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Abstract

Background: Dioscorea is an important plant genus in terms of food supply and pharmaceutical applications. However, its
classification and identification are controversial. DNA barcoding is a recent aid to taxonomic identification and uses a short
standardized DNA region to discriminate plant species. In this study, the applicability of three candidate DNA barcodes
(rbcL, matK, and psbA-trnH) to identify species within Dioscorea was tested.

Methodology/Principal Findings: One-hundred and forty-eight individual plant samples of Dioscorea, encompassing 38
species, seven varieties and one subspecies, representing majority species distributed in China of this genus, were collected
from its main distributing areas. Samples were assessed by PCR amplification, sequence quality, extent of specific genetic
divergence, DNA barcoding gap, and the ability to discriminate between species. matK successfully identified 23.26% of all
species, compared with 9.30% for rbcL and 11.63% for psbA-trnH. Therefore, matK is recommended as the best DNA
barcoding candidate. We found that the combination of two or three loci achieved a higher success rate of species
discrimination than one locus alone. However, experimental cost would be much higher if two or three loci, rather than a
single locus, were assessed.

Conclusions: We conclude that matK is a strong, although not perfect, candidate as a DNA barcode for Dioscorea
identification. This assessment takes into account both its ability for species discrimination and the cost of experiments.
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Introduction

Dioscorea is a genus of more than 600 plant species in the family

Dioscoreaceae [1], which contains approximately 70 sections.

These species are mainly found in Southeast Asia, Africa, Central

America, South America, and in other tropical or subtropical

regions where some Dioscorea species are an economically

important supply of starch in the staple diet. The genus is also a

favored source of medicinal plants used to extract precursors of

cortisone and other steroid hormones [2–4]. The importance of

Dioscorea in terms of food supply and pharmaceutical use, together

with the controversy over classification [5–8], has given impetus to

improve the identification of this genus.

In this study, we aimed to establish a high-quality system for

taxonomic identification to meet the requirements of agriculture

and the pharmaceutical industry. Since the early 20th century,

morphology, cytology, palynology, and other traditional means of

identification of this genus have been explored successively [9–16].

With the development of molecular biology, however, some DNA

sequences, such as those of rbcL, matK and trnL-F, have been used

to solve complicated taxonomic problems and to infer phyloge-

netic relationships among organisms, including members of the

Dioscoreaceae [17–19].

DNA barcoding has recently emerged as an aid for global

species identification and has been successfully used in several

studies when morphological characteristics were absent [20–23].

In animals, the mitochondrial gene cytochrome c oxidase I (COI)

has provided a favorable solution in species identification [24–29];

however this gene has limited usefulness in plants. Therefore,

several candidate regions have been proposed for use in plants,

including portions of some coding genes (matK, rbcL, rpoB and

rpoC1) [23], noncoding spacers (psbA-trnH, atpF-atpH and ITS)

[30–32], or a combination of several regions [33].

Little research has been carried out to investigate the

applicability and effectiveness of different DNA regions as

barcodes to identify species within Dioscorea. In particular,

characterisation of species found in China, one of the most likely

centers of origin [34,35], was rarely included in previous studies.

This study focuses on Dioscorea species distributed in China, and

three candidate DNA barcode regions (matK, rbcL and psbA-trnH)

in the plastid genome were evaluated for identification. We aimed

to address several questions: for example, which of these three
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regions is the most useful as a barcode and how effective are these

three regions and their combinations for this discrimination?

Results

Sequence analysis and amplification efficiency
The sequence information of three candidate DNA barcode

markers, matK, rbcL and psbA-trnH, is provided in Table 1. For

individual regions, aligned sequence lengths ranged from 535 bp

for psbA-trnH to 752 for matK. rbcL was the most conserved gene

(522/553 nucleotides), based on both sequence length and number

of conserved sites. matK had the greatest nucleotide variation

(110/752), followed by psbA-trnH (74/535), based on sequence

length and number of variable sites. psbA-trnH had the highest

percentage of parsimony (parsim)-informative sites (70/535),

followed by matK (81/752). It could be inferred that psbA-trnH

and matK are the best regions for use as DNA barcodes for

phylogenetic reconstruction, whereas rbcL was the least suitable

marker for Dioscorea.

The efficiency of PCR amplification is one of the important

indicators for evaluating the applicability of DNA barcodes. The

amplification efficiency of matK using universal primers was

70.23% (the lowest efficiency found), while the amplification rate

of rbcL and psbA-trnH was 83.33% and 74.07%, respectively.

81.4% amplification efficiency was achieved with another matK

universal primer set 3F_Kim/1R_KIM. Samples that failed to

amplify with universal primers were successfully amplified using

specific primer sets designed by ourselves based on the Dioscorea

sequences available in Genbank. Samples that amplified success-

fully using universal primers were randomly picked to be amplified

by the self-designed primers to verify their scope of use;

amplification success rates were all found to be 100%.

Intra-specific variation and inter-specific divergence
The maximum intra-specific divergence and the minimum

inter-specific divergence of the three candidate barcodes and

their combinations, matK+rbcL, matK+psbA-trnH, rbcL+psbA-trnH,

matK+rbcL+psbA-trnH were estimated using six metrics [36]. The

non-coding region (psbA-trnH) showed greater intra- and interspe-

cific divergence than the coding regions (matK and rbcL; Table 2).

PsbA-trnH had the highest interspecific divergence, followed by

that of rbcL+psbA-trnH and matK+psbA-trnH, and the inter-specific

divergence of rbcL was the lowest (Table 2). matK had the

maximum intra-specific variation while rbcL had the minimum.

Furthermore, all seven barcodes showed higher genetic variability

between than within species.

Statistical comparison of divergence
It can be seen from the Wilcoxon signed rank tests that the

inter-specific divergence of matK was higher than that of rbcL, and

rbcL exhibited a higher inter-specific divergence than did psbA-

trnH (Table 3). P-values were less than zero showed that the

differences were highly significant. These statistically analysed data

suggest that matK would serve as an ideal candidate for identifying

Dioscorea.

DNA barcoding gap assessment
We examined the distributions of intra-specific versus inter-

specific divergence in the seven barcodes at a scale of 0.001

distance units. Although no distinct barcoding gaps as typical of

CO1 were found in the distributions of all the loci, it does suggest a

clearly defined range, where the intraspecific variation is

considerably lower than the interspecific divergence (Fig. 1). And

among them, matK revealed a relatively well separated distribu-

tion. For matK, the intra-specific distances mainly distributed in

section 0.000–0.010, while the inter-specific distances mainly

distributed in section 0.050–0.060. And for matK congeneric

species with a genetic distance of zero accounted for only 4.914%

of the total samples (8.209% for rbcL and 10.57% for psbA-trnH).

So it’s proposed that matK could be used to discriminate most

species in this study. The loci combination matK+rbcL+psbA-trnH

could also be used for species identification in Dioscorea with the

lowest ratio of samples (0.486%) having an inter-specific distance

of zero. For matK+rbcL+psbA-trnH, the intra-specific distances

mainly distributed in section 0.000–0.010, and the inter-specific

distances mainly distributed in section 0.060–0.070. Furthermore,

it was confirmed that the interspecific divergences of all the seven

loci was significantly higher than that of the corresponding

intraspecific variations by Wilcoxon two-sample tests. And the

most significant difference was observed in matK for single locus

and matK+rbcL+psbA-trnH for loci combination (Table S1).

Applicability for species discrimination
BLAST1 searches and the nearest genetic distance were used to

test the applicability of the three loci and four combinations for

species identification (Table 2). Our results revealed that matK

possessed the highest identification efficiency of the three loci. In

contrast, the rates of successful species identification using psbA-

trnH were the lowest. In addition, the success rates of combined

barcodes were higher than those of the single locus using both

methods. matK+rbcL+psbA-trnH had the highest authentication

capability, which correctly identified 53.49% of the species by both

the BLAST1 search and the nearest genetic distance methods.

Discussion

Assessment of the applicability of the three candidate
barcodes

An ideal DNA barcode must have high PCR amplification

efficiency, whilst containing enough variability to be used for

species identification and adequate conserved regions for the

design of universal primers [37]. In this study, it was found that the

chloroplast matK gene was a promising candidate for authenticat-

ing Dioscorea species based on amplification efficiency, barcoding

Table 1. Sequence information of three candidate genes.

Marker Sequence length (bp) Alignment length (bp) Conserved sites (bp) Variable sites (bp)
Parsim-informative sites
(bp)

matK 794–1054 752 642 110 81

rbcL 631–743 553 522 31 23

psbA-trnH 268–631 535 454 74 70

doi:10.1371/journal.pone.0032057.t001
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gaps, and success rate of identification. An amplification efficiency

of 100% was obtained using specific primers and the identification

efficiency was highest when using the three loci (23.26%). The

chloroplast rbcL gene did not have enough inter-specific

divergence, although its amplification efficiency was not low.

The success rate of identification of psbA-trnH was too low to be

useful for this purpose.

rbcL and psbA-trnH had individual advantages despite their poor

capability for authentication of Dioscorea species. rbcL had high

amplification efficiency, but the overlap of intra-specific and inter-

specific divergence was too substantial to be of use for

discrimination and the identification rate was only 9.30%. This

situation arises because the rbcL gene does not have sufficient

variation at the species level to be use as a DNA barcode [31,38–

41]. Approximately 10,300 rbcL sequences in the GenBank were

compared using the distance based method. It was found that rbcL

was not capable of discriminating between all species, but was able

to distinguish some taxa at the genus and species levels [42].

The amplification efficiency of psbA-trnH in Dioscorea was

moderate and its identification accuracy was only 11.63%,

therefore it is not a suitable candidate as a DNA barcode for

Dioscorea, as it is for other species [43,44]. In addition, the presence

of a poly-A/T in this region often reduces the success rate of DNA

sequencing.

Insertions or deletions appear to be a common characteristic of

this genetic region, even in closely related species [45–50]. The

variable lengths of this region make sequence alignment difficult.

Large insertion or deletion was also found in different populations

of Dioscorea. For example, Dioscorea zingiberensis C.H. Wright

collected from Yichang, Madao and Enshi in China had a 234-

bp insertion segment at 183 bp compared to other populations.

The generation mechanism of indels in psbA-trnH remains

ambiguous, and one hypothesis was raised by Aldrich et al., [45]

that the deletion of insert often occurred between imperfect AT-

rich repeats flanking the insert, which was also supported by the

detection of imperfect AT-rich repeats flanking the indel in

Dioscorea zingiberensis. In contrast with the problems of indels for

sequence alignment, indels will ultimately enrich the information

needed for species discrimination [30]. Such indel indicates a

divergent trend of two groups separated by Yangtze River in

Dioscorea zingiberensis [51]. The insertions were only detected in the

three populations of north group, while the others exhibited

deletion.

The combinations of psbK-psbI+atpF-atpH, matK+atpF-atpH+
psbK-psbI and matK+atpF-atpH+psbA-trnH were used to discrimi-

nate 101 individual plants belonging to 31 species and 18 families,

and achieved high success rate [40]. When combinations of two or

three loci were used in Dioscorea, much higher identification

efficiency was achieved than any of single locus.

Application of matK in discrimination of Dioscorea
species

matK is a recommended DNA barcode candidate gene because

of its high evolution rate [23,52,53]. Lahaye and colleagues

amplified matK successfully in 398 samples using primers 390F/

1326R in 2008 and more than 90% species could be identified.

However, these results have been reviewed unfavorably by some

researchers. Kress and colleagues [32] doubted whether amplifi-

cation efficiency could remain high in plants from other families,

as 96% of samples in Lahaye’s study were orchids. The criticism of

matK for use as a DNA barcode is its poor performance of primer

universality [52,54] so different primers are needed to amplify

samples from different taxa. Kress and Erickson [31] achieved a

Table 2. Measures of inter- and intra-specific divergence and identification efficiency of the potential barcodes and combined
barcodes.

matK rbcL psbA-trnH matK+rbcL
matK+psbA-
trnH

rbcL+psbA-
trnH

matK+rbcL+psbA-
trnH

All intra-specific distances 0.009560.0167 0.001960.0045 0.019560.0469 0.006260.01 0.008260.0127 0.007260.0147 0.008260.0127

Mean theta 0.011860.0164 0.002660.0044 0.015560.0273 0.007860.0098 0.008960.009 0.006560.009 0.008960.009

Average coalescent depth 0.017860.0224 0.00560.0074 0.040160.0699 0.012160.0139 0.016160.017 0.015660.0221 0.016160.017

All interspecific distances 0.029560.0249 0.012560.0076 0.087960.0857 0.022260.0162 0.032560.0246 0.035560.0293 0.032560.0246

The minimum interspecific
distance

0.003560.009 0.001360.0029 0.002260.0061 0.002960.0062 0.003160.006 0.00260.0035 0.003160.006

Efficiency of PCR amplification
with universal primers/%

70.23 (81.40)1 83.33 74.07

Relative identification
efficiency/%2

Blast1 23.26 (27.70) 9.30 (10.81) 11.63 (20.27) 46.51 (60.81) 32.56 (53.38) 37.21 (38.51) 53.49 (74.32)

Nearest
distance

23.26 (27.70) 9.30 (10.81) 4.65 (14.86) 46.51 (60.81) 30.23 (50.00) 27.91 (34.46) 53.49 (71.62)

1Efficiency of PCR amplification with universal primer 3F_Kim and 1R_KIM recommended by CBOL (http://barcoding.si.edu) in a sample pool composed of one randomly
selected sample from all species.

2Species identification efficiency with sample identification efficiency in bracket.
doi:10.1371/journal.pone.0032057.t002

Table 3. Wilcoxon signed rank test of the inter-specific
divergences among the three loci.

W+ W2 Relative Ranks, n, P value Result

matK rbcL W+ = 5949, W2 = 3268, n = 10403,
P#0.0

matK.rbcL

matK psbA-trnH W+ = 2863, W2 = 6319, n = 10368,
P#0.0

matK.psbA-trnH

rbcL psbA-trnH W+ = 2503, W2 = 6299, n = 10213,
P#0.0

rbcL.psbA-trnH

doi:10.1371/journal.pone.0032057.t003
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39.3% amplification rate for 96 species belonging to 48 genera,

although 10 pairs of primers were used. Fazekas and colleagues

[39] amplified 251 individual plants from 32 genera and 92

species, but their success rate was only 87.6%.

The amplification efficiency of Dioscorea were 70.23% and

81.40% with primers intF/intR and 3F_Kim/1R_KIM respec-

tively and a 100% success rate was achieved using our in-house

designed specific primers. For an ideal barcode a distinct gap with

no overlap is essential [23,36]. But in this study, no distinct

barcoding gap was found even though intra-specific divergence

and interspecific divergence was mainly non-overlapping (Fig. 1).

Nevertheless, based on the histogram of DNA barcoding gap and

species identification, matK was proven to be better than the other

loci in our study.

ITS and ITS2 have been also proposed to be the most

promising universal DNA barcode in plants [55,56], unfortunate-

ly, because of the low sequencing success of the ITS and ITS2

region brought by serious endophyte interference in our study, this

region was not included for further analysis.

In conclusion, our study shows that the matK is a strong,

although not perfect, candidate for Dioscorea identification. It

remains necessary to carry out further research on other more

variable DNA barcodes such as psbK-psbI and atpF-atpH in species

identification of this genus.

Materials and Methods

Plant materials
Plant samples were collected from different locations in China

and identified by one of our authors, Prof. Yueyu Hang. In total,

148 individual samples belonging to 38 species, seven variants and

one subspecies, representing majority species (46/61) and all six

sections distributed in China of this genus, were collected for

further analysis. Fresh leaves were dried in silica gel at the time of

collection. Voucher specimens were deposited in the herbarium at

the Kunming Institute of Botany, Chinese Academy of Sciences

(KIM) (Table S2).

DNA extraction, amplification, sequencing
Genomic DNA was extracted following a cetyl trimethylammo-

nium bromide (CTAB) protocol modified from Paterson et al.

[57]. The universal primers intF and intR (RBG Edinburgh

recommended), 1F and 724R [58], and psbAF and trnH2 [59]

were used in the amplification of matK, rbcL and psbA-trnH regions

of the cpDNA respectively. As to these samples failed to amplify

using universal primers, specific primers were designed with the

aid of OLIGO primer design software (Molecular Biology Insights,

Inc., Cascade, Colorado, USA), based on genus Dioscorea

sequences deposited in the GenBank database. For example the

matK sequence of D. alata L. (AB040208), the rbcL sequence of D.

alata L. (AY667098) and the psbA-trnH region of D. elephantipes

(L’Her.) Engl. (EF380353.1) were used. In addition, the universal

primer set 3F_Kim and 1R_KIM currently recommended by

CBOL (http://barcoding.si.edu) was also adopted to evaluate the

efficiency of PCR amplification in a sample pool composed of one

randomly selected sample from all species. Detailed sequences of

all the primers and reaction conditions are listed in Table S3.

Polymerase chain reaction (PCR) amplification of the three

candidate barcodes was carried out using the following program: a

premelt of 3 min at 94uC, followed by 35 cycles of 45 s

denaturation at 94uC, 30 s annealing reaction at 53–58uC, and

finally a 1.5 min 30 s extension at 72uC. Each 20-ml reaction

mixture contained 30 ng of genomic DNA template, 2.5 mmol/L

MgCl2, 16 Mg-free DNA polymerase buffer, 0.12 mmol/L

dNTPs, 0.3 mmol/L each primer, 1 U Taq DNA polymerase.

PCR products were examined electrophorectically using 0.8–1.2%

agarose gels. Purification and bidirectional sequencing were

completed by Beijing Genomics Institute (BGI) using the

amplification primers.

Sequence alignment and data analysis
Sequences were aligned and adjusted manually using Sequencer

v.4.5 software (GeneCodes, Ann Arbor, MI, USA). The nucleotide

sequence data of the three regions were deposited in the GenBank

database (Table S2). All genetic distances were calculated using

MEGA (4.0 Version) software.

Average intra-specific distance, mean theta and coalescent

depth were calculated to determine intra-specific variation

[36,55], and average interspecific distance, theta prime and the

minimum interspecific distance were calculated to determine

interspecific divergence [36,55,60]. Wilcoxon signed-rank tests

were performed as previously described [23,31]. The distribution

of intra-specific versus interspecific variability was evaluated by

assessment of the presence of DNA barcoding gaps [31,36]. Two

methods of species identification, including BLAST1 protein

similarity search and the nearest distance method, were carried

out as described previously [61]. BLAST1 searches were

conducted on a local reference library constructed for each

region. The barcode sequence of each species was queried against

the local library with the ‘‘blastn’’ command. The identity of a

sample was based on the best hit and the E-value for the match

must be lower than the cutoff value. In comparison, for the nerest

genetic distance method, the identity of a sample was determined

based on the subject sequence which has the smallest genetic

distance and the distance must be less than a distance threshold.

The traffic light approach was used to identify the combination of

markers [62].The combination would have identification power

as long as the sequences could be identified by any of the markers

in combination, while the combination would be incapable of

identifying sequences if none of the markers in combination could

identified sequences successfully.

Supporting Information

Table S1 Wilcoxon two-sample tests for distribution of intra- vs.

inter-specific divergences.

(DOC)

Table S2 Samples for testing potential barcodes and accession

numbers in GenBank.

(DOC)

Table S3 Primers and reaction conditions used in the study.

(DOC)
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