 repeated

random splits, representing complete/balanced species coverage.

The remaining 3,700 random queries were assigned with five-fold

cross-validation, representing incomplete/unbalanced species cov-

erage in the reference library. For the two new methods, 5,134

queries were performed against the corresponding reference

databases (Table 2, Table S2).

In the situation of complete species coverage, the two new

methods (DV-RBF and FJ-RBF) had 100% success rates (95% CI:

99.75–100%), significantly outperforming the two traditional

methods that gave success rates of 99.05% (95% CI: 98.44–

99.42%) and 93.37 (95% CI: 92.04–94.49%) for NJ and ML

respectively (Figure 1b). However, traditional NJ and ML

approaches significantly outperformed both DV-RBF and FJ-

RBF under the circumstance of unbalanced species coverage

(Figure 1b) (NJ, 98.81% with 95% CI: 97.88–99.33%; ML,

93.72% with 95% CI:91.97–95.11% ; DV-RBF, 88.00% with

95% CI: 85.74–89.93%; FJ-RBF, 87.35% with 95% CI: 85.05–

89.04%). Our results from the bat and fish protein-coding COI

datasets showed that the structure of reference libraries (balanced

versus unbalanced species coverage) could affect species identifi-

cation success rates. The two newly proposed methods perform

very well in the former situation, but less well in the latter.

Rust fungi ITS dataset
Since ITS barcodes were only recently developed as alternative

barcode markers, there are relatively limited data available. We

obtained 85 clean sequences from 14 species of rust fungi and

performed 872 random queries with the four barcoding methods.

540 queries were conducted under the situation of balanced

species coverage (5 repeated random splits) and 332 queries for the

case of unbalanced species coverage (five-fold cross validation,

Table 3). The two new methods (DV-RBF and FJ-RBF)

significantly outperformed the two traditional methods (NJ and

ML) whether or not species coverage in the reference library is

balanced (Figure 1c). For instance, both DV-RBF and FJ-RBF

methods achieved a 96.29% success rate (95% CI: 91.62–98.40%)

for unbalanced coverage while NJ and ML only obtained success

rates of 25.92% (95% CI: 19.27–33.91%) and 14.81% (95% CI:

9.79–21.77%) respectively (Figure 1c). In the situation of balanced

species coverage, traditional NJ and ML methods obtained higher

but still less than 60.00% success rates (NJ, 57.00% with 95% CI:

47.09–67.87% ; ML, 42.16% with 95% CI: 32.12–52.90%;

Figure 1c), again much less than the success rates for the two new

methods (DV-RBF, 75.90% with 95% CI: 65.19–83.82%; FJ-

RBF, 78.31% with 95% CI: 68.30–85.81; Figure 1c; Table S3).

Thus in the case of non-coding barcodes, the two newly proposed

methods (DV-RBF and FJ-RBF) considerably outperformed the

two traditional methods (NJ and ML) regardless of the structure of

reference libraries (balanced versus unbalanced species coverage).

Brown algae ITS dataset
207 ITS sequences of brown algae data from 16 species were

obtained after data cleansing. We performed 2,188 random

queries against corresponding reference libraries with the four

barcoding methods, of which 1,360 were conducted using

repeated random splits (5 times, each 340 queries for each

method), and 828 using five-fold cross-validation (Table 4 and

Table S4). As in the case of the rust fungi ITS dataset, both DV-

RBF and FJ-RBF methods outperformed with statistical

significance the two traditional methods (Figure 1d). A success

rate of 98.52% (95% CI: 96.60–99.37%) was achieved for both

DNA Barcoding via Machine Learning
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DV-RBF and FJ-RBF methods in the case of balanced species

coverage while NJ and ML methods obtained extremely low

success rates of 10.29% (95% CI: 7.49–13.98%) and 7.35% (95%

CI: 5.02–10.62%) respectively (Figure 1d). In the situation of

unbalanced species coverage, DV-RBF and FJ-RBF obtained

somewhat reduced success rates (DV-RBF, 93.71% with 95%

CI: 89.55–96.29%; FJ-RBF, 88.40% with 95% CI: 83.32–

92.08%), but they were nevertheless much larger than those of

the two traditional methods (NJ, 15.45% with 95% CI: 11.16–

21.00%; ML, 38.64% with 95% CI: 32.27–45.43%; Figure 1d).

Processing time
The data analyses in this study were performed on a 3.00 GHz

desktop computer (Intel(R) Core (TM)2, DuoCPU, E8400 @

3.00 GHz62). DV-RBF and FJ-RBF each spent 2.88-7.56 sec-

onds per assignment, while the ML method spent 6.75–

9.08 seconds per assignment exclusive of alignment time,

depending on dataset size (from 68 to 785 reference sequences

in this study). NJ spent less than one second per assignment, but

the necessary sequence alignments can take several hours for a few

hundred sequences.

Discussion

The new methods proposed in this study for barcode-based

species assignations, which combine bioinformatics and machine

learning, provide several advantages over existing methods,

including the earlier BP-based method [15].

Table 1. Species assignments for Neotropical bats [81] based on COI sequences for all 4122 random queries using DV-RBF and FJ-
RBF methods.

No.
Category of
Random Testsa Queryb DV-RBFc Status FJ-RBFd Status

1 random BCBNT34706-Rhynchonycteris naso Rhynchonycteris naso (3e) Rhynchonycteris naso (3e)

2 splits BCBNT35706-Rhynchonycteris naso Rhynchonycteris naso (3) Rhynchonycteris naso (3)

3 BCBNT13006-Diclidurus isabellus Diclidurus isabellus (3) Diclidurus isabellus (3)

4 BCBNT37906-Diclidurus isabellus Diclidurus isabellus (3) Diclidurus isabellus (3)

5 BCBNT14306-Diclidurus isabellus Diclidurus isabellus (3) Diclidurus isabellus (3)

6 BCBNT92206-Chrotopterus auritus Chrotopterus auritus (3) Chrotopterus auritus (3)

7 BCBNT59706-Chrotopterus auritus Chrotopterus auritus (3) Chrotopterus auritus (3)

8 BCBNT04006-Cormura brevirostris Cormura brevirostris (3) Cormura brevirostris (3)

9 BCBNT05606-Cormura brevirostris Cormura brevirostris (3) Cormura brevirostris (3)

10 BCBNT39906-Pteronotus personatus Pteronotus personatus (3) Pteronotus personatus (3)

11 BCBNT09706-Pteronotus personatus Pteronotus personatus (3) Pteronotus personatus (3)

12 BCBNT36906-Noctilio albiventris Noctilio albiventris (3) Noctilio albiventris (3)

� � � � � � � � � � � � � � � � � �
1295 (259|5) BCBNT55406-Lophostoma silvicolum Lophostoma silvicolum (3) Lophostoma silvicolum (3)

1 n-fold BCBNT29806-Trachops cirrhosus Trachops cirrhosus (3) Trachops cirrhosus (3)

2 cross- BCBNT63906-Platyrrhinus helleri Platyrrhinus helleri (3) Platyrrhinus helleri (3)

3 validation BCBNC12906-Rhinophylla pumilio Rhinophylla pumilio (3) Rhinophylla pumilio (3)

4 BCBNT94306-Molossus molossus Molossus molossus (3) Molossus molossus (3)

5 BCBNC01906-Rhinophylla pumilio Rhinophylla pumilio (3) Rhinophylla pumilio (3)

6 BCBNT70306-Phyllostomus discolor Phyllostomus discolor (3) Phyllostomus discolor (3)

7 BCBNT99106-Platyrrhinus aurarius Platyrrhinus aurarius (3) Carollia perspicillata (7)

8 BCBNC16806-Platyrrhinus aurarius Platyrrhinus aurarius (3) Platyrrhinus aurarius (3)

9 BCBN31305-Rhinophylla pumilio Rhinophylla pumilio (3) Rhinophylla pumilio (3)

10 BCBNC06506-Lionycteris spurrelli Lionycteris spurrelli (3) Lionycteris spurrelli (3)

11 BCBN55205-Trachops cirrhosus Trachops cirrhosus (3) Trachops cirrhosus (3)

12 BCBNC16106-Platyrrhinus aurarius Platyrrhinus aurarius (3) Platyrrhinus aurarius (3)

� � � � � � � � � � � � � � � � � �
766 (153|5z1) BCBNT94606-Glyphonycteris daviesi Carollia brevicauda (7) Carollia perspicillata (7)

a: Two categories of randomization were performed in this study. One is random splits which were conducted at species level (5 times) and the other is n-fold cross-
validation which was performed on the whole dataset (n~5 was used). 4122 random queries were generated based on the original 766 bat COI sequences, see text
and Online Appendix I for details.

b: The names of query sequences consist of BOLD sequence accession numbers (a dash was removed before the last two numbers) and their true species names. Only
part of the results were presented here, see Online Appendix I for all 4122 queries and corresponding assignments (singletons were excluded since they can only be
assigned to the wrong speices).

c: DV denotes DV-Curve, RBF indicates RBF neural network, see text for details.
d: FJ denotes FJ-Curve.
e: Ticks and crosses indicate correct and wrong assignments respectively.
doi:10.1371/journal.pone.0030986.t001
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The first advantage is that no sequence alignment is required.

Alignment algorithms and interpretations have been highly

debated topics in the field of evolutionary studies over the past

several decades [63–66]. This reflects the difficulties faced in

aligning homologs, especially from variable-length non-coding

gene regions [64]. Most of the commonly used DNA barcoding

approaches to species identification, including classical phyloge-

netic approaches such as neighbour joining [1,2,44], and decision

theory [11] and Bayesian methods [36,38,39], rely heavily on an

initial robust alignment. Our new methods circumvent this

complex issue by taking advantage of graphical representations

of DNA sequences via a DV-Curve [67] or the newly-developed

(herein) FJ-Curve approach. We demonstrated their successful

applications to four empirical datasets, two of which are based on

the commonly used coding COI barcodes, and two on the more-

recently proposed non-coding ITS barcodes. The new methods

strongly outperformed the existing Neighbor-joining (NJ) and

Maximum likelihood (ML) methods for non-coding barcodes,

while the latter two performed slightly better than the new

methods for coding barcodes in circumstances of potentially

unbalanced species coverage in the reference library. The very

large discrepancy in success between the traditional and the new

methods proposed here in identifying species by ITS sequences is

largely attributable to the former, especially the model-based

methods, relying heavily on molecular evolutionary models which

generally ignore the evolution of indels/gaps. The phylogenetic

signals contained in the indels/gaps will be lost during the analysis.

In the case of balanced species coverage in the reference database,

Figure 1. Success rate of species identification and 95% confidence intervals with the new methods (DV-RBF or FJ-RBF) proposed in
this study based on COI barcodes and ITS barcodes for four empirical datasets.
doi:10.1371/journal.pone.0030986.g001
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the new methods outperformed the traditional NJ and ML

methods for both coding and non-coding barcodes. This indicates

that a complete reference library with balanced species coverage

will improve species identification success rates: a well-curated

reference database is an essential prerequisite for accurate species

identification.

The second advantage, like the BP-based method [15], is that

the new methods are based on fewer assumptions when making

inferences. Most other current methods rely on a number of more

or less restrictive assumptions that may not apply to real data

[15,36]. For example, the decision theory method [11] assumes an

ideal panmictic population for all species or groups without

recombination, migration, and so on, so that the evolutionary

process within each group is governed by only one parameter: the

number of mutational steps between two individuals within that

group [15].

Whether it is worthwhile to adopt a biological, populational

and/or phylogenetic rationale for DNA barcode sequence

assignation, or whether pure statistical approaches are more

efficient, remains largely unaddressed [68]. Species identifications

via DNA barcoding can be complex both in theory and in practice

[19]. Some authors [58] have argued that no one method can

Table 2. Species assignments for Pacific Canadian marine fish [82] based on COI sequences for all 5134 random queries using DV-
RBF and FJ-RBF methods.

No.
Category of
Random Testsa Queryb DV-RBFc Status FJ-RBFd Status

1 random TZFPA15007-Eptatretus stoutii Eptatretus stoutii (3e) Eptatretus stoutii (3e)

2 splits TZFPB55006-Eptatretus stoutii Eptatretus stoutii (3) Eptatretus stoutii (3)

3 TZFPB57806-Eptatretus stoutii Eptatretus stoutii (3) Eptatretus stoutii (3)

4 TZFPB21505-Eptatretus deani Eptatretus deani (3) Eptatretus deani (3)

5 TZFPB32505-Eptatretus deani Eptatretus deani (3) Eptatretus deani (3)

6 TZFPB04605-Porichthys notatus Porichthys notatus (3) Porichthys notatus (3)

7 TZFPB46906-Porichthys notatus Porichthys notatus (3) Porichthys notatus (3)

8 TZFPB04305-Porichthys notatus Porichthys notatus (3) Porichthys notatus (3)

9 TZFPB53606-Squalus acanthias Squalus acanthias (3) Squalus acanthias (3)

10 TZFPB56706-Squalus acanthias Squalus acanthias (3) Squalus acanthias (3)

11 TZFPB55906-Squalus acanthias Squalus acanthias (3) Squalus acanthias (3)

12 TZFPB42505-Cyclothone atraria Cyclothone atraria (3) Cyclothone atraria (3)

� � � � � � � � � � � � � � � � � �
1585 (317|5) TZFPA19707-Malacocottus Malacocottus zonurus (3) Malacocottus zonurus (3)

1 n-fold TZFPB55306-Lycodes diapterus Lycodes diapterus (3) Lycodes diapterus (3)

2 cross- TZFPB69106-Sebastes pinniger Sebastes pinniger (3) Sebastes pinniger (3)

3 validation TZFPA14506-Talismania bifurcata Talismania bifurcata (3) Talismania bifurcata (3)

4 TZFPB71206-Ronquilus jordani Ronquilus jordani (3) Ronquilus jordani (3)

5 TZFPB56606-Sebastes aleutianus Sebastes aleutianus (3) Sebastes aleutianus (3)

6 TZFPA19407-Nectoliparis pelagicus Oncorhynchus tshawytscha (7) Bathyagonus
infraspinatus

(7)

7 TZFPB82006-Sebastes reedi Sebastes reedi (3) Sebastes reedi (3)

8 TZFPB46706-Alosa sapidissima Alosa sapidissima (3) Alosa sapidissima (3)

9 TZFPB87508-Oligocottus maculosus Oligocottus maculosus (3) Oligocottus maculosus (3)

10 TZFPB32805-Alepocephalus tenebrosus Alepocephalus tenebrosus (3) Alepocephalus
tenebrosus

(3)

11 TZFPB58306-Theragra chalcogramma Theragra chalcogramma (3) Theragra
chalcogramma

(3)

12 TZFPB86908-Cyclothone atraria Sebastolobus alascanus (7) Bathyagonus
infraspinatus

(7)

� � � � � � � � � � � � � � � � � �
982 (196|5z2) TZFPB16505-Sebastes flavidus Sebastes flavidus (3) Sebastes flavidus (3)

a: Two categories of randomization were performed in this study. One is random splits which were conducted at species level (5 times) and the other is n-fold cross-
validation which was performed on the whole dataset (n~5 was used). 5134 random queries were generated based on the original 982 fish COI sequences, see text
and Online Appendix II for details.

b: The names of query sequences consist of BOLD sequence accession numbers (a dash was removed before the last two numbers) and their true species names. Only
part of the results were presented here, see Online Appendix II for all 5134 queries and corresponding assignments (singletons were excluded since they can only be
assigned to the wrong speices).

c: DV denotes DV-Curve, RBF indicates RBF neural network, see text for details.
d: FJ denotes FJ-Curve.
e: Ticks and crosses indicate correct and wrong assignments respectively.
doi:10.1371/journal.pone.0030986.t002
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perform equally well in all circumstances of DNA barcoding.

Machine learning based approaches [15,45] which are neither

classical population nor phylogeny based approaches, present fresh

insights. The newly developed method here may be thought of as

an extension of BP-based species identification [15], in the sense

that both are based on machine learning, but it uses entirely

different algorithms that apply the power of both bioinformatics

and RBF neural networks (NN). The reason for choosing RBF NN

is that it has been shown to work well when there are complex or

highly non-linear relationships and relatively small training sets,

which is the case for the sophisticated process of species

assignments from DNA sequences. When the input data to an

algorithm is too large to be processed, then the input data will be

transformed into a reduced representation set of features (termed

the features vector). Transforming the input data into the set of

features is termed feature extraction. In DNA sequences, each site

is treated as a feature. A simple n-gram approach is also commonly

used for creating feature vectors, but this proved to be five times

slower than NN methods in text categorization classification [69].

In Zhang et al. [15], DNA sequences were digitized simply using

the codes A-0.1, T-0.2, G-0.3, C-0.4, and this proved to be

successful. However, the converted input matrices are so huge that

the training of NN becomes quite slow especially for large datasets.

Both the DV-Curve and the FJ-Curve substantially reduce the

data matrix dimensions from, for example, the 648 of standard

COI barcodes to 24 (DV-Curve) or less (FJ-Curve). This property

greatly improves computational speed when processing large

datasets compared to BP-based species identification [15].

We also note that while this is a powerful approach, and one

that is especially well suited for non-coding sequences such as ITS,

Table 3. Species assignments for rust fungi (BOLD project CHITS) based on ITS sequences for 484 random queries using DV-RBF
and FJ-RBF methods.

No.
Category of
Random Testsa Queryb DV-RBFc Status FJ-RBFd Status

1 random CHITS08008-Chrysomyxa wereii Chrysomyxa wereii (3e) Chrysomyxa wereii (3e)

2 splits CHITS07708-Chrysomyxa wereii Chrysomyxa wereii (3) Chrysomyxa wereii (3)

3 CHITS11109-Chrysomyxa pirolata Chrysomyxa pirolata (3) Chrysomyxa pirolata (3)

4 CHITS01308-Chrysomyxa pirolata Chrysomyxa pirolata (3) Chrysomyxa pirolata (3)

5 CHITS11009-Chrysomyxa pirolata Chrysomyxa pirolata (3) Chrysomyxa pirolata (3)

6 CHITS09509-Chrysomyxa arctostaphyli Chrysomyxa arctostaphyli (3) Chrysomyxa arctostaphyli (3)

7 CHITS04108-Chrysomyxa arctostaphyli Chrysomyxa arctostaphyli (3) Chrysomyxa arctostaphyli (3)

8 CHITS03208-Chrysomyxa empetri Chrysomyxa empetri (3) Chrysomyxa empetri (3)

9 CHITS03308-Chrysomyxa empetri Chrysomyxa empetri (3) Chrysomyxa empetri (3)

10 CHITS03108-Chrysomyxa chiogenis Chrysomyxa chiogenis (3) Chrysomyxa chiogenis (3)

11 CHITS02408-Chrysomyxa chiogenis Chrysomyxa chiogenis (3) Chrysomyxa chiogenis (3)

12 CHITS06208-Chrysomyxa ledicola Chrysomyxa ledicola (3) Chrysomyxa ledicola (3)

� � � � � � � � � � � � � � � � � �
135 (27|5) CHITS06508-Chrysomyxa nagodhii Chrysomyxa nagodhii (3) Chrysomyxa nagodhii (3)

1 n-fold CHITS05608-Chrysomyxa ledi Chrysomyxa rhododendri (7) Chrysomyxa rhododendri (7)

2 cross- CHITS01208-Chrysomyxa cassandrae Chrysomyxa cassandrae (3) Chrysomyxa cassandrae (3)

3 validation CHITS04008-Chrysomyxa arctostaphyli Chrysomyxa arctostaphyli (3) Chrysomyxa arctostaphyli (3)

4 CHITS02308-Chrysomyxa chiogenis Chrysomyxa chiogenis (3) Chrysomyxa chiogenis (3)

5 CHITS02108-Chrysomyxa nagodhii Chrysomyxa cassandrae (7) Chrysomyxa ledi (7)

6 CHITS05308-Chrysomyxa arctostaphyli Chrysomyxa ledicola (7) Chrysomyxa ledi (7)

7 CHITS06208-Chrysomyxa ledicola Chrysomyxa ledicola (3) Chrysomyxa ledicola (3)

8 CHITS06008-Chrysomyxa ledicola Chrysomyxa ledicola (3) Chrysomyxa ledicola (3)

9 CHITS09509-Chrysomyxa arctostaphyli Chrysomyxa ledicola (7) Chrysomyxa ledi (7)

10 FUCUI00608-Fucus distichus Fucus distichus (3) Fucus distichus (3)

11 CHITS11009-Chrysomyxa pirolata Chrysomyxa pirolata (3) Chrysomyxa pirolata (3)

12 CHITS05708-Chrysomyxa ledi Chrysomyxa rhododendri (7) Chrysomyxa rhododendri (7)

� � � � � � � � � � � � � � � � � �
107 (21|5z2) CHITS08909-Chrysomyxa ledicola Chrysomyxa ledicola (3) Chrysomyxa ledicola (3)

a: Two categories of randomization were performed in this study. One is random splits which were conducted at species level (5 times) and the other is n-fold cross-
validation which was performed on the whole dataset (n~5 was used). 484 random queries were generated based on the original 107 rust fungi ITS sequences, see
text and Online Appendix III for details.

b: The names of query sequences consist of BOLD sequence accession numbers (a dash was removed before the last two numbers) and their true species names. Only
part of the results were presented here, see Online Appendix III for all 484 queries and corresponding assignments (singletons were excluded since they can only be
assigned to the wrong speices).

c: DV denotes DV-Curve, RBF indicates RBF neural network, see text for details.
d: FJ denotes FJ-Curve.
e: Ticks and crosses indicate correct and wrong assignments respectively.
doi:10.1371/journal.pone.0030986.t003
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it is not without problems. Like most currently used barcoding

methods, it will assign a query to ‘‘the most like’’ species when the

true species is not represented in the reference library. The issue of

an incomplete reference database has been well explored in Ross

et al. [40] and Ekrem et al. [70]. A new fuzzy set based species

identification protocol has shed some light on this issue [71].

Unlike the BP-based method [15], the second limitation of the new

method is that neither DV-RBF nor FJ-RBF approaches have the

potential to incorporate non-DNA data into the system. Where

several different sources of data are available, such as morpho-

logical characters or behavioural data, we would instead suggest

using the BP-based approach proposed earlier [15].

Materials and Methods

Graphical Representation of DNA Sequences via
Bioinformatic Approaches

The DV-Curve. The DV-Curve (Dual-Vector Curve) was

proposed by Zhang [67] as a 2D graphical representation for the

visualization and analysis of DNA sequences (Figure 2). It proved to

be a good visualization for representing DNA sequences without

degeneracy and loss of information. Let us consider a DNA sequence

S~s1s2 � � � sn consisting of n nucleotide sites. Let (Xi,Yi) be the point

of the DV-Curve, where (X0,Y0)~(0,0) is the start point. The DV-

Curve is uniquely determined by the following formula [67]:

Table 4. Species assignments for the brown algae (BOLD project PHAEP) based on ITS sequences for 1094 random queries using
DV-RBF and FJ-RBF methods.

No.
Category of
Random Testsa Queryb DV-RBFc Status FJ-RBFd Status

1 random FUCUI04008-Fucus distichus Fucus distichus (3e) Fucus distichus (3e)

2 splits FUCUI03708-Fucus distichus Fucus distichus (3) Fucus distichus (3)

3 FUCUI04408-Fucus distichus Fucus distichus (3) Fucus distichus (3)

4 FUCUI03408-Fucus distichus Fucus distichus (3) Fucus distichus (3)

5 FUCUI00308-Fucus distichus Fucus distichus (3) Fucus distichus (3)

6 FUCUI05508-Fucus distichus Fucus distichus (3) Fucus distichus (3)

7 FUCUI02608-Fucus distichus Fucus distichus (3) Fucus distichus (3)

8 FUCUI04508-Fucus distichus Fucus distichus (3) Fucus distichus (3)

9 FUCUI05708-Fucus distichus Fucus distichus (3) Fucus distichus (3)

10 FUCUI04608-Fucus distichus Fucus distichus (3) Fucus distichus (3)

11 FUCUI02708-Fucus distichus Fucus distichus (3) Fucus distichus (3)

12 FUCUI00108-Fucus distichus Fucus distichus (3) Fucus distichus (3)

� � � � � � � � � � � � � � � � � �
340 (68|5) MACRO97608-Scytosiphon cylindricus Scytosiphon cylindricus (3) Scytosiphon cylindricus (3)

1 n-fold MACRO69407-Saccharina latissima Saccharina latissima (3) Saccharina latissima (3)

2 cross- MACRO12106-Saccharina latissima Saccharina latissima (3) Saccharina latissima (3)

3 validation MACRO77607-Scytosiphon sp Scytosiphon sp (3) Scytosiphon sp (3)

4 MACRO11406-Scytosiphon cylindricus Scytosiphon cylindricus (3) Scytosiphon cylindricus (3)

5 MACRO12806-Scytosiphon cylindricus Scytosiphon cylindricus (3) Scytosiphon cylindricus (3)

6 MACRO49807-Saccharina latissima Saccharina latissima (3) Saccharina latissima (3)

7 MACRO17406-Petalonia sp Petalonia sp (3) Petalonia sp (3)

8 MACRO94108-Petalonia sp Petalonia sp (3) Petalonia sp (3)

9 FUCUI05308-Fucus spiralis Fucus spiralis (3) Fucus spiralis (3)

10 FUCUI00608-Fucus distichus Fucus distichus (3) Fucus distichus (3)

11 MACRO104108-Saccharina latissima Saccharina latissima (3) Saccharina latissima (3)

12 MACRO73607-Scytosiphon cylindricus Scytosiphon cylindricus (3) Scytosiphon cylindricus (3)

� � � � � � � � � � � � � � � � � �
207 (41|5z2) FUCUI00708-Fucus distichus Fucus distichus (3) Fucus distichus (3)

a: Two categories of randomization were performed in this study. One is random splits which were conducted at species level (5 times) and the other is n-fold cross-
validation which was performed on the whole dataset (n~5 was used). 1094 random queries were generated based on the original 207 brown algae ITS sequences, see
text and Online Appendix IV for details.

b: The names of query sequences consist of BOLD sequence accession numbers (a dash was removed before the last two numbers) and their true species names. Only
part of the results were presented here, see Online Appendix IV for all 1094 queries and corresponding assignments (singletons were excluded since they can only be
assigned to the wrong speices).

c: DV denotes DV-Curve, RBF indicates RBF neural network, see text for details.
d: FJ denotes FJ-Curve.
e: Ticks and crosses indicate correct and wrong assignments respectively.
doi:10.1371/journal.pone.0030986.t004
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Y2i{1~
Y2i{2z1, if si~A or T

Y2i{2{1, if si~C or G

�
ð1Þ

Y2i~
Y2i{1z1, if si~A or C

Y2i{1{1, if si~T or G

�
ð2Þ

X2i{1~2i{1 ð3Þ

X2i~2i ð4Þ

where i ~ 1,2, � � � ,n.

The FJ-Curve. In this section, motivated by Jeffrey’s ingenious

work of chaos game representation (CGR) of DNA sequences [72],

we propose a 3D representation of DNA sequences. Let

S~s1s2 � � � sn be a DNA sequence, n is the length of S. First we

assign the four nucleotides to the four corners of a regular

tetrahedron, i.e. A, G, C, T are assigned coordinates (21, 1, 21),

(1, 1, 1), (1, 21, 21) and (21, 21, 1) respectively. Then we construct

a curve for the given DNA sequence S. The point Pi(xi,yi,zi)
corresponding to si is calculated by the following formula:

xi~
1

2
(xi{1zxsi

),

yi~
1

2
(yi{1zysi

),

zi~
1

2
(zi{1zzsi

):

8>>>>>><>>>>>>:
ð5Þ

i~1,2,::::::,n, (x0,y0,z0)~(0,0,0) and xsi
, ysi

and zsi
are calculated

by the following formula:

xsi
~

{1, if si[fA,Tg ,

1, if si[fC,Gg :

(

ysi
~

{1, if si[fT,Cg ,

1, if si[fA,Gg :

(

zsi
~

{1, if si[fC,Ag ,

1, if si[fT,Gg :

(
ð6Þ

In this way, S is converted into a series of points P1,P2, � � � ,Pn. Let

the origin (0,0,0) be the point P0. As the index i runs from 0 to n, we

connect the points P0,P1,P2, � � � ,Pn in turn and get a zigzag 3-D

curve within a regular tetrahedron. This is the FJ-Curve of DNA

sequence S (named after one of the Authors (Dr. Feng Jie) of this

study).

From the FJ-Curve, some information on the base distribution

and composition of the DNA sequence can be intuitively gathered.

As an example, the FJ-curve for the twenty base length sequence

GCCTCCGCCCAGACTTCTTC is shown in Figure 3. It is

evident that most points are located near the vertex C (1, 21, 21),

a consequence of the high proportion of C content in the

sequence. On the other hand, because the A content is the lowest,

the points near the vertex A are sparse.

Numerical Characterizations of the DV-Curve and the FJ-

Curve. To numerically characterize a DNA sequence via the DV-

Curve, a 24-component vector~DD as described by Zhang [67] was used:

~DDDV ~½CM1xy,CM2xy, � � � ,CM24xy� ð7Þ

The CMxy value [73] is calculated as follows:

(Xc,Yc)~(
1

2nz1

X2n

j~0

Xj ,
1

2nz1

X2n

j~0

Yj) ð8Þ

CMxy~
1

2nz1

X2n

j~0

(Xj{Xc)(Yj{Yc) ð9Þ

To get equation (7), we need to assign A,T ,G,C to basic Dual-

Vectors in 4! different ways to have 4! = 24 different DV-Curves

for a given DNA sequence. The vector ~DDDV is further used as the

input for a neural network.

We derive a set of numerical characterizations from the FJ-

Curve of the DNA sequence as sequence descriptors:

(CMxy,CMxz,CMyz,lL,lM ). The first three descriptors [74] are

calculated as follows:

CMxy~
1

n

Xn

i~1
(xi{xc)(yi{yc),

CMxz~
1

n

Xn

i~1
(xi{xc)(zi{zc),

CMyz~
1

n

Xn

i~1
(yi{yc)(zi{zc),

(xc,yc,zc)~(
1

n

Xn

i~1
xi,

1

n

Xn

i~1
yi,

1

n

Xn

i~1
zi):

8>>>>>>>>>><>>>>>>>>>>:
ð10Þ

The fourth descriptor is selected from the L/L matrix [74], in

which the elements li,j are defined as the quotient of the Euclidean

distance between a pair of vertices (dots) of the FJ-Curve and the

sum of distances between the same pair of vertices measured along

the characteristic curve. In other words

li,j~
di,jPj{1

k~i dk,kz1

ð11Þ

where di,j is the Euclidean distance between a pair of vertices. lL

denotes the leading eigenvalue of the L/L matrix. The last

descriptor is selected from the M/M matrix [75], in which the

elements mi,j are given as the quotient of the Euclidean distance

between two vertices of the FJ-Curve and the graph theoretical

distance between the two vertices. In other words

mi,j~
di,j

ji{jj ð12Þ

where di,j is the Euclidean distance between a pair of vertices. lM

denotes the leading eigenvalue of the M/M matrix. To maximally

extract information from DNA sequences, we here used both L/L

and M/M matrices so there may be some overlap in information (i.e.,

redundant information) in the matrix representations. We therefore

applied Principal Component Analysis (PCA) [76] to the matrix

representations in order to reduce the correlation between L/L and

M/M matrices. Principal Components whose contributions to total

variation are less than 0.01 were ignored in the subsequent analysis.
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Radial Basis Function Neural Network
The BP-Neural Network was initially proposed by Zhang and

colleagues [15,45] to identify species in DNA barcoding and

proved to be successful in both computer simulations and

empirical studies. However, two inherent drawbacks of the BP-

Neural Network preclude its wide application to DNA barcoding

campaigns: its slow training for large reference datasets and

potential local minimization during network training. In this study,

we propose to use the Radial Basis Function (RBF) neural network

which creates a network with zero error on training vectors. RBFs

are embedded in a two-layer feed-forward neural network that is

characterized by a set of inputs and outputs (Figure 4 and 5).

Between the inputs and outputs there is a layer of processing units

called hidden units, each of which implements a radial basis

function [77].

The Gaussian activation function for RBF network is given by

a~radbas(s)~e{s2 ð13Þ

The input of hidden units is given by

s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i~0

(wi{di)
2

s
:b ð14Þ

Figure 2. The DV-Curve of the 10 bp sequence ‘AGACTGCATC’.
doi:10.1371/journal.pone.0030986.g002

Figure 3. The FJ-Curve of the 20 bp sequence ‘GCCTCCGCCCA-
GACTTCTTC’.
doi:10.1371/journal.pone.0030986.g003
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where wi is the input vector and di is the weight of hidden units.

We, therefore, have

a~e
{(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~0

(wi{di )
2

r
:b)2

~e{( W{Dk k)2 ð15Þ

The output layer implements a weighted sum of hidden-unit

outputs:

ok~
Xq

j~1

wjksj ,k~1,2, � � � ,s ð16Þ

Species Identification via DNA sequences in DNA
Barcoding

Training a network using reference sequences. Instead

of simply encoding the raw DNA sequences as inputs of a neural

network [15], we here employed both bioinformatic approaches

(the DV-Curve and the FJ-Curve) and machine learning for

species identification. The numerical characterizations of the DV-

Curves and the FJ-Curves computed earlier were fed into the RBF

neural networks as inputs. The former is termed the DV-Curve

based RBF (DV-RBF) and the latter the FJ-Curve based RBF (FJ-

RBF). The network takes a matrix of input vectors D and target

vectors O. The training will return a network with weights and

biases b such that the outputs Ok are exactly O when the inputs

are D. Generally, during network training, the weights of hidden

units are set to D’ and each bias in the hidden units is set to a value

which is determined by the width of an area in the input space to

which each neuron responds. The second-layer (output layer)

weights and biases are computed by simulating the first-layer

outputs A~½a1,:::,aq�, and then solving a linear expression

½W2k,b2� � ½A; 1�~O ð17Þ

Since the inputs to the second-layer A and the target (O) and the

layer are linear, we can use the following formula to calculate the

weights and biases of the output layer to minimize the sum-

squared error:

Wb~O=½D; ones(1,q)� ð18Þ

where Wb contains both weights and biases, with the biases in the

last column, and ones(1,q)~½1,:::,1�.
Identifying query sequences using a trained

network. The query sequences were firstly transferred into a

numeral matrix using the method described above (the DV-Curve

or the FJ-Curve), which served as the input vector (Figs. 4 and 5).

Then, the input vector was fed into the trained network, and one

output row vector, corresponding to a different species following

the formula of Zhang et al. [15], was obtained for each input

vector. The output vector of the network for one sequence selected

from, for example, species 1, could be like ‘(1,0,0,0)’ in the case of

four species in the reference library through activation of the

competitive function.

Figure 4. The work flow of the RBF network approach proposed in this study and a comparison with the BP network.
doi:10.1371/journal.pone.0030986.g004

DNA Barcoding via Machine Learning

PLoS ONE | www.plosone.org 10 February 2012 | Volume 7 | Issue 2 | e30986



Success Rate of Species Identification and Confidence
Intervals

The success rate of species identification is defined as the

following formula [15]:

Ratesuccess~
Numberhit

Numbertest

ð19Þ

Binary data indicating the presence (successful identification) or

absence (failed identification) of a specific attribute are often

modeled as random samples from a Bernoulli distribution with

parameter prob, where prob is the proportion in the population

with that attribute. A (1{a)-level confidence interval (CI) for prob

is calculated by the following formula [78]:

(dprobprob{b)

(1z
z2

n
)

ƒprobƒ

(dprobprobzb)

(1z
z2

n
)

ð20Þ

where a~0:05, b~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidprobprob(1{dprobprob)z2

n
z

z4

4n2

s
, z~za=2.

Comparison to the Existing Methods with Repeated
Random Splits and n-fold Cross-validation

We wished to determine how our new methods for species

identification compare with traditional DNA barcoding approach-

es, including Neighbor-joining (NJ) [44] and Maximum likelihood

[62]. We did this utilising both repeated random splits and n-fold

cross-validation. There are some differences between these two

randomization strategies. For the former, sequences from an

original empirical dataset were divided into two sub-datasets: a

reference set and a query set. The reference set comprised all

sequences from species with samples of 3 or less, together with two

thirds (or as close as possible) of sequences from species with samples

of 4 or greater. Remaining sequences formed the query set. This

process was repeated 5 times. The resultant reference set has a

‘complete/balanced’ species coverage since random splits were

performed at the level of species, and all species in the original

database will be kept in the reference library. In n-fold cross-

validation, data were split into n partitions and a subset from the nth
partition used to validate the success rate estimated from the

remaining data. We here used a five-fold cross-validation to

examine all methods under study. The subsequent reference library

will have an ‘incomplete/unbalanced’ species coverage since the

random partition was conducted on the whole original dataset, and

therefore not all species are guaranteed to be included in the

reference library. For the two traditional methods, each query from

the query set was selected to form a new dataset with all reference

sequences, and a genetic distance matrix was generated with the

K2P model [79]. An NJ tree was then constructed with PAUP*beta

[80] and an ML tree built with PHYML [62]. A successful

identification was counted when a query fell into a monophyletic

species clade. Species identification success rates were estimated

over all random queries and 95% CI estimated with equation (20).

For simplicity, the success rate from all 5-fold cross-validations was

combined for the confidence interval estimate, although the pooling

of results from 5-fold cross-validations could underestimate the CI.

However, this underestimation was treated as trivial in this study

since sampling sizes were generally large (much larger than 30). For

all methods, singletons in the query set not represented in the

reference set were not counted when calculating success rates, since

these singletons would necessarily be assigned to the wrong species.

COI Datasets
Neotropical Bat Dataset and Marine Fish Dataset. The

COI dataset of 87 Neotropical species from 47 genera of bat in

Guyuna contained 819 COI sequences with lengths greater than

600 bp [81]. These were downloaded from the Barcode of Life

Database (BOLD, www.barcodinglife.org) on May 10, 2010. We

cleaned the dataset by removing sequences with ambiguous sites,

such as ‘‘Ns’’, and those whose length were less than 648 bp (the

standard length in COI DNA barcoding) [1–4]. This gave 766 COI

sequences from 84 species. The second COI dataset was North

Pacific fish. Steinke et al barcoded 201 North Pacific fish species,

yielding 1225 barcode sequences [82]. We downloaded these from

BOLD project TZFPC, Fishes of Pacific Canada Part I, on May 10,

2010. Read lengths were about 655 bp long. To reduce the effect of

ambiguous sites on the analysis, we again filtered the dataset by

removing uncertain nucleotide sites, such as ‘‘Ns’’. The 982 resultant

652 bp alignments were used in the subsequent analysis. Meanwhile,

five-fold cross-validation was performed as well (Table 1 and 2).

ITS Datasets
Rust fungi dataset and Brown algae dataset. The rust

fungi dataset comprised 108 ITS sequences from 16 species in

Figure 5. Topology of the RBF network and a processing unit of
hidden units.
doi:10.1371/journal.pone.0030986.g005
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BOLD (project CHITS, Chrysomyxa ITS Barcoding; downloaded

on June 4, 2010). The length of these sequences varied from

625 bp to 792 bp, excepting one sequence of 333 bp. The dataset

was cleaned as above by removing sequences with ambiguous sites

(e.g. ‘Ns’). 85 sequences representing 14 species remained for the

subsequent analysis. An initial alignment of the sequences was

made using the program MUSCLE [83] with the default setting to

check the homology of the sequences as a whole. All the indels

(gaps) introduced during the alignment were eliminated later, the

sequences for the subsequent analysis thus remained unaligned.

216 ITS sequences belonging to 20 species from seven genera of

brown algae were retrieved from BOLD (project PHAEP;

Phaeophyceae published, downloaded on June 20, 2010). These

sequences cover a broad diversity of brown algae (six families from

four orders). Sequences containing ambiguous sites were removed,

and the resultant 207 sequences were highly variable in length

(387 bp to 1215 bp).

Supporting Information

Table S1 Species assignments for Neotropical bats [81] based on

COI sequences for all 4122 random queries using DV-RBF and

FJ-RBF methods in details.

(XLS)

Table S2 Species assignments for Pacific Canadian marine fish

[82] (BOLD project TZFPC) based on COI sequences for all 5134

random queries using DV-RBF and FJ-RBF methods in details.

(XLS)

Table S3 Species assignments for rust fungi (BOLD project

CHITS) based on ITS sequences for 484 random queries using

DV-RBF and FJ-RBF methods in details.

(XLS)

Table S4 Species assignments for the brown algae (BOLD

project PHAEP) based on ITS sequences for 1094 random queries

using DV-RBF and FJ-RBF methods in details.

(XLS)
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