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To estimate the association of antiretroviral therapy initiation with incident acquired immunodeficiency syndrome
(AIDS) or death while accounting for time-varying confounding in a cost-efficient manner, the authors combined
a case-cohort study design with inverse probability-weighted estimation of a marginal structural Cox proportional
hazards model. A total of 950 adults who were positive for human immunodeficiency virus type 1 were followed in
2 US cohort studies between 1995 and 2007. In the full cohort, 211 AIDS cases or deaths occurred during
4,456 person-years. In an illustrative 20% random subcohort of 190 participants, 41 AIDS cases or deaths occurred
during 861 person-years. Accounting for measured confounders and determinants of dropout by inverse probability
weighting, the full cohort hazard ratio was 0.41 (95% confidence interval: 0.26, 0.65) and the case-cohort hazard
ratio was 0.47 (95% confidence interval: 0.26, 0.83). Standard multivariable-adjusted hazard ratios were closer to
the null, regardless of study design. The precision lost with the case-cohort design was modest given the cost
savings. Results from Monte Carlo simulations demonstrated that the proposed approach yields approximately
unbiased estimates of the hazard ratio with appropriate confidence interval coverage. Marginal structural model
analysis of case-cohort study designs provides a cost-efficient design coupled with an accurate analytic method
for research settings in which there is time-varying confounding.

acquired immunodeficiency syndrome; case-cohort studies; cohort studies; confounding bias; HIV; pharmacoepi-
demiology; selection bias

Abbreviations: AIDS, acquired immunodeficiency syndrome; CI, confidence interval; HAART, highly active antiretroviral therapy;
HIV-1, human immunodeficiency virus type 1; SD, standard deviation.

Marginal structural models (1) are used increasingly to
estimate the total, joint (2), or direct/indirect (3) associations
of exposures with an outcome of interest. Using inverse prob-
ability weighting, such structural models can be employed to
consistently estimate exposure associations when 1 or more
time-varying confounders are affected by a prior time-varying
exposure. Marginal structural Cox proportional hazards re-
gression models (4) are commonly used when the outcome
is time-to-event (5–8).

The case-cohort design is an efficient approach for esti-
mating the hazard ratio accurately when obtaining exposure
or covariate information is costly (9–12). In this design,
exposure or covariate information is collected only for

a random subcohort, as well as for all participants who have
experienced the event of interest (and henceforth are cases).
Cost savings are obtained by not collecting exposure and
covariate information on noncases outside the subcohort.
A case-cohort analysis typically proceeds with a standard
Cox regression model for the subcohort, augmented with the
cases outside the subcohort to improve precision (13, 14).
Prior methodological work suggests that case-cohort designs
may be analyzed using methods for causal inference based
on potential outcomes (15, 16). However, to date, there has
not been an example analysis of a case-cohort design using
marginal structural models. Here we illustrate this approach
with an analysis of the association between highly active
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antiretroviral therapy (HAART) initiation and incident
acquired immunodeficiency syndrome (AIDS) or death (7).

MATERIALS AND METHODS

Study cohort

This analysis used data from the Multicenter AIDS Cohort
Study (17) and the Women’s Interagency HIV Study (18).
Beginning in 1984, the Multicenter AIDS Cohort Study
enrolled 6,972 homosexual and bisexual men in Baltimore,
Maryland; Chicago, Illinois; Pittsburgh, Pennsylvania; and
Los Angeles, California. Beginning in 1994, the Women’s
Interagency HIV Study enrolled 3,772 women in New York,
Chicago, Los Angeles, San Francisco, and Washington, DC.
Approximately every 6 months, participants in both studies
underwent a physical examination, completed an extensive
interviewer-administered questionnaire that obtained infor-
mation on use of antiretroviral therapy, and provided a blood
sample. Positive enzyme-linked immunosorbent assays
with confirmatory Western blots were used to determine
seropositivity for human immunodeficiency virus type 1
(HIV-1). Institutional review boards approved all protocols
and informed consent forms, which were completed by par-
ticipants in both cohorts.

The cost of these semiannual study visits varied by cohort,
by site within each cohort, and over time, but the cost in
2007 was approximately $1,560 per participant per visit.
Approximately $600 of the $1,560 was required for deter-
mination of covariate information based on biomarkers
(e.g., CD4 cell count, HIV-1 RNA viral load), and this $600
may be saved for visits where covariate information is not
required. However, the balance of the $1,560 is required in
order to conduct the visit and obtain and store biologic
specimens, regardless of whether the covariate information
is needed presently. These costs will be used to quantify
savings for the case-cohort design.

Analyses presented here included the 950 men and women
who were alive, HIV-1-seropositive, and not using antire-
troviral therapies in April 1995, just before effective therapy
became available (the first highly active regimen was approved
by the US Food and Drug Administration on December 6,
1995). Each participant contributed a maximum of 24 study
visits, beginning with the first semiannual visit after April
1995 (the baseline visit). For the present report, participants
were followed until: 1) incident AIDS or death, 2) initiation
of non-HAART treatment, 3) dropout (i.e., 2 consecutive
missed visits), or 4) study completion in September 2007.
For participants who were missing baseline data on any
time-varying covariate but remained eligible, baseline was
redefined as the first visit with complete data. This approach
is analogous to the inclusion of late entries in survival
analysis (19) and assumes that such late entries are non-
informative (20).

An illustrative subcohort was selected as a 20% simple
random sample without replacement from the 950 participants.
Among the 190 participants chosen for the subcohort,
41 (22%) were cases. The case cohort was defined as the sub-
cohort of 190 participants plus the 170 cases (211 � 41 ¼ 170)
outside the subcohort.

Measurements

The endpoint of interest was first diagnosis of clinical
AIDS or death from any cause, as recently described (21).
The exposure of interest was initiation of HAART, versus no
antiretroviral therapy. Data on a number of fixed and time-
varying covariates were recorded.

Levels of T-lymphocyte subsets were determined by im-
munofluorescence using flow cytometry in laboratories par-
ticipating in the National Institute of Allergy and Infectious
Diseases Quality Assurance Program. T-lymphocyte subsets
were measured in purified peripheral blood mononuclear cells
or ethylenediaminetetraacetic acid-anticoagulated whole blood
by staining with fluorescent dye-conjugated monoclonal an-
tibodies that were specific for CD4 lymphocytes (Becton
Dickinson, Mountain View, California) (22).

Plasma HIV-1 RNA viral load levels were measured in
laboratories participating in the proficiency testing program
of the National Institute of Allergy and Infectious Diseases
Virology Quality Assurance Laboratory. To harmonize viral
load detection limits, which varied from 50 copies/mL to
400 copies/mL across cohorts and over time, we set values
below 400 copies/mL to a value of 200 copies/mL. Missing
time-varying covariate information after the baseline visit (9%)
was carried forward from the most recent prior observed value.

Statistical methods

In this article, capital letters represent variables and lower-
case letters represent possible values of the variables or con-
stants. Let T be the time from study entry to AIDS or death.
Due to study completion, dropout, or inadequate therapy ini-
tiation, T may be right-censored. Let Ts be the potential time
from study entry to AIDS or death under the regimen of
HAART initiation at time s. Letting hTsðtÞ denote the hazard
at time t for the random variable Ts, a marginal structural Cox
proportional hazards model is hTsðtÞ ¼ h0ðtÞexp½xðtÞb�, where
h0(t) is the hazard for participants not exposed by time t (i.e.,
all Ts where s> t), and x(t) ¼ 1 if t> s and x(t) ¼ 0 otherwise.
For this model, b is the log hazard ratio comparing the regi-
mens previously exposed to treatment with those not exposed
to treatment by time t. The specification of exposure to
HAART is a simple initiation indicator and does not depend
on time since initiation or cumulative exposure, which is in
keeping with most (7, 8, 23) but not all (21) prior reports. We
also consider structural models for cumulative average ex-
posure to HAART.

Cohort and subcohort estimation. In Appendix 1, we de-
scribe standard methods for drawing inference assuming the
above model using data from the full cohort. Methods for
the analysis of the subcohort follow directly from those for
the full cohort. The only distinction is that the subcohort
analysis is conducted using only the data from the 190 (out
of 950) participants chosen at random for the subcohort.
This restriction to the 190 subcohort participants also applies
for calculation of the inverse probability weights described
in Appendix 1.

Case cohort. For case-cohort designs, the Cox partial like-
lihood must be adjusted to account for sampling of covariate
information from only a subset of participants. Here we extend
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Prentice’s approach to estimation of the hazard ratio from
a case-cohort study design (12). Assuming no tied failure
times, for the case-cohort design the contribution to the
weighted partial likelihood corresponding to participant
i failing at time ti is

n
YiðtiÞexp½XiðtiÞb�WiðtiÞ

o.n
YiðtiÞexp½XiðtiÞb�WiðtiÞ

þ
X

fk2SC;k 6¼ig
YkðtiÞexp½XkðtiÞb�WkðtiÞ

o
;

where Y, X, and W are as defined in Appendix 1 and SC
denotes the 190 participants in the subcohort. The distinction
between the contributions to the weighted partial likelihood
for the full cohort and those shown here is that the sum in the
denominator of the weighted partial likelihood is taken over
the members of the subcohort and the case, rather than the
full cohort membership.

For the case-cohort design, the inverse probability weights
are estimated using the subcohort set SC as well as cases
outside the subcohort. Contributions to the models for the
inverse probability weights were themselves weighted in-
versely to the sampling probability for the case-cohort design.
Specifically, cases (inside or outside the subcohort) were given
a weight of 1, while noncases inside the subcohort were given
a weight of 5 (1/0.2 ¼ 5). Noncases outside the subcohort
were not used to estimate the inverse probability weights.

Unadjusted and adjusted hazard ratio estimates were ob-
tained for comparison from standard unweighted Cox models
without and with adjustment for the same set of variables as
used in the marginal structural model. A Monte Carlo simu-
lation experiment is presented in Appendix 2. The simulation
examines some finite-sample properties of the proposed
method. All analyses were conducted with SAS, version 9.2

(SAS Institute, Inc., Cary, North Carolina), using robust
variance estimates (24) to calculate 95% confidence inter-
vals and P values for all case-cohort designs and marginal
structural models (see Appendix in Cole et al. (25)).

RESULTS

At study entry, the 950 cohort participants had a mean
age of 39 years (standard deviation (SD), 8), a CD4 cell
count of 498 cells/mm3 (SD, 279), and a viral load of
4.5 log10 copies/mL (SD, 0.7) for the 74% participants with
detectable values; 61% were women, and 59% were African-
American. The 190 subcohort participants had similar char-
acteristics at study entry (Table 1).

Over the course of follow-up, the 950 cohort participants
contributed 4,456 person-years, of which 2,974 person-years
were accrued after antiretroviral therapy initiation. During
follow-up, 180 cases of incident AIDS and 31 AIDS-free
deaths were observed, 259 participants were censored at in-
adequate therapy initiation, 173 participants were lost to follow-
up, and 307 participants completed the study event-free.

The 190 subcohort participants contributed 861 person-
years, of which 590 person-years were accrued after anti-
retroviral therapy initiation. During follow-up, 34 cases of
incident AIDS and 7 AIDS-free deaths were observed, 94
participants were censored at inadequate therapy initiation
or lost to follow-up, and 55 participants completed the
study event-free (Table 1).

The inverse probability weights for the cohort had a mean
of 0.95 (SD, 0.65) with a range of 0.14–9.60 and first and
99th percentiles of 0.22 and 4.12, respectively. The inverse
probability weights for the subcohort had a mean of 0.98
(SD, 0.66), with a range of 0.09–4.91 and first and 99th per-
centiles of 0.15 and 3.77, respectively. The inverse probability

Table 1. Characteristics of the Cohort (Men and Women Infected With HIV Type 1) and the 20% Subcohort at

Baseline and During Follow-up, Multicenter AIDS Cohort Study and Women’s Interagency HIV Study, 1996–2007

Characteristic
Cohort (n 5 950) Subcohorta (n 5 190)

% Mean (SD) No. % Mean (SD) No.

At baseline in 1996

Mean age, years 39 (8) 38 (8)

Female sex 61 578 57 108

African-American race 59 560 54 102

Mean CD4 cell count, no. of cells/mm3 498 (279) 489 (283)

Mean log10 HIV-1 RNA level, no. of
copies/mL

4.5 (0.7)b 4.5 (0.7)c

Over follow-up between 1996 and 2007

No. of person-years 4,456 861

No. of exposed person-years 2,974 590

No. with incident AIDS or death 211 41

Abbreviations: AIDS, acquired immunodeficiency syndrome; HIV, human immunodeficiency virus; SD, standard

deviation.
a The subcohort comprised 20% of 950 cohort participants chosen at random.
b Among 705 detectable measurements.
c Among 145 detectable measurements.
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weights for the case cohort had a mean of 0.98 (SD, 0.65),
with a range of 0.10–7.29 and first and 99th percentiles of
0.16 and 3.26, respectively.

Consistent with prior research (7), in the full cohort
the unadjusted hazard ratio for AIDS or death was 1.02
(95% confidence interval (CI): 0.72, 1.43), and the adjusted
hazard ratio was 0.96 (95% CI: 0.68, 1.36). The inverse
probability-weighted hazard ratio for AIDS or death was 0.41
(95% CI: 0.26, 0.65) (Table 2). For the inverse probability-
weighted hazard ratio, the ratio of the upper confidence limit
to the lower confidence limit, a measure of precision, was
2.5. As expected (26), when we truncated the inverse prob-
ability weights at the first and 99th percentiles, the hazard
ratio was somewhat muted yet slightly more precise (hazard
ratio ¼ 0.48, 95% CI: 0.31, 0.74); untruncated inverse prob-
ability weights were used henceforth. The treatment initiation
association appeared to increase over follow-up time, with
a hazard ratio of 0.61 (95% CI: 0.22, 1.66) before 2 years and
a hazard ratio of 0.38 (95% CI: 0.23, 0.61) after 2 years from
study entry (P for homogeneity ¼ 0.39). Two years was
chosen as the point at which approximately half of the events
had occurred; henceforth, this possible departure from pro-
portional hazards was disregarded.

As expected, results for the subcohort were less precise
than those for the full cohort. The unadjusted hazard ratio
for AIDS or death was 1.27 (95% CI: 0.57, 2.86), and the
adjusted hazard ratio was 1.37 (95% CI: 0.60, 3.17). The
inverse probability-weighted hazard ratio for AIDS or death
was 0.53 (95% CI: 0.23, 1.24) (Table 2). For the inverse
probability-weighted hazard ratio, the ratio of upper to lower

confidence limits was 5.39, or 2.16 times that of the full
cohort precision.

Finally, results for the case-cohort design recovered much
of the precision lost in the subcohort design. The unadjusted
hazard ratio for AIDS or death was 0.97 (95% CI: 0.61, 1.54),
and the adjusted hazard ratio was 1.09 (95% CI: 0.69, 1.73).
The inverse probability-weighted hazard ratio for AIDS or
death was 0.47 (95% CI: 0.26, 0.83) (Table 2). For the inverse
probability-weighted hazard ratio, the ratio of upper to lower
confidence limits was 3.19, or 1.28 times that of the full
cohort precision.

Table 3 summarizes dollar and precision costs relative to
the full cohort. While the costs for the full cohort design
would be about $14.5 million, the costs for the subcohort
and case-cohort designs would be about $10 million and
$10.5 million, respectively. For the subcohort design, the
dollar savings are more than offset by the decreased preci-
sion, as seen by the proportional precision costs’ being larger
than unity. However, for the case-cohort design, the dollar
savings are offset by the decreased precision, such that the
proportional precision costs remain below unity and therefore
in favor of the case-cohort study design under a fixed budget.

Similar results were obtained when modeling the cu-
mulative average exposure. For instance, using the full
cohort, the unadjusted, adjusted, and marginal structural
model estimates of the hazard ratio for cumulative average
exposure to HAART were 0.73 (95% CI: 0.44, 1.21), 0.84
(95% CI: 0.50, 1.42), and 0.24 (95% CI: 0.12, 0.47), respec-
tively. In the case-cohort marginal structural model analysis,
the hazard ratio estimate was 0.30 (95% CI: 0.12, 0.73).

Monte Carlo simulation results are provided in Appendix 2.
Briefly, the simulations demonstrated that the proposed case-
cohort approach yields approximately unbiased estimates with
appropriate confidence interval coverage and recovers a large
portion of the precision present in the full cohort design
(Appendix Table 1).

DISCUSSION

Using a combination of a case-cohort study design and
a marginal structural Cox model analysis, we estimated that
relative to no antiretroviral therapy, initiation of HAART
decreased the hazard of AIDS or death by 53%. A similar
result was found using the combination of a full cohort design
and a marginal structural Cox model analysis, but a dramat-
ically attenuated result was found using standard analytic
methods for both the case-cohort and full cohort designs.
The combination of a case-cohort design with marginal
structural model analysis was found to be favorable in terms
of a combination of monetary cost and precision for the pres-
ent example. In settings where there is a larger cost savings
associated with not collecting exposure or covariate informa-
tion from persons outside the subcohort or where the outcome
is less frequent, the case-cohort study design will be even
more advantageous.

While we are unaware of any prior work on marginal struc-
tural models for case-cohort designs, Joffe and Rosenbaum (15)
and Mansson et al. (16) describe case-cohort studies using
propensity scores, which have features in common with the
present work but are restricted to time-fixed exposures.

Table 2. Cohort, 20% Subcohort, and Case-Cohort Analyses of the

Association Between Highly Active Antiretroviral Therapy and

Incident AIDS or Death Among 950 Men and Women Infected With

HIV Type 1, Multicenter AIDS Cohort Study and Women’s

Interagency HIV Study, 1996–2007

Analysis and
Model

Hazard
Ratio

95% Confidence
Interval

Standard
Errora

Cohort

Unadjusted 1.02 0.72, 1.43 0.176

Adjustedb 0.96 0.68, 1.36 0.178

Weightedb 0.41 0.26, 0.65 0.231

Subcohort

Unadjusted 1.27 0.57, 2.86 0.412

Adjusted 1.37 0.60, 3.17 0.426

Weighted 0.53 0.23, 1.24 0.436

Case-cohort

Unadjusted 0.97 0.61, 1.54 0.238

Adjusted 1.09 0.69, 1.73 0.235

Weighted 0.47 0.26, 0.83 0.293

Abbreviations: AIDS, acquired immunodeficiency syndrome; HIV,

human immunodeficiency virus.
a Standard error for log hazard ratio; robust standard error for case-

cohort and weighted models.
b Adjusted and weighted models both controlled for time-varying

prior CD4 cell count and HIV-1 RNA level, specified as restricted cubic

splines.
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There are several competing approaches to estimating the
hazard ratio from a case-cohort design. Early work by Kupper
et al. (10) and Miettinen (11) dealt with estimation of the
incidence density ratio under the dual assumptions of the
hazards’ being proportional across exposure groups and con-
stant over time, both assumptions being within levels of mea-
sured variables. Modern approaches, since the work of Prentice
(12), allow the hazards for exposure groups to be nonconstant
over time but continue to assume proportionality across ex-
posure groups. Borgan and Samuelsen (27) reported Monte
Carlo simulations showing that Prentice’s approach (12) and
Barlow’s approach (28), the latter using inverse probability
of sampling weights, provide similar inferences when the
subcohort is of reasonable size relative to the full cohort
(i.e., �15% of the full cohort), as is the case in our setting.
Further details on differences between these approaches are
discussed by Barlow et al. (13), Borgan and Samuelsen (27),
Langholz and Jiao (29), and Kulathinal et al. (30).

The present results should be interpreted with consider-
ation of the following limitations. First, like all observational
analyses, the estimates have a causal interpretation only
under the assumption of no unmeasured confounding. This
assumption probably holds approximately here, because the
most important clinical and laboratory information used by
physicians as indications for therapy initiation was collected
and used in the models for the estimation of the weights
(31). As described previously (7, 26), numerous additional
functional forms for the weight models were explored (e.g.,
longer covariate histories, more flexible splines), as well as
a broader set of covariates (e.g., age, race, body mass index,
HIV-related symptoms, use of Pneumocystis jiroveci pneu-
monia prophylaxis, and red blood, platelet, CD3, and CD8
cell counts), but such alternative model specifications did

not appreciably alter the results. If the assumption of no
unmeasured confounders is correct and the model used to
create the treatment weights is correctly specified, then
weighting creates a pseudopopulation in which the probabil-
ity of therapy initiation is not a function of the time-varying
covariates (i.e., no confounding exists), but the association
of therapy initiation with AIDS or death is the same as in the
actual study population.

Second, and as in all prospective analyses with right-
censoring, the results are based on the assumption that right-
censoring is ignorable, conditional on measured covariates.
Neither the present analyses nor past analyses (5, 7, 25, 32)
suggested that there was notable selection bias due to measured
variables in these data.

Third, the results rely on the assumptions that therapy
initiation and time to AIDS or death are measured without
error. There are 3 pertinent subpoints. Firstly, we did not
account for therapy cessation in these analyses. The inverse
probability-weighted analysis was therefore estimating an
‘‘intention-to-treat effect’’ (32) of therapy initiation versus no
antiretroviral therapy in a hypothetical randomized clinical
trial in which 1) participants were randomly assigned to begin
continuous therapy at different visits, 2) all participants ini-
tially complied and began therapy at their assigned visit, and
3) a portion later discontinued therapy. Secondly, the timing of
therapy initiation may have been misreported. Cole et al. (21)
have described methods with which to account for such mea-
surement error. Thirdly, these results may have been sensitive
to the relative infrequency of data collection (i.e., 6-month
intervals). Misclassification due to this coarse measure-
ment (with respect to time) could have reintroduced some
confounding, which could have biased the estimated hazard
ratios in either direction (26). Indeed, therapy is initiated

Table 3. Costs and Precision Costs for Cohort, 20% Subcohort, and Case-Cohort Marginal Structural Analyses of

Highly Active Antiretroviral Therapy and Incident AIDS or Death Among 950 Men and Women Infected With HIV

Type 1, Multicenter AIDS Cohort Study and Women’s Interagency HIV Study, 1996–2007

Analysis and
Visit Type

No. of
Visits

Cost, dollarsa
Proportional

Costs
Precision
Costsb

Proportional
Precision Costs

Cohort

Full 9,172 14,308,320

Partial 0 0

Total 14,308,320 1c 3.31 1c

Subcohort

Full 1,766 2,754,960

Partial 7,406 7,109,760

Total 9,864,720 0.69 4.30 1.30

Case-cohort

Full 2,891 4,509,960

Partial 6,281 6,029,760

Total 10,539,720 0.74 3.09 0.93

Abbreviations: AIDS, acquired immunodeficiency syndrome; HIV, human immunodeficiency virus.
a Costs of a full study visit were approximated at $1,560 and costs of a partial study visit at $960 (excluding

biomarker determinations).
b Precision costs were defined as costs (in millions of dollars) 3 standard error.
c Proportional costs and precision costs were taken with respect to the full cohort.
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during the interval between study visits by physicians who
have access to information beyond that collected for the
study. Therefore, a sensitivity analysis to deviations from
the no-unmeasured-confounding assumption is appropriate
but was beyond the scope of this article.

Fourth, the inferences rely on correct model specification.
There are 2 pertinent subpoints. Firstly, we assume that the
most recent prior observed value is a reasonable substitute
for the 9% missing time-varying covariate information that
was carried forward. Given the relatively small amount of
missing time-varying covariate data, one would expect re-
sults to be robust to violations of this assumption. Secondly,
inferences rely on correct specification of the final structural
model relating HAART exposure to incident AIDS or death.
We fitted a simple initiation indicator, as well as cumulative
average exposure, and found similar results.

Fifth, our approach to implementing a marginal structural
model for the case-cohort design is not fully efficient. One
way to improve the efficiency would be to use information
from the full cohort that is currently ignored. Recently,
Breslow et al. (33, 34) discussed stratified case-cohort stud-
ies in the context of 2-stage study designs (35, 36). They
demonstrated that use of the full cohort in the analysis of
case-cohort studies may improve precision for estimation of
covariate associations in the full cohort, as well as product
terms between these covariates and the exposure of interest.
In our setting, a modification of the association of therapy
with incident AIDS or death by baseline CD4 cell count has
been reported (7). This may be a topic of future work.

Finally, we assume both consistency (37, 38) and positivity
(37, 39), which would be granted by design in a randomized
trial but are subject to possible violations in observational
studies. For causal contrasts to be interpretable, either there
must be a single route to the exposure or the multiple routes
must yield similar effects. This consistency assumption is
likely to hold approximately in the present setting, where
the exposure is a treatment (40, 41). Valid use of inverse prob-
ability weights requires that there not be a probability of 0 or
1 that participants are exposed at any level of the confounders
(26). This positivity assumption was met in theory in our
study, as some participants with high CD4 cell counts and
low viral loads initiated therapy while others with low CD4
cell counts and high viral loads did not, and this assumption
was not violated in practice, as previously discussed (26).

In conclusion, the association of HAART initiation with
incident AIDS or death using a marginal structural model
analysis of a full cohort design was approximated well using
an analogous analysis of a case-cohort design. The combi-
nation of the cost-efficient case-cohort design with accurate
analytic methods based on potential outcomes provides the
epidemiologist with a useful tool for etiologic inference.
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APPENDIX 1

Standard Analysis of a Marginal Structural Cox Model

The hazard ratio, exp(b), may be estimated consistently in
the full cohort under the dual assumptions of no unmeasured
confounders and no unmeasured informative censoring (42)
by maximizing a weighted partial likelihood as described
below. Let S be the time from study entry to highly active
antiretroviral therapy (HAART) initiation for persons who
initiate HAART before T, and S¼ Totherwise. Note that S is
interval-censored because therapy initiation is known only
to occur between semiannual study visits: We take the right
side of the interval as S.

Assuming no tied failure times, for the full cohort de-
sign the contribution to the weighted partial likelihood
corresponding to participant i failing at time ti is(
YiðtiÞexp½XiðtiÞb�WiðtiÞ

),(XN
k¼1

YkðtiÞexp½XkðtiÞb�WkðtiÞ
)
;

where Yi(t) is an indicator of participant i’s being in the risk
set at time t, Xi(t) ¼ 1 if t > Si and Xi(t) ¼ 0 otherwise, and
the inverse probability weights are WiðtÞ ¼ WX

i ðtÞWC
i ðtÞ,

defined below.

Let J denote the number of follow-up study visits for an
individual, let vj equal the time from baseline to follow-up
visit j ¼ 1 to J, and let v0 ¼ 0. In the case where acquired
immunodeficiency syndrome (AIDS) occurs during the inter-
val (vj�1, vj], the time of AIDS replaces the visit time vj. In the
case where death occurs after visit J, the time of death re-
places the visit time vJ. Let X(vj) ¼ 1 indicate exposure
initiation in the interval (vj�1, vj]; by design, X(v0) ¼ 0.
Let L(vj) be the vector of covariates measured at visit j, with
baseline covariates denoted as L(v0). Let C(vj) ¼ 1 indicate
that the participant was censored because of dropout or ini-
tiation of non-HAART therapy during the interval (vj�1, vj];
by design, C(v0) ¼ 0. Overbars are used to denote histories,
such that �XðvjÞ ¼ Xðv0Þ;Xðv1Þ;Xðv2Þ; . . . ;XðvjÞg

�
; �LðvjÞ

and �CðvjÞ are defined analogously. The inverse probability
weights are defined as

WXðtÞ ¼
Y

fvj� tg

P
�
X
�
vj
�
j �X

�
vj�1

�
; �C

�
vj
�
¼ 0

�
P
�
X
�
vj
�
j �X

�
vj�1

�
; �C

�
vj
�
¼ 0; �L

�
vj�1

��
and

WCðtÞ ¼
Y

fvj� tg

P
�
C
�
vj
�
¼ 0 j �C

�
vj�1

�
¼ 0; �X

�
vj�1

��
P
�
C
�
vj
�
¼ 0j �C

�
vj�1

�
¼ 0; �X

�
vj�1

�
; �L
�
vj�1

��;
where P[ j ] is the conditional probability function. The de-
nominator for each term in WX(t) is the probability that a par-
ticipant received her own observed treatment at time vj given
her past exposure and covariate history and that she remained
uncensored.

The estimate of b was obtained in 2 steps: First, the inverse
probability weights were estimated for each individual at each
failure time, and then the weighted partial likelihood was
maximized conditional on the estimated weights. We esti-
mated the components of the inverse probability weights
using pooled logistic regression models (43), as previously
described (25). In the pooled logistic regression model, base-
line covariates included age, sex, CD4 cell count, and log10

viral load. Time-varying covariate histories were modeled as
restricted cubic splines with 4 knots located at the 5th, 33rd,
67th, and 95th percentiles for CD4 cell count and log10 viral
load, both taken at visit j � 1. Using SAS, the time-varying
inverse probability weights (and exposure) were accommodated
with a counting process style of data input, with entry and exit
times given as vj�1 and vj for j ¼ 1 to J. Inverse probability
weights were calculated in the same manner for cumulative
average HAART, but the marginal structural Cox model re-
placed X(t) with

P
vj�t XðvjÞ=

P
vj�t 1. This cumulative aver-

age could be generalized to allow for unequal visit intervals.

APPENDIX 2

Monte Carlo Simulation Experiment

Simulation design

We conducted 5,000 simulations each of 1,000 participants
for 2 scenarios: b ¼ 0 and b ¼ log(1/2). We first describe
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a method for simulating data such that the marginal struc-
tural Cox model given in the main text holds when there are
2 possible exposure times, at times t ¼ 0 and t ¼ t1 > 0. We
assume here that b � 0, such that exposure is not harmful.
Let T0, Tt1 , and TN denote the potential survival times cor-
responding to regimens where the first exposure is at t ¼ 0,
the first exposure is at t ¼ t1, and there is never exposure,
respectively. Note that TN has the corresponding hazard
hTNðtÞ ¼ h0ðtÞ and that we do not assume Tt1 > t1. The
steps needed to generate the potential survival times are:

1. Draw TN from an exponential distribution with hazard
h0(t) ¼ k and survival function S0(t) [ Pr(TN > t) ¼
exp(�kt).

2. Let T0 ¼ TNexp(�b).

3. Let Tt1 ¼ TNIðTN < t1Þ þ ðT0 � hÞIðTN � t1Þ; where
h ¼ t1½expð�bÞ � 1� and I(.) is the indicator function,
equal to 1 when the condition (.) is true and 0 otherwise.

A proof that this method yields potential outcomes satisfying
the marginal structural Cox model is available from the
authors.

We set k ¼ 1 and t1 ¼ 0.1. For each participant, we set
the baseline covariates to constant values 0, so they may be
ignored without consequence. We generated a baseline ex-
posure as Bernoulli with a probability of 1/3. Next, we
generated a first time-varying confounder as Bernoulli with
a marginal probability of 0.5 dependent on baseline expo-
sure by an odds ratio of 8 and the potential survival time
under no exposure (TN) by an odds ratio of 5 per unit of time.
Then, we generated a second time-varying confounder as
a standard normal dependent on baseline exposure (with
a mean difference of 2 for exposed) and the potential sur-
vival time under no exposure (with a mean difference of 0.5
per unit of time). Finally, for the approximately two-thirds
of subjects who were unexposed at baseline, we generated
a time-varying exposure at t1 ¼ 0.1 as Bernoulli with a mar-
ginal probability of 0.5 dependent on the first time-varying
confounder by an odds ratio of 0.1 and on the second time-
varying confounder by an odds ratio of 0.75 per unit. The
observed survival time was assigned as the potential survival
time that coincided with the observed exposure history. We
set survival times longer than the 25th percentile as admin-
istratively censored, such that there were 25% events. For
subcohort analysis, we selected a 20% subsample at random
without replacement.

Simulation analysis

For each scenario and each of the 5,000 simulations, we
conducted 5 analyses with the following models: 1) an un-
adjusted Cox proportional hazards model using the full co-
hort; 2) a Cox model using the full cohort, adjusting for the 2

time-varying confounders in the linear predictor; 3) a mar-
ginal structural Cox model using the full cohort; 4) a mar-
ginal structural Cox model using only data from the
subcohort; and 5) a marginal structural Cox model using
the cases and the cohort, as described in the main text.

For each of the 5 analyses, we calculated bias, 95% con-
fidence interval coverage, statistical power, and root mean
squared error. Bias was computed as the average difference
between an estimator and the true log hazard ratio. Confidence
interval coverage was computed as the proportion of times
the confidence interval contained the true hazard ratio.
Statistical power was computed as the proportion of simu-
lations in which the 95% confidence interval excluded the
null value of unity. The empirical variance was defined as
the square of the empirical standard error (i.e., the standard
deviation of the 5,000 estimates). The root mean squared error
was calculated by taking the square root of the sum of the
square of the bias and the empirical variance for the estimator.

Simulation results

Neither unadjusted Cox models nor adjusted Cox
models provided unbiased estimates of the hazard ratio.
The mean stabilized inverse probability weights for the co-
hort and case-cohort designs were 1.00 and 1.02, respec-
tively. For all 3 designs (i.e., cohort, subcohort, and case-
cohort), the marginal structural Cox model provided an ap-
proximately unbiased estimate of the hazard ratio, approxi-
mately valid type 1 error when testing the null hypothesis
of a hazard ratio equal to 1, and appropriate 95% confidence
interval coverage (Appendix Table 1).

The empirical standard errors differed notably across the
designs. In scenario 2 (alternative hypothesis), the empirical
standard error for the inverse probability-weighted cohort
was 0.144, while for the 20% random subcohort, precision
was lost, such that the empirical standard error was 0.332.
This difference accords with theory in that, with sample sizes
of 1,000 and 200, the ratio of the standard errors should be

approximately 2:24ð¼
ffiffiffiffiffiffiffiffi
200

p �1
=

ffiffiffiffiffiffiffiffiffiffi
1000

p �1Þ and was observed
to be 2.31 (0.332/0.144 ¼ 2.31). In the case-cohort design,
the empirical standard error was improved over the subcohort
design to 0.225.

From another perspective, also in the alternative scenario,
the statistical power for the inverse probability-weighted re-
sults across the 3 designs is notable, because this difference
illustrates the advantage of the case-cohort design over the
subcohort design. The cohort design had approximately
99% statistical power, while the subcohort design had only
52% statistical power. The case-cohort design had statistical
power of approximately 90% and therefore recovered much
of the information available in the full cohort.
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Appendix Table 1. Results From 5,000 Cohort, Subcohort, and Case-Cohort Marginal Structural Analysesa for Null and Alternative Scenarios

Cohort Analysis Subcohort Analysis
(IP-Weighted)

Case-Cohort Analysis
(IP-Weighted)Unadjusted Adjusted IP-Weighted

Scenario 1: null hypothesis

Bias 0.336 0.113 0.001 0.006 �0.015

Average standard error 0.143 0.156 0.162 0.363 0.212

Empirical standard errorb 0.138 0.150 0.157 0.363 0.228

95% CI coverage, % 33.4 90.1 95.8 94.7 93.4

Type 1 error, % 66.6 9.9 4.2 5.3 6.6

Root MSE 0.363 0.188 0.157 0.363 0.228

Relative root MSE 1 2.31 1.45

Scenario 2: alternative hypothesis

Bias 0.671 0.146 0.001 0.004 �0.004

Average standard error 0.139 0.156 0.156 0.351 0.217

Empirical standard errorb 0.131 0.138 0.144 0.332 0.225

95% CI coverage, % <0.1 87.3 96.7 96.2 94.0

Statistical power, % 4.3 95.9 99.4 51.5 89.6

Root MSE 0.684 0.201 0.144 0.332 0.225

Relative root MSE 1 2.31 1.56

Abbreviations: CI, confidence interval; IP, inverse probability; MSE, mean squared error.
a 1,000 participants per cohort with 25% events; 200 participants per subcohort.
b Standard deviation of 5,000 log hazard ratio estimates.
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