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Abstract

Models explaining behavioural syndromes often focus on state-dependency, linking behavioural variation to individual
differences in other phenotypic features. Empirical studies are, however, rare. Here, we tested for a size and growth-
dependent stable behavioural syndrome in the juvenile-stages of a solitary apex predator (pike, Esox lucius), shown as
repeatable foraging behaviour across risk. Pike swimming activity, latency to prey attack, number of successful and
unsuccessful prey attacks was measured during the presence/absence of visual contact with a competitor or predator.
Foraging behaviour across risks was considered an appropriate indicator of boldness in this solitary predator where a trade-
off between foraging behaviour and threat avoidance has been reported. Support was found for a behavioural syndrome,
where the rank order differences in the foraging behaviour between individuals were maintained across time and risk
situation. However, individual behaviour was independent of body size and growth in conditions of high food availability,
showing no evidence to support the state-dependent personality hypothesis. The importance of a combination of spatial
and temporal environmental variation for generating growth differences is highlighted.
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Introduction

Empirical studies across a range of animal taxa are increasingly

demonstrating the existence of personalities, where individuals within

populations vary consistently in their behaviour over time [1–3]. When

individual behaviours are consistent or co-vary across situations or

contexts, where a context is a functional behavioural category (e.g.

feeding, mating, predator avoidance or dispersal), and a situation is the

set of conditions at a particular time which can involve different levels

along an environmental gradient (e.g. foraging behaviours in different

habitats), it is referred to as a behavioural syndrome [2,4,5]. Although

individual consistency of single behaviours is considered to contribute

meaningfully to the stability of the behavioural syndrome they

comprise [6–8], repeated observations of individuals over time within

situations or contexts are lacking in many studies [5,9,10]. Despite this,

and in conjunction with inconsistent methodologies employed to assess

behavioural traits [11,12], behavioural syndromes are considered to be

widespread [2]. Furthermore, a focus on characterising behavioural

syndromes in social or territorial species that show parental care or

build nests, exhibit dominance hierarchies or other social structures,

such as shoaling [11,13] has resulted in a paucity of studies in other

species, such as in solitary apex predators. Yet characterizing

behavioural syndromes in ecologically-different species with contrasting

behavioural life-histories should improve our understanding of the

extent of behavioural syndromes and their ecological importance. For

example, identifying behavioural syndromes in an apex predator may

be particularly important for understanding their effect on trophic

interactions and influence on prey fish communities [14,15].

Behavioural syndromes are temporally stable when the same

association between different behaviours occurs at different stages in

time [4,16]. Temporal stability in behavioural syndromes suggests

that individual behaviours may not be able to evolve independently

and are therefore considered to be of particular evolutionary

significance [4,17]. Exploring the mechanisms involved in main-

taining behavioural syndromes in animals has therefore recently

received considerable theoretical attention, with a focus on state-

dependency. Individuals differ consistently in a range of features or

‘states’, for example in morphology, physiology and even in aspects

of their environment [18]. State-dependent behavioural models are

therefore based on the fact that an individual’s state influences the

fitness costs and benefits of its behavioural decisions [18,19]. As

stable individual variation in growth rate has been reported in a

variety of species with indeterminate growth [20], growth has also

been suggested as a key factor in maintaining personality differences

due to growth-mortality tradeoffs [20,21]. Indeed, traits such as

boldness, aggression and activity may correlate with higher growth

rates, but these behaviours may also increase mortality through

greater risk-taking [22–24]. As few empirical studies have tested

predictions derived from state-dependent models, this is now

needed to further our understanding of behavioural syndromes

[25].

Individual variation in risk-taking was originally used to define

boldness in animals [26,27], which subsequently lead to a variety

of interpretations on its measurement [28]. Boldness has been

measured, for example, by response to threatening stimuli, novel

objects or food sources, predator inspection, latency to emerge
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from cover and foraging under predation threat [cf. 28]. Although

a consensus on the measurement of boldness is valuable for

comparative purposes, a consideration of behaviours and related

situations that would represent boldness in the species of interest is

important [12,13,29]. While the biological significance of

individual behavioural variation is increasingly recognised, the

fundamental differences between functionally different species

should not be overlooked. To interpret results from studies using

different tests for measuring the same personality trait, the specific

context and methods should be considered [13].

Pike, Esox lucius, exhibit considerable growth differences in their

wild populations, with size dimorphism already apparent in

young-of-the-year (YOY) [30,31], thus making it a strong model to

test size- and growth dependent personality. Pike is a solitary and

cannibalistic predator species that does not live in groups during

any stage of its life [32]. Cannibalism usually occurs between fish

of different ages, but as considerable size variations occur within

the same cohort, for example, among juveniles, individuals have

been found to cannibalise on conspecifics 50–91% of their body

size [33–35]. In addition, pike are vulnerable to attack from

conspecifics of similar size while handling prey [36]. Due to the

strong pressures from both intra- and interspecific predators on

juvenile pike in their nursery habitats [30,37,38], an important

trade-off has been suggested to occur between foraging activity in

order to out-grow piscivores (due to piscivorous gape limitation)

and anti-predator avoidance [39]. We therefore consider that a

measure of foraging behaviour across a gradient of risks is an

appropriate indicator of boldness in this solitary apex predator.

Foraging under risk of predation has been used as a measure of

boldness in several fish species [e.g. 40–43], but has recently been

criticised as the behaviour measured might be motivated by

hunger instead of boldness [12]. To overcome this, equal

starvation periods prior to measurements of foraging behaviour

are commonly used to ensure similar hunger levels among the test

animals [44,45].

Consequently, in the present study, we determine the presence

of a behavioural syndrome in juvenile pike by estimating the

repeatabilities of individual foraging behaviours through time and

across risk situations, including at different stages over time, and its

relationship to individual state (i.e. body mass) and growth rate.

The following hypotheses were tested: (i) individuals exhibit stable

behavioural syndromes, shown as repeatable foraging behaviour

within and across risk situations; and (ii) in high-risk situations,

larger-bodied individuals consistently forage at higher rates

compared to smaller individuals, and so have higher growth rates

in conditions of abundant food.

Methods

Ethics
The study was approved by an independent ethical review

committee of Bournemouth University. The approval complied

with the Home Office (HO) certificate in accordance with the UK

Animals (Scientific Procedures) Act 1986. The study was

conducted under the HO project licence number PPL 30/2626.

Consent to collect the fish from the wild was granted by the

Environment Agency of England and Wales. Electric fishing was

carried out at the minimum power settings needed to incapacitate

the fish and thus no adverse impact on other wildlife should have

been experienced. In the laboratory, the fish were kept in isolation

to prevent cannibalism. The pike were never in physical contact

with either the similar or larger-sized pike during the competitor

and predator trials respectively. All individuals resumed feeding

within ten minutes after being returned to their holding tanks from

the experimental tanks indicating low-stress levels. Individuals

were observed daily for signs of disease or stress and were found to

maintain a high level of feeding activity and health throughout the

experimental period. At the end of the experimental period, all the

fish (n = 55) were euthanized as stipulated by the HO project

license with an overdose of the anaesthetic MS-222 followed by

destruction of the brain. The fish were not released back into the

wild due to legislative restrictions relating to fish stocking activities.

Collection and housing of fish
YOY pike were captured in a tributary of the River Frome,

Dorset (50u419 N; 2u119 W), between 15 and 20 May 2009 by

hand netting. The fish were placed in 30 L buckets containing

river water and air stones attached to a battery operated air pump

to maintain oxygen levels before being immediately transported to

aquarium facilities by car (transit time ,40 min). After acclima-

tisation to the ambient laboratory temperature (16uC), the pike

were individually placed in identical 25 L glass aquaria

(32630626 cm) containing conditioned tap water, an air stone

attached to an air pump for oxygenation and plastic plants for

habitat enrichment. Three sides of the aquaria were covered with

black plastic to prevent visual contact between individuals. Fish

were fed ad libitum using Gammarus spp. for 10 days prior to the first

experiment and continued between the experiments. A 14L:10D

photoperiod was maintained in the laboratory.

As predation by larger conspecifics (i.e. cannibalism) is a

common threat to YOY pike [37,46], to provide differential levels

of predation risk in the experiments, age-1 pike (220–250 mm fork

length) were captured from the same site on 22 May 2009 by

electric fishing using a Smith-Root LR-24 backpack. These fish

were kept individually in 60 L glass aquaria containing plant cover

and were fed ad libitum with earthworms (Dendrobaena veneta).

Experimental protocol
Thirty-four age-0 pike (initial mass Wi = 0.5360.03 g, mean 6

SE) were used as the focal fish in the experiments. This number of

fish was chosen as previous work on repeated individual response

experiments suggests a sample size of 30 will provide a moderate

effect size and statistical power .0.8 [e.g. 41,47]. Individual

consistency in foraging behaviour, as an indication of boldness,

was measured repeatedly within and across three risk situations

(treatments): i) no visual contact to other fish (control: no risk); ii)

visual contact to a similar-sized age-0 stimulus pike (competitor:

low risk); and iii) visual contact to larger-bodied age-1 stimulus

pike (predator: high risk). Prior to each experiment, focal fish were

starved for 24 h to ensure similar hunger levels among the

individuals. Juvenile pike have high evacuation rate of ingesta,

with 100% evacuation in 18–22 h and 24 h for juveniles of 0.15 g

and 3 g respectively at 18uC [48]. The initial body masses of

individuals studied here ranged from 0.23 to 1.21 g. Although the

lower temperature in our experiments (16uC) may decrease the

evacuation rates slightly, a starvation period of 24 hours is likely to

be sufficient to standardise hunger levels. In addition, for the

welfare of the fish, a starvation period of over 24 hours was not

allowed within the HO project licence.

Each focal fish was removed from their keeping tank by

scooping using a 0.5 L beaker and transferred to an experimental

tank (30620620 cm) with a water depth of 10 cm. The water

temperature and oxygen levels in the experimental tanks were the

same as in the holding tanks. The fish were then acclimatised for

30 minutes with visual contact to the neighbouring tank, which,

depending on the experimental treatment, was either empty

(control), or contained a stimulus fish of age-0 (competitor) or age-

1 (predator). Feeding behaviour was measured by filming their
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response to the subsequent introduction of ten live gammarids for

15 minutes. The fish were subsequently transferred back (by

scooping) into their individual tanks. The control treatment was

repeated six times, and the competitor and predator treatments

were each repeated four times (repeats are from now referred to as

trials), with this replication level satisfactory according to Bell et al.

(2009) [49]. Each trial was completed in two days (between 9.00 and

18.00 h). Four to five days elapsed between trials and they were

conducted in the following treatment-sequence: control, competitor

and predator. Two additional control trials were carried out after

this sequence had been repeated four times to increase the number

of repeated measurements. All 14 trials were conducted between 1

June and 31 August 2009 (91 days). Large variation in growth rates

during a similar time period has been reported in juvenile pike in the

wild [31,50] and in experimental conditions [38,51].

The focal and competitor stimulus fish were matched for size

within 5 mm. A minimum of ten different fish were used as

competitor stimulus fish in one day, and a stimulus fish was not used

twice in a row. Three predator stimulus pike were used, and they

were kept in their experimental tanks throughout the experimental

day. Focal fish were assigned randomly to the predator stimulus fish.

No effect of time of day of the experiment or stimulus fish individual

used (competitors or predators) were found on the behaviour of

focal fish (ANOVA, p.0.05). At the end of the experimental period,

final mass (Wf) was measured for each individual. The specific

growth rate (SGR) of each individual over the experimental period

Table 1. Mean behavioural measurements (6 SE) of juvenile pike (n = 34) in each trial of the (a) control, (b) competitor and (c)
predator treatment.

Treatment Trial Latency to attack (s) No. of captured prey No. of un-successful attacks Swimming activity (s)

(a) Control 1 52.8616.2 5.960.6 1.660.3 36.365.8

2 152.2626.0 6.760.5 1.160.2 36.063.3

3 200.2647.7 5.460.7 0.460.1 23.162.8

4 222.5646.9 3.960.6 0.460.1 36.564.4

5 175.8648.4 5.460.7 0.960.3 30.463.8

6 207.3646.1 3.960.7 0.760.2 39.067.3

(b) Competitor 1 111.3622.4 3.360.4 0.660.1 18.861.9

2 161.3637.6 4.360.7 0.460.1 17.162.0

3 214.4646.0 4.260.7 0.760.2 29.464.5

4 150.4632.8 4.960.7 0.760.2 40.265.5

(c) Predator 1 80.2636.1 1.960.3 1.060.3 9.361.9

2 215.9663.0 1.760.4 0.160.1 14.462.9

3 332.6664.2 1.360.4 0.360.2 16.062.8

4 218.9654.3 3.360.7 0.660.2 27.064.4

doi:10.1371/journal.pone.0031619.t001

Table 2. The repeatabilities (R) of behavioural measures in juvenile pike (n = 34) within each experimental situation: (a) control (no
risk), (b) competition (low risk), (c) predation (high risk).

Behavioural measure R SE 95% CI P

(a) control Latency to attack prey 0.12 0.06 0.00 to 0.24 0.011

Number of captured prey 0.19 0.08 0.05 to 0.35 0.001

Number of unsuccessful attacks 0.10 0.09 0.00 to 0.32 0.094

Swimming activity 0.07 0.05 0.00 to 0.09 0.086

(b) competition Latency to attack prey 0.35 0.10 0.15 to 0.54 0.001

Number of captured prey 0.44 0.13 0.18 to 0.68 0.001

Number of unsuccessful attacks 0.00 0.10 0.00 to 0.32 0.660

Swimming activity 0.07 0.07 0.00 to 0.23 0.192

(c) predation Latency to attack prey 0.07 0.07 0.00 to 0.22 0.183

Number of captured prey 0.21 0.13 0.03 to 0.53 0.026

Number of unsuccessful attacks 0.00 0.29 0.00 to 0.85 0.788

Swimming activity 0.08 0.07 0.00 to 0.25 0.138

Generalised linear mixed-effects and linear mixed-effects models (rptR package in R [33]) with fish identity fitted as random effect and the behavioural measure as
dependent factor were used for calculating repeatabilities, standard errors, 95% confidence intervals (CIs) and P-values. Latency to prey attack and swimming activity
were log-transformed to achieve normality.
doi:10.1371/journal.pone.0031619.t002
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was calculated using the formula: SGR = [(ln(Wf)2ln(Wi))/t]6100,

where t is the number of experiment days (n = 91).

Video analysis
Video analysis enabled quantification of the following foraging

behaviours: (i) latency of first prey attack (s); (ii) number of

captured prey; (iii) number of unsuccessful attacks; and (iv)

swimming activity (i.e. time spent moving). An unsuccessful attack

was interpreted as when the captured prey escaped or was

expelled. Individuals that did not attack prey were given latency

times of 900 seconds so as not to remove the animals that were

least likely to attack prey, but they were excluded from the variable

‘number of unsuccessful attacks’. All films were analysed by the

same operator in randomised order.

Statistical analysis
To evaluate whether the pike perceived the different risks we

used Kruskal–Wallis tests to examine differences in the behav-

ioural measures between treatments.

To test the first hypothesis, consistency of an individual’s

behaviour over time within situations and across situations

(behavioural syndrome) was calculated as their repeatability (6

SE and 95% confidence intervals) according to Nakagawa and

Schielzeth (2010) [52]. Temporal stability of behavioural syn-

dromes was tested by conducting four separate repeatability

analyses using one trial of each treatment (control, competitor and

predator) conducted closest in time. As one trial was conducted

weekly (with 4–5 days apart) and in the same sequence (control,

competitor and predator) the closest time between the control and

competitor, and competitor and predator trials was 4 to 5 days and

between control and predator trials 8 to 10 days. Repeatability was

calculated using linear mixed-effects models for count data and

generalised linear mixed-effects models for Gaussian data, both

with individual ID fitted as the random effect and the behavioural

variable as the dependent factor (rptR package in R) [52]. The

number of captured prey and unsuccessful attacks constituted

‘count’ data and were analysed using the Poisson multiplicative

overdispersion model fitted by PQL (penalised quasi-likelihood)

estimation on the original scale. Latency to first attack and

swimming activity were log-transformed and analysed for

repeatability using the restricted maximum likelihood model. Both

models use a randomisation procedure for significance tests. Only

behavioural measures that were repeatable across time or

situations were used in the subsequent analyses. In addition,

between-situation correlations of the same behavioural measures

and between different behavioural measures within-situations were

investigated using Spearman’s ranking test (rs). To test the second

hypothesis, correlation analyses (rs) between repeatable behav-

ioural measures and body mass (initial and final) and SGR were

performed. All statistical analyses were conducted using R 2.12.1

[53]. To compare repeatability estimates, we compared effect sizes

and the 95 percent confidence intervals in addition to determining

whether the confidence intervals overlapped with zero rather than

basing inferences purely on P-values [54–56].

Results

The number of captured prey and swimming activity differed

significantly between the three experimental situations (captured

Table 3. The repeatability (R) of behavioural measures in juvenile pike (n = 34) across context using one trial of each treatment
conducted closest in time: (a) trials 1 (n = 3), (b) trials 2 (n = 3), (c) trials 3 (n = 3), (d) trials 4 (n = 3), and (e) all trials (n = 14).

Trials Behavioural measure R SE 95% CI P

(a) Latency to attack prey 0.05 0.08 0.00 to 0.26 0.310

Number of captured prey 0.10 0.11 0.00 to 0.36 0.171

Number of unsuccessful attacks 0.21 0.18 0.00 to 0.65 0.174

Swimming activity 0.00 0.07 0.00 to 0.23 0.473

(b) Latency to attack prey 0.17 0.11 0.00 to 0.39 0.062

Number of captured prey 0.19 0.14 0.00 to 0.49 0.085

Number of unsuccessful attacks 0.00 0.27 0.00 to 0.86 0.809

Swimming activity 0.13 0.10 0.00 to 0.36 0.143

(c) Latency to attack prey 0.23 0.11 0.00 to 0.44 0.014

Number of captured prey 0.41 0.16 0.12 to 0.73 0.003

Number of unsuccessful attacks 0.27 0.25 0.00 to 0.86 0.339

Swimming activity 0.11 0.10 0.00 to 0.33 0.147

(d) Latency to attack prey 0.50 0.10 0.28 to 0.66 0.001

Number of captured prey 0.70 0.12 0.43 to 0.89 0.001

Number of unsuccessful attacks 0.00 0.18 0.00 to 0.55 0.948

Swimming activity 0.00 0.06 0.00 to 0.21 0.608

(e) Latency to first attack 0.18 0.05 0.09 to 0.28 0.001

Number of captured prey 0.30 0.09 0.14 to 0.49 0.001

Number of unsuccessful attacks 0.03 0.04 0.00 to 0.12 0.129

Swimming activity 0.10 0.03 0.00 to 0.12 0.011

Generalised linear mixed-effects and linear mixed-effects models (rptR package in R, [33]) with fish identity fitted as random effect and the behavioural measure as
dependent factor were used for calculating repeatabilities, standard errors, 95% confidence intervals (CIs) and P-values. Latency to prey attack and swimming activity
were log-transformed to achieve normality.
doi:10.1371/journal.pone.0031619.t003
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prey: K-W, Chi = 25.69, df = 2, P,0.001; swimming: K-W,

Chi = 34.84, df = 2, P,0.001, Table 1). Higher numbers of

captured prey and increased swimming activity were detected in

the control and competition treatments compared to the predation

treatments, suggesting adjusted responses according to risk levels.

Repeatability and stability of behavioural syndromes
Although repeatability was significant (P,0.05) for the latency

to attack within the control and competitor treatments, the

repeatability estimate was low (0.12), together with a CI ascending

from 0 within the control (Table 2). The number of prey captured

Figure 1. Mean number of prey captured per individual pike (n = 34) in the experimental treatments. (a) Control versus competitor, (b)
control versus predator, (c) competitor versus predator treatments. Correlations were investigated using Spearman’s ranking tests (rs,*** P,0.001).
doi:10.1371/journal.pone.0031619.g001
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had significant P-values within all contexts, and although none of

the CI overlapped with zero, the repeatability estimates and CI

varied between contexts, with the competitor context having the

highest effect size and CI. Repeatability analyses of behaviours

across trials of each treatment conducted closest in time (i.e.

temporal stability of behavioural syndrome), revealed significant P-

Figure 2. Mean number of prey captured in the predator treatment per individual pike (n = 34) and their metrics. (a) Specific growth
rate, (b) initial body mass, (c) final body mass. Correlations were investigated using Spearman’s ranking tests.
doi:10.1371/journal.pone.0031619.g002
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values together with high effect sizes and CI for captured prey in

trials 3 and 4 (Table 3. a–d). Latency to attack was also found to be

significant within trials 4, whereas in trials 3, the CI started from 0.

Across all experiments, the number of prey captured and latency

to attack were significantly repeatable with high CI and effect

sizes, whereas swimming activity, although having a significant p-

value, had a CI starting from 0 (Table 3. e).

Statistically significant correlations between treatments were

found in the mean number of prey captured (Fig. 1), swimming

activity (control and competitor, rs = 0.43, n = 34, P,0.05; control

and predator, rs = 0.44, n = 34, P,0.05; and competitor and

predator, rs = 0.37, n = 34, P,0.05), and mean latency to attack

(control and competitor, rs = 0.51, n = 27, P,0.01; control and

predator, rs = 0.48, n = 30, P,0.01, whereas competitor and

predator, rs = 0.25, n = 34, P.0.05).

State-dependent behaviours
Neither initial mass, final mass, nor SGR correlated with any of

the repeatable behavioural measures (i.e. number of captured

prey, latency to prey attack and swimming activity) in any of the

trials (all P.0.05; e.g. high risk, Fig. 2).

Discussion

Consistent individual variation in foraging behavior across time

and risk levels was evident in the experiments, suggesting the

presence of a behavioural syndrome within a solitary predator of

wild origin. Analyses of between-situation consistency over time

revealed temporal instability of the behavioral syndrome over the

experimental period and we found no evidence to support the

state-dependent personality hypothesis.

The general decrease in feeding activity with increased threat

found is consistent with Engström-Öst and Lehtiniemi (2004) who

report that pike exhibit threat-sensitivity by decreasing prey

attacks and swimming activity with the degree of predation risk

[57]. Indeed, threat-sensitivity has been reported in a variety of

vertebrate and invertebrate groups [58], and is obviously an

important behavioural strategy as an under-estimation of risk may

be fatal for the individual whereas an over-estimation may lead to

unnecessary decreases in feeding activity. Consistent and signifi-

cant individual variation in feeding activity over time, supported

by between-situation correlations, indicates that some individuals

were bolder in their foraging behaviour than others. As latency of

prey attack, a common measure of boldness in fish [13], correlated

significantly with the number of captured prey within all situations

then prey capture was also considered an appropriate expression

of boldness in the pike. Bold fish consistently continued to feed

even during high predation risk (albeit at a lower rate), whilst

others displayed consistently stronger risk-avoidance behaviour.

The low but significant repeatabilities found here correspond to

findings from a meta-analysis showing that significant behavioural

repeatabilities often are low [49].

Many other studies of behavioural syndromes have conducted

different experimental treatments using the same individuals on

the same day [6,41,47]. However, when little time has elapsed in

between observations of individual behaviour in different contexts,

individual consistency across observations may be a consequence

of the individual motivational state. As we conducted our

treatments independently of each other with 4 to 5 days between

trials, the behavioural consistency detected is more likely to reflect

a relatively stable, unchanging aspect of the fish’s personality.

Both temporal stability of the behavioural syndrome and

consistency of individual behaviour that comprises the syndrome

have been suggested to affect the strength of the selection force on

the syndrome [6,59]. Although consistency of individual behav-

iours was found across all trials, analyses of one trial of each

situation separately exposed discrepancies with non-significant

repeatabilities versus strong repeatabilities in the first two and last

two repeats respectively. As individual consistency was found

within each situation, the non-significant repeatability may be due

to low between-individual variation across situations at first.

Individual behavioural variation might increase due to experiential

factors [59], so that individual behaviour might have become more

distinct over time increasing the size of the variation between

individuals.

Theoretically, individuals that are bolder and consistently take

more risks to acquire food should grow faster [21], and through a

positive feedback, also be larger in body size [60]. Growth

differences have been found to persist even when individuals have

been kept in isolation and fed ad libitum [61,62], for example, in

lizards [63], salamanders [64], turtles [65], and fish [66–68]. Here,

however, the results revealed that despite some individuals

repeatedly consuming more prey items during the experiments

than others, these individuals did not achieve a higher growth rate

during high food availability, nor was body mass related to the

individual behaviour. The observed growth rates corresponded to

the mean growth reported in their wild populations over a similar

time scale during which size dimorphism has developed [31]. This

suggests that individual growth differences do not occur as a

consequence of individual behaviour alone but are likely to also be

affected by a combination of spatial and temporal variation in the

environment such as resource availability, competition level and/

or predation pressure [69–71]. This is similar to the lack of

correlation between behaviour and early growth rates found in

steelhead fry (Oncorhynchus mykiss) when kept in a conventional

hatchery-rearing environment [72]. On the other hand, in sibling

dorada (Brycon moorei), kept in isolation and fed ad libitum, more

aggressive individuals exhibited faster growth during the transition

between food types [73]. In comparison, the pike in the present

study were fed one food type throughout the experimental period,

thus this might have been a factor reducing the potential for

individual growth variation. The non-significant relationship

between behaviour and body mass indicates that any differences

between hunger levels of smaller and larger fish was unlikely to

have affected their behaviour.

The present experiments characterised the presence of a

behavioural syndrome in a solitary predator species, with

individuals maintaining their foraging behaviour through time

within the different situations. The ecological relevance of

intraspecific variation including in behaviour is becoming

increasingly evident [13,14] and may be particularly important

for populations of apex predators in their structuring effects on

prey communities and food webs [74]. Indeed, the assumption

that all individuals from predatory species have similar effects in

structuring prey communities is being increasingly challenged by

studies showing differences in foraging mode between species in

the same habitats [75]. Such interspecific differences affect

interactions between the predators and influence food web

dynamics [76]. Thus, identifying behavioural differences at the

individual level within a population may prove equally important

in understanding the trophic dynamics in the ecosystems, and

thus, there is a need to characterise appropriate behavioural

syndromes in a wider range of species.
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68. Mas-Muñoz J, Komen H, Schneider O, Visch SW, Schrama JW (2011) Feeding

behaviour, swimming activity and boldness explain variation in feed intake and
growth of sole (Solea solea) reared in captivity. PLoS ONE 6: e21393.

69. Adriaenssens B, Johnsson JI (2009) Personality and life-history productivity:

consistent or variable association? Trends in Ecology & Evolution 24: 179–180.

70. Adriaenssens B, Johnsson JI (2011) Learning and context-specific exploration

behaviour in hatchery and wild brown trout. Applied Animal Behaviour Science

132: 90–99.

71. Wolf M, van Doorn GS, Weissing FJ (2008) From the Cover: Evolutionary

emergence of responsive and unresponsive personalities. Proceedings of the

National Academy of Sciences 105: 15825–15830.

72. Conrad JL, Sih A (2009) Behavioural type in newly emerged steelhead

Oncorhynchus mykiss does not predict growth rate in a conventional hatchery

rearing environment. Journal of Fish Biology 75: 1410–1426.

73. Baras E, Lucas M (2010) Individual growth trajectories of sibling Brycon moorei

raised in isolation since egg stage, and their relationship with aggressive

behaviour. Journal of Fish Biology 77: 985–997.

74. Ritchie EG, Johnson CN (2009) Predator interactions, mesopredator release and

biodiversity conservation. Ecology Letters 12: 982–998.

75. Carey MP, Wahl DH (2010) Interactions of multiple predators with different

foraging modes in an aquatic food web. Oecologia 162: 443–452.

76. Schmitz OJ (2007) Predator diversity and trophic interactions. Ecology 88:

2415–2426.

Size and Growth Independent Behavioural Syndrome

PLoS ONE | www.plosone.org 9 February 2012 | Volume 7 | Issue 2 | e31619


