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Abstract

Significance: Protein misfolding within the endoplasmic reticulum (ER) is managed by an ER quality control
system that retro-translocates aberrant proteins into the cytosol for proteasomal destruction. This process,
known as ER-associated degradation, utilizes the action of ER redox enzymes to accommodate the disulfide-
bonded nature of misfolded proteins. Strikingly, various pathogenic viruses and toxins co-opt these redox
components to reach the cytosol during entry. These redox factors thus regulate critical cellular homeostasis and
host–pathogen interactions. Recent Advances: Recent studies identify specific members of the protein disulfide
isomerase (PDI) family, which use their chaperone and catalytic activities, in engaging both misfolded ER
proteins and pathogens. Critical Issues: The precise molecular mechanism by which a dedicated PDI family
member disrupts the disulfide bonds in the misfolded ER proteins and pathogens, as well as how they act to
unfold these substrates to promote their ER-to-cytosol membrane transport, remain poorly characterized. Future
Directions: How PDI family members distinguish folded versus misfolded ER substrates remains enigmatic.
What physical characteristics surrounding a substrate’s disulfide bond instruct PDI that it is mispaired or native?
For the pathogens, as their disulfide bonds normally serve a critical role in providing physical support, what
conformational changes experienced in the host enable their disulfide bonds to be disrupted? A combination of
more rigorous biochemical and high-resolution structural studies should begin to address these questions.
Antioxid. Redox Signal. 16, 809–818.

Introduction

The endoplasmic reticulum (ER) is the cellular organelle
serving as the starting point for the anterograde secretory

pathway responsible for sorting and transporting proteins.
Folding and maturation of these proteins in the ER accounts
for *30% of all cellular proteins, yet the ER comprises only
10% of the total cellular volume. This heavy protein folding
burden requires a complex quality control system to ensure
that misfolded proteins are retained in the ER until properly
folded, or in the case of terminally misfolded/damaged pro-
teins, efficiently degraded. The latter scenario utilizes a pro-
cess known as ER-associated degradation (ERAD) (56).

ERAD is an organized process by which defective ER
proteins are recognized, targeted to ER membrane machinery,
retro-translocated to the cytosol, ubiquitinated, and degraded
by the proteasome (Fig. 1). Each step is coupled by specific
protein–protein interactions. The recognition and accommo-
dation of a diverse population of potential substrates neces-

sitate a large number of ERAD components. In addition
to whether a substrate is membrane integrated or soluble,
specific ER post-translational modifications, including gly-
cosylation and disulfide bond formation, contribute to this
diversity. While glycosylation normally mediates proper
protein folding, the specific glycosylation state of a misfolded
substrate could be recognized by ERAD components as a
degradation signal, promoting destruction of the substrate
(56). As not all substrates are glycosylated, there must be
additional mechanisms to distinguish aberrant proteins from
ones on a correct folding path.

Another critical feature of misfolded ER substrates is the
nature of their disulfide bonds. Disulfide bonds are covalent
linkages between two cysteines (Cys) that provide proteins
with the proper conformation and stability required for their
secretion or transport to various cellular destinations. In
contrast to the reducing environment of the cytosol, the ER
maintains an oxidizing environment, allowing for disulfide
bond formation. Protein disulfide isomerase (PDI) and other
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PDI family members are ER-resident enzymes that catalyze
disulfide bond formation. In some instances, these enzymes
reduce and isomerize these bonds. In addition to this catalytic
function, PDI proteins also possess chaperone activity, aiding
in protein folding and unfolding reactions. Both PDI’s cata-
lytic and chaperone activities have been implicated in ERAD
of misfolded proteins (14, 17, 25, 32, 55, 57, 59). PDI’s physical
proximity to newly synthesized substrates entering the ER
and its interaction with ERAD machinery allow it to function
in this capacity.

This review highlights the mechanism by which ER redox
factors regulate ERAD. We will also discuss how pathogens
co-opt redox factors in the ER to gain entry into the host cy-
tosol during infection. The utilization of PDI proteins’ cata-
lytic and chaperone functions during ERAD and pathogen
entry underscores the importance of ER redox reactions in
maintaining normal cellular homeostasis and in facilitating
host–pathogen interactions.

Catalytic Function of PDI Family Proteins During ERAD

During oxidative folding in the ER, newly synthesized
proteins engage PDI family members. This family of at least 20
proteins shares in common ER localization and the presence
of thioredoxin-like domains. Thioredoxin domains often
contain a catalytic Cys-x-x-Cys motif responsible for transfer
of electrons with other Cys during oxidation, reduction, or

isomerization reactions (Fig. 2). For instance, canonical PDI
contains two thioredoxin domains with this catalytic motif.

Early data implicated ER protein degradation as a redox-
dependent process (50, 62), suggesting that a misfolded sub-
strate’s redox state plays a crucial role during ERAD. How
might a misfolded protein’s redox property affect ERAD? In
this context, disulfide bond disruption serves at least three
potential roles (Fig. 3). First, reduction of a disulfide bond may
expose a previously obscured signal that indicates the protein
is terminally misfolded, such as an amount of hydrophobic
residues that reaches the threshold required for binding to the
ERAD machinery. For example, the Ig light chain mutant, NS1
j LC, is an ERAD substrate that exists in the fully or partially
oxidized form. While the oxidoreductase controlling NS1 j
LC’s redox state is unidentified, the ER-resident Hsp70 AT-
Pase (BiP) is known to preferentially engage partially but not
fully oxidized NS1 j LC (24). One explanation for this specific
interaction is that partially oxidized NS1 j LC exposes more
hydrophobic surfaces allowing BiP to bind. Upon binding,
BiP recruits the substrate to ER membrane ERAD compo-
nents, including Derlin-1, the E3 ubiquitin ligase Hrd1, and
HERP (36).

Disulfide bond disruption during ERAD may also allow for
efficient retro-translocation. Improper disulfide bonds can
lead to unwanted substrate oligomerization/aggregation
caused by aberrant hydrophobic interactions. ER factors that
normally handle misfolded proteins in preparation for retro-

FIG. 1. General steps involved in ERAD pathways. (1) Recognition. If a nascent protein cannot adopt its proper confor-
mation and becomes terminally misfolded, many endoplasmic reticulum (ER)-resident chaperones recognize the misfolded
protein as an ER-associated degradation (ERAD) substrate. (2) Targeting. The misfolded substrate is targeted to membrane
localized ERAD machinery by virtue of the ability of the chaperones to bind substrates while also interacting with membrane
components involved in retro-translocation. (3) Retro-translocation and ubiquitination. Substrates targeted to the membrane
machinery are unfolded and retro-translocated through a protein channel, although in some cases substrates may remain
folded and intact. Once exposed to the cytosol, E3 ubiquitin ligases attach ubiquitin molecules to the substrates, allowing the
substrate to be recognized and degraded by the proteasome. (4) Proteasomal degradation. An unfolded substrate is extracted
into the cytosol and maintained in a soluble state by cytosolic chaperones, before de-ubiquitination and proteasomal
degradation.
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translocation may not properly engage highly oligomerized
substrates. Resolution of these erroneous disulfide bonds
could reverse substrate multimerization, allowing proper
unfolding before retro-translocation.

An excellent example of a reductase activity serving in this
capacity has been observed in studies with ERdj5. ERdj5 was
originally discovered as a stress-induced PDI family member
containing thioredoxin domains with catalytic Cys-x-x-Cys
motifs (9). The presence of a J domain, which stimulates BiP’s
ATPase activity to enable substrate binding, makes ERdj5
unique among the PDI family. Importantly, ERdj5 is the most
reductive of PDI proteins studied thus far, allowing it to play a
more dominant role in disulfide bond disruption than in
formation. ERdj5 acts on the ERAD substrates, mutant a1-
antitrypsin, and the J chain of mouse immunoglobulin M (55).
These two substrates contain aberrant disulfide bonds, pro-
ducing dimeric and oligomeric species, respectively (55).
When ERdj5 was overexpressed in cells, both substrates’
degradation rates accelerated due to increased disruption of
the aberrant disulfide bonds (55). Conversely, ERdj5 knock-
down blocked substrate degradation, leading to disulfide-
linked dimer and oligomer accumulation (55). These findings
demonstrate that ERdj5 plays a critical role in ERAD by re-
versing substrate oligomerization via disruption of incorrect
disulfide bonds. A recent determination of ERdj5’s crystal
structure suggests that after reduction, the substrate is trans-
ferred to BiP via ERdj5’s J domain (19). BiP holds the substrate
in a soluble state or imposes additional unfolding, eventually

presenting the substrate to membrane retro-translocation
components such as SEL1 for subsequent transport to the
cytosol (19).

A third purpose of disulfide bond disruption enables sub-
strate auto-processing required for efficient ERAD. A salient
example is observed in PDI-mediated auto-processing of the
Hedgehog (Hh) signaling molecule (6). PDI disrupts a dis-
ulfide bond in the Hh precursor, freeing a catalytic Cys on the
substrate. This Cys is critical during an auto-proteolytic re-
action that produces Hh N- and C-terminal fragments. In
contrast to the signaling competent N-terminal fragment, the
C-terminal fragment is not secreted but rather is degraded in a
constitutive manner via ERAD.

The ability of a PDI family member to reduce disulfides is
dependent on the overall redox environment of the ER. Re-
cent work has begun to elucidate how small molecules such
as glutathione function with several enzymes dedicated to
regulating the redox status of PDI proteins (5). In the context
of ERAD, little is known about how reductive pathways are
supported and controlled. However, at least one enzyme, an
ER flavoprotein termed ERFAD has been implicated in
ERAD and interacts with ERdj5 (43). ERFAD contains a
motif for binding the reductive molecule NADPH and may
use this cofactor to directly reduce the active sites of ERdj5,
allowing ultimately for reduction of ERAD substrates. It
remains to be answered whether additional electron-donat-
ing enzymes paired with PDI proteins function specifically
during ERAD.

FIG. 2. Thiol–disulfide exchange reactions between protein disulfide isomerase (PDI) proteins and substrates. (1)
Oxidation. Oxidized PDI engages reduced substrate and allows for a mixed disulfide to form between PDI and the substrate.
This mixed disulfide is resolved by a nucleophilic attack of a cysteine residue’s thiolate anion on the substrate. This reaction
results in oxidized substrate and reduced PDI. (2) Reduction. Reduced PDI forms a mixed disulfide bond with an oxidized
substrate, which is resolved by a cysteine residue on PDI and results in oxidized PDI and reduced substrate. (3) Isomerization.
Reduced PDI again forms a mixed disulfide with a substrate but instead is resolved by a cysteine residue on the substrate
forming a different disulfide bond. This reaction results in reduced PDI and isomerized substrate.
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Chaperone Function of PDI Family
Proteins During ERAD

In addition to catalyzing thiol–disulfide exchange reac-
tions, many PDI family members are bona fide chaperones that
bind proteins irrespective of their thiol content. Working co-
ordinately with other ER chaperones, PDI family members are
critical to productive folding. Not surprisingly, the central
role of PDI proteins in protein maturation enables them to be
the first to recognize terminally misfolded substrates.

PDI’s chaperone activity during ERAD was first implicated
in retro-translocation of a misfolded protein lacking Cys in
yeast (17). That retro-translocation of a Cys-less substrate re-
quires PDI demonstrates PDI’s noncatalytic activity is crucial
during ERAD. A more recent finding strengthens this idea,
demonstrating PDI’s chaperone, not redox activity, is re-
quired for US2-dependent MHC class I degradation (25). US2
is a viral protein encoded by human cytomegalovirus that
facilitates retro-translocation of host cell MHC class I heavy
chains as part of an immune evasion strategy (61).

PDI also operates as a chaperone during ERAD of glyco-
proteins. In yeast, PDI forms a complex with the mannosidase
Htm1. This interaction is functionally important because PDI
stochastically chaperones misfolded glyco-proteins to Htm1,
which subsequently modifies the substrate’s glycosylation
status (16). This glycan modification produces a signal rec-
ognizable to ERAD components that facilitates retro-translo-
cation and degradation of the substrate.

In addition to soluble PDI proteins, the membrane-
integrated PDI family member Eps1 was identified in yeast as

an ERAD component that facilitates degradation of the mis-
folded membrane substrate Pma1-D478N (59). Eps1 binds to
Pma1-D478N in a manner dependent on the catalytic Cys-x-x-
Cys motifs and likely recruits this substrate to an E3 ubiquitin
ligase. To date, a mammalian Eps1 homolog involved in
ERAD has yet to be identified. Nonetheless, the above ex-
amples clearly implicate PDI’s nonenzymatic chaperone ac-
tivity in elimination of a diverse range of misfolded proteins
from the ER. As described in the following sections, PDI’s
function is also hijacked by pathogenic toxins and viruses
during host entry.

Toxins Co-Opting ERAD Pathways Require Disulfide
Bond Disruption for Membrane Translocation

In addition to cellular misfolded substrates, members of
the AB5 family of toxins also rely on disruption of their
disulfide bonds for proper translocation across the ER
membrane during intoxication. The members of this toxin
family consists of five receptor-binding B subunits (B5) and a
single catalytic A component (2, 28). To cause infection, the
toxins enter the target cell and arrive in the ER via retrograde
transport from the cell surface (Fig. 4, step 1). In the ER, the
toxins are thought to disguise themselves as misfolded
proteins, co-opting ERAD machineries to access the cytosol.
A key toxin disulfide bond is disrupted during ER-to-cytosol
transport (Fig. 4, step 2). By inhibiting protein synthesis or
modulating essential signaling cascades in the host cytosol,
these toxins exert catastrophic effects on their human hosts
(Fig. 4, step 3).

FIG. 3. Disulfide disruption as a prerequisite for ERAD. (1) Disruption of disulfide bonds within an ER protein leads to
more complete unfolding and exposure of hydrophobic patches. This increased hydrophobicity allows for the recruitment of
factors involved in selecting substrates for ERAD. (2) Removal of disulfide bonds can increase the efficiency of ERAD.
Substrates that are erroneously multimerized by disulfide bonds are disrupted to allow more complete unfolding and
processing by ERAD membrane machinery including the retro-translocation channel. (3) Disulfide bond disruption can allow
auto-catalytic processing of Hedgehog (Hh). This processing produces an unused C-terminal fragment, which is constitu-
tively degraded by an ERAD pathway.
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Structurally, AB5 toxins have a disulfide bond within their
A chain that is necessary for the toxin’s assembly in its native
organism and its stability as it traffics to the ER in the host cell.
After proteolytic cleavage at the host cell surface or in endo-
somes, disulfide bond reduction in the ER is required for
complete disassembly of the toxin and stimulation of its cat-
alytic activities (31, 34, 38). Studies focused on elucidating
toxin reduction have implicated PDI proteins as factors re-
sponsible for reducing the disulfide bond for a subset of AB5

toxins. Although only those toxins that translocate across the
ER membrane will be discussed here, disulfide bond disrup-
tion in toxins that translocate across endosomal membranes,
such as diphtheria toxin (8), is also important for their cata-
lytic activity.

Cholera toxin (CT) is a prototype AB5 toxin containing a
catalytic A subunit (CTA) and five receptor-binding B sub-
units (CTB5). A fragment of CTA called CTA1, generated
when CTA’s disulfide bond is reduced, undergoes ER-to-cy-
tosol transport to induce cytotoxicity. Recent findings have
revealed the mechanisms utilized by CT in the ER to prepare
CTA1 for retro-translocation. Initial in vitro evidence sug-
gested that PDI reduced CTA to generate CTA1 (40). How-

ever, when PDI was down-regulated in cells by siRNA, a
concomitant decrease in CTA1 formation was not seen (14),
suggesting that PDI does not reduce CTA in cells, or other
factors compensate for this reductive event in PDI’s absence.

Importantly, instead of functioning as a reductase, PDI was
found to act as a redox-driven unfoldase as it engages CTA1
(14, 53, 54). In its reduced state, PDI exhibits a conformation
that allows for tight binding to and unfolding of CTA1 via its
bb¢a¢ domains (13, 54). Upon oxidation of PDI’s C-terminal
disulfide bond by the PDI oxidase Ero1a, PDI undergoes a
conformational change that releases unfolded CTA1 for retro-
translocation (33, 53).

PDI’s redox-regulated chaperone activity is strictly con-
trolled by its molar ratio with Ero1a. Changing this ratio
blocks CTA1 retro-translocation (33). Specifically, PDI’s
binding to CTA1 is inhibited in cells overexpressing Ero1a, as
PDI is held preferentially in an oxidized state. Conversely,
cells lacking Ero1a due to siRNA knockdown also exhibit
decreased CTA1 retro-translocation. Under these conditions,
the substrate is locked onto reduced PDI and is unable to be
released (33). As a recent finding demonstrates that PDI
controls regulatory disulfides on Ero1a (1), changing the

FIG. 4. General toxin intoxication pathway. Step 1. AB5 (cholera toxin [CT], shiga toxin, and Pertussis toxin [PT]) and AB
toxins (ricin and Pseudomonas exotoxin A [PE]) attach to receptors on the surface of the host cell and are transported to the
ER via retrograde transport. Step 2. A key disulfide bond in each toxin is reduced to aid in the disassembly, unfolding and
translocation of each toxin’s catalytic subunit into the cytosol. Step 3. The catalytic subunit of each toxin in the cytosol elicits
its toxic effects.
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Ero1a level could potentially affect PDI’s ability to properly
control this feedback mechanism.

Reduced PDI also interacts preferentially with Derlin-1, a
membrane ERAD component that facilitates CTA1 retro-
translocation (3, 11). This finding suggests that PDI’s locali-
zation within the ER is also redox-dependent (33). By placing
reduced PDI next to the retro-translocation machinery on the
ER membrane, PDI could efficiently reduce disulfide bonds
present in ERAD substrates and facilitates their retro-trans-
location.

PDI’s redox-dependent unfolding activity on CTA1 and
binding to Derlin-1 afford a clearer picture of the CTA1 retro-
translocation mechanism, as depicted in Figure 5. After ER
arrival, CTB targets the holotoxin to the Derlin-1/Hrd1 com-
plex (Fig. 5, step 1) (4). CTA is then reduced by an unidentified
reductase (Fig. 5, step 2). The bb¢a¢ domains of reduced PDI
(bound to the Derlin-1/Hrd1 complex) unfold CTA1 (Fig. 5,
step 3), holding the toxin in a retro-translocation-competent
unfolded state. Upon oxidation of its a¢ domain by Ero1a (Fig.
5, step 4), PDI releases CTA1 (Fig. 5, step 5). As CTA1 can
refold spontaneously in vitro (44), CTA1 is likely released di-
rectly into the retro-translocation channel to prevent refolding.
How the toxin is extracted into the cytosol and evades pro-
teasomal degradation remains unclear (Fig. 5, step 6).

PDI’s redox-driven chaperone activity appears to be re-
quired for several other ERAD substrates. For instance,
the ERAD substrates BACE457 and the non-glycosylated
variant of pro-alpha-factor bind tightly to reduced PDI during
ERAD and require a change in PDI’s redox state to be retro-
translocated (32, 57). Furthermore, PDI’s ability to act as a
chaperone in the ER when transferring peptides from trans-
porter associated with antigen processing to MHC class I is
also redox-driven (7). As some substrates do not bind to PDI
in a redox-dependent manner (34), PDI’s ability to act as a
redox-triggered chaperone may be substrate dependent.

Similar to CT, pertussis toxin (PT) and shiga toxin (ST) are
members of the AB5 family with catalytic subunits S1 and
STA1, respectively (2). While ATP may disassemble PT ini-
tially in the ER (35), the precise reductase responsible for re-
ducing its disulfide bond, as well as the sequence of events
coupling disassembly, reduction, and unfolding, are not de-
fined. S1’s disulfide bond is highly resistant to reduction in
ATP’s absence, suggesting that the disassembly and confor-
mational change induced by ATP binding may expose the
disulfide bond for reduction (34). PT’s crystal structure sug-
gests that reduction exposes a segment on S1 that inserts into
the membrane (49), allowing S1 retro-translocation into the
cytosol. In support of this idea, reducing PT’s disulfide bond

FIG. 5. ER events promoting cholera toxin subunit A 1 (CTA1) retro-translocation. Step 1. CT is targeted to the Derlin-1/
Hrd1 complex via cholera toxin subunit B (CTB). Step 2.The CTA disulfide bond is reduced by an unidentified reductase to
generate CTA1. Step 3. CTA1 is then unfolded by the bb¢a¢ domains of reduced protein disulfide isomerase (PDI) attached to
the Derlin-1/Hrd1 complex. Step 4. Ero1a: oxidizes PDI’s a¢ domain. Step 5. Oxidized PDI releases CTA1 into the retro-
translocation channel and detaches from the Derlin-1/Hrd1 complex. Step 6. CTA1 avoids proteasomal degradation and
refolds spontaneously in the cytosol to elicit its toxic effects.
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increased its interaction with model membranes (20). Ex-
posure of a hydrophobic domain in STA1 after reduction may
also facilitate ST retro-translocation. In this case, reduction of
STA1’s disulfide bond by an unidentified reductase would
presumably aid STA1 disassembly, unfolding, and retro-
translocation regulated by the ERAD factors HEDj/ERdj3,
BiP, and Sec61 (15, 63)

In addition to AB5 toxins, AB toxins in which a catalytic A
chain is linked via a disulfide bond to the receptor-binding B
chain, such as the plant toxin ricin and bacterial toxin Pseu-
domonas exotoxin A (PE), also require reduction of a key
disulfide bond for complete disassembly and stimulation of
their catalytic activity (26, 28, 39). For both ricin and PE, PDI
accomplishes this reduction (30, 47). Ricin reduction likely
occurs before initial dissociation of the toxin as PDI was found
to act on the holotoxin (47). Reduction and unfolding of ricin’s
catalytic A chain (RTA) may expose a critical hydrophobic
domain important for its interaction with the ERAD compo-
nent EDEM1, which facilitates RTA retro-translocation (28,
46). This final event involving hydrophobic exposure before
retro-translocation is conceptually similar to how endogenous
substrates may be handled during ERAD (Fig. 3).

Unlike ricin, PDI appears to reduce PE’s disulfide bond
after toxin unfolding has initiated (30). The toxin’s crystal
structure indicates a hidden disulfide bond (60); therefore,
some unfolding must presumably occur to expose the linkage.
Indeed, when the toxin is exposed to moderate heat in vitro,
structural unfolding exposes the disulfide bond, allowing
access by PDI for reduction (30). Despite these insights, the
cellular factors and mechanism responsible for unfolding PE
to expose the disulfide bond are unknown.

A central theme thus emerges in these toxin studies dem-
onstrating the importance of disulfide bond disruption in
promoting ER membrane translocation and toxin activity.

Additional studies are essential to identify unknown reduc-
tases and to clarify the sequence of events coupling reduction,
disassembly, and unfolding before retro-translocation.

Polyomavirus Family Members Use PDI Family Members
and Other ERAD Components for Entry

Similar to toxins, members of the polyomavirus family co-
opt ER oxidoreductases, chaperones, and other ERAD ma-
chinery to enter host cells and cause infection (52). This
nonenveloped virus family includes simian virus 40 (SV40)
and murine polyomavirus (Py), as well as the human poly-
omaviruses BK, JC, WU, KI, and Merkel cell. SV40 and Py are
model viruses for studying cell entry of this virus family.

An early observation revealed that SV40, upon entry,
traffics from the cell surface to the ER (23). To reach the ER,
polyomaviruses first bind to glycolipid ganglioside receptors
on the plasma membrane and are endocytosed (51). Vesicular
transport through the endolysosomes brings the viral parti-
cles to the ER (12, 41). The viruses then cross the ER membrane
to reach the cytosol and ultimately deliver their viral DNA
into the nucleus where transcription and replication of the
viral genome initiate.

Structurally, polyomaviruses are stabilized by several for-
ces that allow them to withstand the harsh extracellular en-
vironment. However, these forces must be disassembled
systematically during cell entry. Lacking a lipid bilayer on
their surface, polyomaviruses are unable to enter the host cell
via fusion. Instead, conformational changes to the viral capsid
induced by cellular factors in the ER allow for passage
through the limiting ER membrane. The capsid’s outer surface
is comprised of 72 pentamers of the VP1 protein arranged in
an icosahedral geometry (27, 48). Each pentamer interacts
with neighboring pentamers by virtue of VP1’s C-terminus,

FIG. 6. ER events facilitating ER-to-cytosol transport of polyomaviruses. Polyomaviruses traffic from the cell surface to
the ER attached to the ganglioside receptor. Step 1. Viral particles are released from the receptor into the ER lumen. The PDI
family member ERp57 isomerizes viral disulfide bonds, releasing a subset of the major capsid VP1. Step 2. Additional
conformational changes are conferred to the viral particle by other ER chaperones including ERp29, PDI, BiP, and ERdj3.
These reactions expose the minor capsid proteins VP2 and VP3, increasing the viral hydrophobicity. Step 3. The viral particle
binds to the ER membrane and is ejected into the cytosol as an intact particle by unknown mechanisms.
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which interlocks with an adjacent VP1 C-terminus. This in-
teraction is further stabilized by calcium ion-binding (48).
Additionally, the capsid is supported by a network of inter-
and intra-pentameric disulfide bonds. Beneath each VP1
pentamer resides one copy of either the internal proteins VP2
or VP3, the exposure of which is hypothesized to be critical for
penetration of the ER membrane (10, 42).

The mechanism controlling polyomavirus ER-to-cytosol
membrane penetration is slowly becoming clear through ac-
cumulating data. Upon reaching the ER, SV40 detaches from
the ganglioside receptor and is released into the ER lumen
(Fig. 6, step 1) (21). Once in the ER lumen, redox reactions
partially disassemble the viral particle (Fig. 6, step 1) (21, 45).
Critical for this event is ERp57, a PDI family member that is
normally involved in assisting the folding and maturation of
nascent glyco-proteins (37). Using an unpaired VP1 Cys,
ERp57 acts as an isomerase to disrupt specific inter-penta-
meric disulfide bonds (45). This reaction effectively releases a
subset of VP1 from the viral particle. Interestingly, PDI acts as
a chaperone but not as a reductase/isomerase to facilitate
entry at this stage (45). Subsequent to the actions of ERp57
and PDI, SV40 engages BiP in a reaction controlled by the
ER-resident J protein ERdj3 (18). The culmination of these
reactions and possibly other unknown ER events lead to
the exposure of VP2 and VP3 (Fig. 6, step 2) (17). Because these
viral proteins contain hydrophobic moieties and can integrate
into the ER membrane (10), their exposure enables viral
binding to the ER membrane. The process of membrane in-
tegration initiates nonenveloped virus membrane penetra-
tion. Remarkably, SV40 reaches the cytosol as a large particle
(21), suggesting that the virus either ruptures a portion of the
ER membrane or travels through a large protein-conducting
channel. More studies are necessary to understand mecha-
nistically how a large viral particle is ejected across the ER
membrane into the cytosol (Fig. 6, step 3).

Although Py has a slightly different disulfide bond ar-
rangement than SV40, Py uses a similar sequence of events to
penetrate the ER membrane: thiol–disulfide exchange fol-
lowed by chaperone-induced conformational changes prime
the virus for membrane penetration to the cytosol. However,
in contrast to SV40, an additional PDI family member known
as ERp29 is co-opted by Py. ERp29 is a redox-inactive PDI
protein that extrudes the interlocking VP1 C-termini (29).
Disruption of the viral disulfide bonds by PDI and ERp57 (58)
is a prerequisite for the ERp29 chaperone activity, likely due
to presence of an intra-pentameric disulfide bond that clamps
down the interlocking VP1 C-termini. The ERp29-induced Py
conformational change exposes VP2, allowing the virus to
bind and perforate the ER membrane (42). Finally, drawing
another parallel to cellular ERAD substrates, arrival of poly-
omaviruses to the cytosol requires functional Derlin-1 mem-
bers and proteasome activity (21, 22, 45). Whether additional
cytosolic components aid in this final translocation step or
stimulate complete disassembly of the capsid in the cytosol
before nuclear entry remains to be determined.

Conclusion and Future Directions

Classically, disulfide bond formation has been viewed as
an integral part of the protein folding process as substrates
translocate from the cytosol into the ER. Not surprisingly,
studies in the last decade have demonstrated that disulfide

bond disruption, the opposite of disulfide bond formation, is
linked functionally to the reverse translocation event, in
which misfolded substrates are targeted from the ER to the
cytosol for proteasomal degradation in a process called
ERAD. ER-resident PDI family members are largely respon-
sible for disrupting the disulfide bonds in the aberrant sub-
strate. In addition to acting as enzymes, these PDI proteins
also employ their chaperone function during ERAD. Because
there are more than 20 PDI family members, it remains to be
established whether all or only a subset of them are dedicated
to ERAD. Moreover, are there additional PDI proteins that
will be uncovered that control ERAD? Finally, a major ques-
tion remains: as PDI proteins promote disulfide bond for-
mation and substrate folding, how do they know when to
catalyze disulfide bond reduction and substrate unfolding?
What precise structural feature surrounding a disulfide bond
informs PDI that it is native or mispaired? Clearly, high-
resolution structures of a substrate containing either a native or
mispaired disulfide bond will begin to address this question.

What has been striking over the past decade is the obser-
vation that pathogenic viruses and toxins hijack ER redox
factors to gain entry into the cytosol to cause infection. During
assembly, disulfide bond formation in these toxic agents
provides vital structural support. Yet during host entry, these
same bonds are broken to allow disassembly, enabling the
toxic agents to cross a membrane barrier and induce cyto-
toxicity. What is so vastly different in the host cell that allows
these disulfide bonds to be broken, which normally provide
important physical support, is unknown. A systematic ap-
proach to probe both the environment in which a toxic agent is
assembled or disassembled, and the conformation of the toxic
agents in the context of these environments, should shed light
on this conundrum.
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CT¼ cholera toxin
CTA¼ cholera toxin subunit A

CTA1¼ cholera toxin subunit A1
CTB¼ cholera toxin subunit B
Cys¼ cysteine
ER¼ endoplasmic reticulum

ERAD¼ER-associated degradation
Hh¼Hedgehog

NADPH¼nicotinamide adenine dinucleotide
phosphate

PDI¼protein disulfide isomerase
PE¼Pseudomonas exotoxin A
PT¼pertussis toxin
Py¼murine polyomavirus

RTA¼ ricin toxin subunit A
ST¼ shiga toxin

STA1¼ shiga toxin subunit A1
SV40¼ simian virus 40
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