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Abstract

Skeletal muscle necrosis is a common manifestation of viperid snakebite envenomations. Venoms from snakes of the genus
Bothrops, such as that of B. asper, induce muscle tissue damage at the site of venom injection, provoking severe local
pathology which often results in permanent sequelae. In contrast, the venom of the South American rattlesnake Crotalus
durissus terrificus, induces a clinical picture of systemic myotoxicity, i.e., rhabdomyolysis, together with neurotoxicity. It is
known that molecules released from damaged muscle might act as ‘danger’ signals. These are known as ‘alarmins’, and
contribute to the inflammatory reaction by activating the innate immune system. Here we show that the venoms of B. asper
and C. d. terrificus release the mitochondrial markers mtDNA (from the matrix) and cytochrome c (Cyt c) from the
intermembrane space, from ex vivo mouse tibialis anterior muscles. Cyt c was released to a similar extent by the two venoms
whereas B. asper venom induced the release of higher amounts of mtDNA, thus reflecting hitherto some differences in their
pathological action on muscle mitochondria. At variance, injection of these venoms in mice resulted in a different time-
course of mtDNA release, with B. asper venom inducing an early onset increment in plasma levels and C. d. terrificus venom
provoking a delayed release. We suggest that the release of mitochondrial ‘alarmins’ might contribute to the local and
systemic inflammatory events characteristic of snakebite envenomations.
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Introduction

Snakebite envenomation is a neglected tropical disease that

affects each year hundreds of thousands of individuals in tropical

and sub-tropical areas of the world [1][2]. In addition to death,

many snake bitten patients develop permanent physical and

psychological sequelae which greatly affect their quality of life

[3][4][5][6].

In the Americas, species of the family Viperidae are responsible

for the vast majority of snakebite envenomations [7][5][8]. In

Latin America, most cases are inflicted by species of the genus

Bothrops, among which the lance-head vipers B. asper and B. atrox

are very important in Central and South America, respectively [7].

In addition, the rattlesnake Crotalus durissus is notorious in South

America for inflicting severe envenomations [7][9]. The patho-

physiology of envenomations by B. asper (BaV) and C. durissus

(CdV) and their predominant toxins has been investigated at

experimental and clinical levels [10][11][12][13][9]. These

venoms induce strikingly different pathophysiological patterns.

BaV, similarly to other Bothrops spp venoms, induce local

pathological alterations associated with edema, myonecrosis,

dermonecrosis, blistering and hemorrhage [12]. In addition,

systemic alterations, i.e. coagulopathies, hemorrhage, acute renal

failure and cardiovascular shock, may ensue in moderate and

severe cases [11][13]. Such a complex array of local and systemic

alterations is mostly induced by the action of metalloproteinases,

phospholipases A2 (PLA2) and PLA2 homologues, and serine

proteinases, among other components [12][13][14][15]. These

envenomations present prominent local inflammatory response,

associated with the activation of innate immune mechanisms,

which might contribute to the pathogenesis of tissue damage [16].

In contrast to the effects of BaV, the pathophysiological

manifestations induced by CdV are characterized by minor local

alterations and prominent systemic effects, mostly neurotoxicity,

systemic myotoxicity, i.e. rhabdomyolysis, acute renal failure and

coagulopathies [9]. Around 60% of CdV is comprised by the

dimeric PLA2 complex ‘crotoxin’ [17], which is composed by a

basic PLA2 chain, crotoxin B, and a non-enzymatic acidic subunit,

crotoxin A or crotapotin [18]. Cotapotin prevents the binding of

crotoxin B subunit to non-specific sites and thus contributes to the

high toxicity of this toxin [18]. Crotoxin exerts presynaptic

neurotoxicity and systemic myotoxicity, which results in the

release of large amounts of myoglobin from damaged muscle

fibers, with the consequent impact on the kidney, provoking acute

renal failure, which is a common finding in envenomations by this

species [19]. Thus, envenomations by BaV and CdV represent

different paradigms of tissue damage which greatly differ in the

extent of the local inflammatory and pathological responses and in
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the systemic manifestations. On the basis of such different

pathophysiological patterns, these venoms constitute valuable

experimental tools to assess various aspects of local and systemic

muscle damage and inflammation.

Snakebite envenomations trigger complex pathogenetic pro-

cesses that include a range of defense reactions in the bitten

organism, whose mechanisms are ill known, but resemble in

several aspects muscle trauma [20][21]. It has been long known

that following tissue injury such as mechanical traumas,there is a

massive release of molecules that act as ‘‘danger signals’’,

activating the host response [22] ATP is the prototype of these

molecules, and when it is released from damaged or stressed cells

to the extracellular space it acts via binding to an array of

purinergic receptors [23][24][25][26]. We have recently found

that both Asp49 and Lys49 PLA2 myotoxins from BaV induce the

release of ATP and K+ from muscles ex vivo and muscle cells in

culture, and that this ATP extends the range of damage caused by

these toxins [27]. ATP plays also a major role in the pathogenesis

and symptoms following traumatic accidents [28][29]. Very

recently, it was demonstrated that traumatic injuries also induce

the release of DNA and N-formylated proteins from the

mitochondria of damaged tissues [30]. These molecules, known

as ‘alarmins’ [31][32] are able to activate neutrophils because they

are recognized via receptors highly conserved during evolution as

they are devoted to the innate immune response towards microbial

molecules [30][33]. On the basis of the pathological manifestations

induced by BaV and CdV, we have investigated whether

envenomations by these archetypal venoms induce the release of

mitochondrial molecules, by evaluating the release of mitochon-

drial DNA and cytochrome c in isolated skeletal muscles and after

in vivo injection of the venoms in mice.

Materials and Methods

Venoms and animals
The venom of B. asper was a pool obtained from more than 40

adult specimens collected in the Pacific region of Costa Rica;

venom was lyophilized and stored at -20uC. Venoms were

dissolved in 10 mM Hepes and 150 mM NaCl with 50% glycerol

and sterilized by filtration through 0.22 mm GV DuraporeH
(Millipore). C. d. terrificus venom was from Latoxan (Valence,

France). CD-1 mice received standard food and had free access to

food and water.

Ethics statement
All experimental procedures involving animals were carried out

in accordance with the Italian Animal Welfare Act and were

approved by the local authority veterinary service.

Muscle Isolation and preparation of mtDNA
Tibialis anterior muscles were isolated from CD-1 mice weighing

25–30 g and immediately transferred to vials containing 1 ml of

incubation buffer (139 mM NaCl, 12 mM NaHCO3, 4 mM KCl,

2 mM CaCl2, 1 mM MgCl2, 1 mM KH2PO4, and 11 mM

glucose, pH 7.4) oxygenated (95% O2, 5% CO2) at 37uC. BaV

and CdV (50 mg/ml) were added to the bath for the indicated time

period, and the same volume of vehicle alone (10 mM Hepes and

150 mM NaCl with 50% glycerol) was added to the contralateral

muscle used as control. At the end of incubation time, the

supernatants were treated with RNAse A (100 mg/ml) to avoid

RNA contamination and mtDNA was extracted using DNeasy

Blood & Tissue kit (Qiagen) following manufacturer’s instructions.

Mice injection and plasma mtDNA preparation
Groups of three CD-1 mice were injected intramuscularly into

the right leg with BaV (5 mg/kg), CdV (0.15 mg/kg) or the same

volume of vehicle. The different dosages due to the higher toxicity

of CdV were chosen to ensure that all animals survived during a

24 hr period. After 1 hr or 24 hrs, mice were sacrificed and

immediately bled using up to 10 U/ml of heparin (Roche) to avoid

interference with the following analyses. Plasma was separated and

processed for mtDNA extraction using DNeasy Blood & Tissue kit

(Qiagen) following manufacturer’s instructions, after the treatment

with RNAse A as previously described.

Real-time qPCR
Primers for mouse cytochrome B (forward 59-TGATGAA-

ACTTTGGGTCCCTTC-39 and reverse 59-ATAAGCCTCGT-

CCGACATGAA-39), and mouse cytochrome C oxidase subunit

III (forward 59-GTCCCACTACTTAATACTTC-39 and reverse

59-GGTGAAGTAAAGTCCTAGT-39) were synthesized by In-

vitrogen. Primer sequences have no significant homology with

DNA found in any bacterial species published on BLAST.

Samples that produced no PCR products after 33 cycles were

considered ‘undetectable’. Real-time qPCR was performed using

iCyclerH thermal cycler (Bio-Rad). Amplification conditions were:

10 min at 95uC, 40 cycles: 10 sec at 95uC, 30 sec at 52uC. A

melting curve analysis, consisting of an initial step at 65uC for

10 sec and a slow elevation of temperature (0.5uC/s) to 95uC, was

performed at the end of the amplification cycles to check for the

absence of primer dimers and non-specific products using iQ

SYBR Green supermix (Biorad). Results were expressed as

detection folds of target genes in venom treated samples compared

to control samples.

Western blotting and cytochrome c (Cyt c) release
detection

Tibialis anterior muscles were isolated from CD-1 mice and

immediately transferred to vials containing 1 ml of the previously

described oxygenated incubation buffer at 37uC. BaV or CdV

venoms (50 mg/ml) were added to the bath for the indicated time

period, and the same volume of vehicle alone was added to the

contralateral muscle used as control. Samples of incubation

medium were taken at different time points and protein

Author Summary

Every year, hundreds of thousands of people in tropical
and sub-tropical areas of the world are bitten by
poisonous snakes and may develop permanent damages.
This is a major tropical disease which is largely neglected
by scientific and clinical investigators. Snakes of Bothrops
and Crotalus genus are responsible of most cases in Latin
America. Here for the first time, we have shown that these
venoms cause the release of both mitochondrial DNA and
cytochrome c, two well known alarmins. Moreover, the
kinetic of these processes are in agreement with the
different pathophysiological profiles exhibited by Bothrops
and Crotalus envenomations. These elements suggest a
correlation between snake evenomations and sterile
inflammatory syndrome. Alarmins are reported to have a
fundamental role in innate immune response and inflam-
mation; they might contribute to the local and systemic
inflammatory events characteristic of these envenom-
ations opening a new prospective in the study of these
complex pathologies.
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concentrations were determined with the BCA Protein Assay

(Pierce). The same quantification was done on plasma samples

taken from injected mice. For each sample, 2.5 mg of total protein

(for ex vivo experiments) or 50 mg (for plasma analysis) were loaded

on 12% SDS-polyacrylamide gels, run at room temperature at

20 mA and transferred at 200 mA to a nitrocellulose in a

refrigerated chamber. Membranes were incubated with an anti-

cytochrome C antibody (BD Biosciences) following manufacturer’s

instructions. Chemiluminescence was developed with LuminataTM

Crescendo (Millipore) or ECL Advance western blotting detection

system (GE Healthcare), and emission was measured with

ChemiDoc XRS (Bio-Rad). Band intensities were quantified on

the original files with the software Quantity One (Bio-Rad). None

of the bands reached signal saturation.

Results

Envenomations by viperid snakes, such as those induced by B.

asper, are often characterized by prominent tissue damage and

inflammation at the site of venom injection. These venoms contain

myotoxic PLA2s and PLA2 homologues which induce rapid

alterations to the plasma membrane of the skeletal muscle cells,

followed by irreversible cell injury [34][35]. The venom of C. d.

terrificus contains large amounts of the neuro- and myotoxic PLA2

complex crotoxin, which induces local and systemic myotoxicity

[36][37]. These myotoxins are not known to enter into cells, but

they do cause rapid change in plasma membrane permeability,

evidenced by a rapid loss of cytosolic markers, e.g. LDH and CK

[38][39][40][41]. The incubation of mouse tibialis anterior muscle

with either BaV or CdV resulted in a similar extent of LDH

release (Fig. S1).

Recently, it was shown that traumatic injuries induce the release

of mitochondrial DNA, which, owing to its similarity to bacterial

DNA, causes activation of innate immune cells [30]. This finding

prompted us to test the possibility that BaV and CdV are able to

induce the same effects. We used quantitative real-time PCR to

evaluate mtDNA release from isolated tibialis anterior muscles

treated with BaV or CdV. Fig. 1 shows that both venoms rapidly

induce a rapid release of mtDNA from the treated muscle. BaV is

more effective than CdV in both cases the amount of released

mtDNA increased with time. Mitochondria are compartmental-

ized by two highly specialized membranes which create two

separate spaces: the matrix, where mtDNA is located, and the

intermembrane space, where Cyt c is present. Both mtDNA and

Cyt c can act as alarmins [42] therefore we also investigated the

release of Cyt c. Fig. 2 shows that, following treatment of tibialis

anterior muscles with BaV or CdV, Cyt c is rapidly released; its

presence in the medium is detectable soon after 15 min from

addition of venoms to the bathing solution.

In order to extend the analysis of alarmin release in the context

of the whole animal, venoms were injected intramuscularly in

mice, followed by the quantification of mtDNA and Cyt c in the

plasma. Mitochondrial alarmins were detected in the plasma of

envenomated mice, as it has been described for traumatized

patients [30]. The amount of mtDNA in the plasma was measured

by real-time PCR after 1 and 24 hrs from injection. Fig. 3 shows

that the pattern of mtDNA increase in the plasma differs among

the two venoms, with a higher peak at 1 hr in the case of BaV

injection and a higher concentration at 24 hrs for CdV.

Cyt c release was also detected in the blood of patients who

experience massive cell death, such as in systemic inflammatory

response syndrome [43]. We next used Western blotting to detect

Cyt c because other immunoassays, such as sandwich ELISA, may

not give a reliable response in the presence of serum. Indeed,

serum leucine-rich alpha-2-glycoprotein-1 binds to Cyt c and

inhibits its recognition by specific antibodies [44], Such interfer-

ence can be bypassed by using Western blotting. Fig. 4 shows that

Cyt c was increased in the plasma of mice injected with either BaV

or CdV 1 hr after injection, and its levels remained high after

24 hrs compared to control mice.

Discussion

Muscle injury almost invariably leads to release of intracellular

molecules, some of which constitute alarm signals which induce an

innate immune reaction following their binding to specific

receptors in various cell types [31]. This represents a general

and fundamental defense response [45][46]. The first of such

Figure 1. B. asper and C. durissus terrificus venoms induce the release of mtDNA. mtDNA released after ex vivo treatment (as described in
Material and methods section) with snake venoms was determined by qPCR, using vehicle treated mice muscles as controls. Mean 6 SD fold changes
(treated samples/controls) in DNA coding for Cyt B and COX III relative to isolated tibials anterior mice muscles treated with (A) 50 mg/ml B. asper
venom (BaV) or with (B) 50 mg/ml C. durissus terrificus venom (CdV) for 309 and 609 at 37uC in oxygenated physiological solution. Data represent the
means of 6 independent experiments.
doi:10.1371/journal.pntd.0001526.g001
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intracellular molecules to be identified was ATP, which binds to a

variety of purinergic receptors [25]. Very recently, mitochondria

have emerged as a source of alarmins, such as mtDNA, as well as

N-formylated proteins which bind to Toll-like receptors and to the

formyl-peptide receptors and induce neutrophil activation [30].

These molecules are quite similar to their bacterial counterparts

which are well characterized inducers of innate immune reactions

[47][48][49]. Activation of neutrophils contributes to a variety of

inflammatory and tissue repair events. Here, we have shown that

BaV and CdV rapidly induce the release of both mtDNA and of

Cyt c which can be detected both in the plasma of injected mice

and in the medium of isolated muscles after incubation with the

venoms. It has been previously reported an important cytokine

release in envenomated mice, therefore we did not analyzed this

aspect of immune response [50] [51][16][52][53][54][55].

The two venoms were found to differ significantly in their

kinetics of alarmin release in injected mice. BaV was found to be

very rapid in inducing the release of both types of mitochondrial

molecules, whilst CdV was rapid in causing Cyt c release, but

slower in that of mtDNA. As mtDNA is located in the matrix and

Cyt c in the inter-membrane space, these data highlight possible

differences in the way these venoms affect mitochondria in muscle

fibers. In ex vivo experiments using the tibialis anterior muscle, BaV

induces a more drastic damage of mitochondria with alteration of

permeability of both the outer and the inner membranes, whilst

CdV seems to damage predominantly the outer membrane and, to

a lesser extent and later on, the inner membrane. In the same

model, both venoms induce a release of LDH from cytosol, which

was more pronounced in the case of BaV.

The basis for the differences in mtDNA release by these venoms

is puzzling, since both their main myotoxic components, i.e. B.

asper PLA2 myotoxins and C. d. terrificus crotoxin act primarily by

disrupting the integrity of skeletal muscle sarcolemma, inducing a

calcium influx that generates a series of intracellular degenerative

events [34]. Some of the most notorious ultrastructural conse-

quences of the action of these toxins are observed in mitochondria,

such as high amplitude swelling, disruption of cristae, appearance

of flocculent densities and precipitates of hydroxyapatite [37] [56].

Despite these ultrastructural similarities in damaged mitochondria,

our observations are likely to reveal more subtle differences in the

mode and kinetics with which these venoms affect this organelle, a

subject that needs to be further investigated. For instance, there

might be variations in the release of mtDNA via inner-outer

mitochondrial membrane specialized junction sites [57]. In

addition, and perhaps most importantly, one should consider the

involvment of other components of the two venoms in the

envenomation process. For instance, viperid snake venoms,

including those of B. asper and C. durissus, contain DNAses [58],

which might degrade released mtDNA. Moreover, BaV myotoxins

are able to affect types I, IIA and IIB muscle fibers, whereas

Figure 2. B. asper and C. durissus terrificus venoms induce Cytochrome c release. Time course of Cyt c release from isolated tibialis anterior
mice muscles in the incubation medium after addition of BaV (A) or CdV (B). The protein concentrations were determined and 2.5 mg of total proteins
were loaded in each lane. Western blots depicting the time course of Cyt c release (A) after BaV treatment (50 mg/ml) or (B) after CdV (50 ug/ml) and
the same volume of vehicle as control. (C) The graphs report the quantitative analysis of the kinetics of Cyt c release induced by venoms (black lines)
and controls (dotted lines). The intensity of each band was determined using the software Quantity One (Bio-Rad) The blots and their quantification
show one representative experiment (n$3).
doi:10.1371/journal.pntd.0001526.g002
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crotoxin is more selective towards oxidative types I and IIA fibers

[36]; since tibialis anterior muscle is predominantly constituted by

type II fibers [59] such difference might have implications in the

mtDNA release. Differences in the mechanism of action of

crotoxin and BaV myotoxins were shown by their different

myotoxic response to the pretreatment of animals with calcineurin

[60], an observation that might be related to the variable

specificity towards different muscle fiber types.

Our in vivo approch allowed the analysis of alarmin release in the

whole animal, i.e. in a model that resembles the actual

circumstances of snakebite. Intramuscular injection of these

venoms in mice revealed marked differences in the kinetics of

mitochondrial marker release. In the case of BaV, similar plasma

concentration of Cyc c was observed at 1 and 24 hr, whereas the

release of mtDNA was significantly higher at 1 hr. In contrast,

CdV induce a higher Cyt c release at 1 hr, but a peak of mtDNA

release at 24 hr. These differences can be interpreted in the light of

previous observations on the myotoxic action of Bothrops sp

myotoxins and crotoxin. The former induces predominantly local

myotoxicity, i.e. muscle necrosis at the site of venom injection,

with a very rapid increase in plasma CK activity, followed by a

rapid drop. In contrast, crotoxin induces a more prolonged

increment of CK activity in plasma, associated with systemic

myotoxicity [36][40]. The late increment in mtDNA in plasma is

compatible with the predominantly systemic myotoxicity of CdV.

Our findings on the release of alarmins from muscle tissue

damaged by these venoms have implications in terms of the local

and systemic inflammatory events associated with snakebite

envenomations. The rapid and higher release of mtDNA from

muscles treated with B. asper venom correlates with the prominent

local inflammatory scenario characteristic of tissue injected with

this venom, in which there is increase of eicosanoids, cytokines,

matrix metalloproteinases and other inflammatory mediators

[16][53][54][55][50], and a prominent influx of neutrophils and

macrophages [51][52]. In this context, the role of mtDNA and

other alarmins in eliciting such strong inflammatory response

needs to be assessed. In contrast, in the case of CdV, local

inflammatory events are minor, as shown at experimental and

clinical levels, probably due to the anti-inflammatory activity of

this venom [61][62]. This may be also related with the observed

delay in mtDNA release in vivo and with the lower release of this

alarmin from muscle ex vivo. On the other hand, systemic

Figure 3. Envenomations by BaV and CdV result in blood circulation of mtDNA with different kinetics. Data obtained with qPCR show
that mtDNA is released by intramuscular injection of the venoms. Each bar represents the fold changes of Cyt B and COX III mitochondrial genes in
the plasma of mice treated (A) with BaV (5 mg/kg) or (B) with CdV (0.15 mg/kg). mtDNA was sampled from mice plasma 1 h and 24 h post-injection
as indicated. Data represent the means of 3 independent experiments.
doi:10.1371/journal.pntd.0001526.g003

Figure 4. Plasma Cytochrome c release after envenomations by
BaV and CdV. Time course of Cyt c release in the plasma of mice
treated with BaV and CdV was performed as described in Materials and
methods. The protein concentrations were determined in small samples
and 50 mg of total proteins were loaded in each lane. (A) Western blots
depicting the time course of Cyt c release after injection of either BaV
(5 mg/kg) or CdV (0.15 mg/kg), or the same volume of vehicle as
control. (B) The graphs report the relative quantification analysis of the
kinetics of Cyt c release induced by venoms, as compared to the
control. The intensity of each band was determined using the software
Quantity One (Bio-Rad). The blot and its quantification show one
representative experiment.
doi:10.1371/journal.pntd.0001526.g004
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manifestations of envenomations by Bothrops spp. are associated

with evidence of systemic inflammatory events, as revealed by

increments in the plasma levels of some cytokines and nitric oxide

after the administration of a lethal dose of B. asper and B. jararaca

venoms in mice [63][50]. In the case of CdV, it is suggested that

the drastic systemic myotoxicity induced by this venom, with the

release of alarmins and other danger signals from damaged

muscles, is likely to play a role in the onset of systemic

inflammation, an issue that remains to be investigated. It is

known that mitochondrial DAMPs are released following various

types of tissue injury, causing systemic inflammation [42]. We

hypothesize that, in addition to the direct action of snake venom

components on various tissues, the release of mitochondrial

alarmins from damaged cells is likely to contribute to the onset

of local and systemic inflammatory events which, in severe

envenomations, may induce manifestations that resemble those of

systemic inflammatory response syndrome (SIRS) [64]. In the light

of the emerging fundamental role of mitochondria in innate

immune response, it would be important to characterize this

interplay and the different alarmins that might be involved

[65][66]. This novel perspective of the action of snake venoms

opens therapeutic windows of action aimed at reducing the effects

of such alarmins as a way to decrease the severity of snakebite

envenomations because it is possible that the injection of

antibodies directed against mitochondrial DNA and cytochrome

c given soon after envenomation may have therapeutic value.

Supporting Information

Figure S1 LDH release in ex vivo mice muscles. Tibialis

anterior muscles were uncovered by skin dissection, removed and

placed in 1 ml of physiological solution containing 50 mg/ml of

venom. LDH enzymatic activity was determined in the superna-

tants of B. asper (triangles) and C. durissus terrificus (squares) treated

muscles for the indicated time points. Circles indicate the LDH

activity in mock treated control muscles. Data represent the means

of four independent experiments. The release of LDH is as an

index of loss of membrane integrity.

(TIF)
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