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Abstract

Background: To investigate, by means of fMRI, the influence of the visual environment in the process of symbolic gesture
recognition. Emblems are semiotic gestures that use movements or hand postures to symbolically encode and
communicate meaning, independently of language. They often require contextual information to be correctly understood.
Until now, observation of symbolic gestures was studied against a blank background where the meaning and intentionality
of the gesture was not fulfilled.

Methodology/Principal Findings: Normal subjects were scanned while observing short videos of an individual performing
symbolic gesture with or without the corresponding visual context and the context scenes without gestures. The
comparison between gestures regardless of the context demonstrated increased activity in the inferior frontal gyrus, the
superior parietal cortex and the temporoparietal junction in the right hemisphere and the precuneus and posterior
cingulate bilaterally, while the comparison between context and gestures alone did not recruit any of these regions.

Conclusions/Significance: These areas seem to be crucial for the inference of intentions in symbolic gestures observed in
their natural context and represent an interrelated network formed by components of the putative human neuron mirror
system as well as the mentalizing system.
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Introduction

McNeill [1] ordered human gestures according to what he has

termed ‘‘Kendon’s continuum’’: gesticulation - to pantomimes - to

emblems - to sign language. Emblems are semiotic gestures that

use movement or hand postures to symbolically encode and

communicate meaning. While we immediately recognize what

someone else is doing when observing an emblem even in a neutral

environment, the performer’s intention, that is, why he/she is

doing such a gesture, often requires contextual, essentially visual,

information.

Two hypothetical systems are proposed to explain how people

make judgments about other people’s behavior, such as their goals,

intentions, desires and beliefs. The putative frontoparietal human

mirror neuron system (MNS) allows us to recognize the goal of

perceived actions by matching it to a representation in our

memory of our own actions. It rapidly and intuitively senses the

other person’s goal on the basis of low-level behavioral input [2].

In turn, the mentalizing system is a relatively higher cognitive level

process, which provides us with the capacity to understand the

other’s intentions and thoughts as if we could read the other’s

mind [3]. It recruits cerebral regions outside the MNS, such as the

superior temporal cortex, the temporoparietal junction, the

posterior cingulate cortex and the medial prefrontal cortex [3–6].

In recent years, different researchers analyzed the intentional

connotation of certain actions by manipulating their context or the

way they were performed. Iacoboni et al. [7] studied the neural

activity while subjects observed a hand grasping a cup within and

without a visual context and presented two different ways of

grasping, representing each one with a different goal. They found

activity within the MNS predominantly in the right inferior frontal

gyrus (IFG) when the action was performed within the context, as

well as a different level of activation depending on the intention of

the action. Based on these findings they suggested that MNS uses

both contextual and gestural information to predict intentionality.

Using repetition suppression, Hamilton and Grafton [8] found the

anterior intraparietal sulcus (IPS) to be sensitive to object-directed

grasping actions but not to action trajectories, suggesting that the

MNS coded the immediate goals of actions rather than the

kinematic properties. However, many recent studies found that the

MNS explains ‘‘how’’ others act and ‘‘what’’ they do but not

‘‘why’’ they are doing it, which in turn could be mainly processed

by the ‘‘mentalizing’’ network [4,9–13]. For example, de Lange et

al. [9] recorded neural activity while a participant observed an

actor performing an ordinary or extraordinary goal-directed

action in terms of its intention or its motoric manner. They found

that the IFG bilaterally processes the intentionality of an observed

action on the basis of the visual properties of the action,
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irrespective of whether the subject paid attention to the intention

or not. However, when participants selectively attended the inten-

tionality of the action, regions involved in the mentalizing system,

as the right posterior superior temporal sulcus (pSTS), showed

enhanced response. Mentalizing regions are also shown to be

active during observation of movements that were out of context,

unplanned or biomechanically impossible [4,14]. Therefore, it

seems quite reasonable to consider the interpretation of an action

as a multi-componential hierarchical process, where the underly-

ing neural substrates are shaped by learning and experience, and

hierarchy is driven mainly by the required task [15].

Most brain imaging studies investigating goal inference processes

based on visual cues use object-directed actions as stimuli. Emblems

are studied in a variety of ways but not by contrasting them with or

without the appropriate visual context. In this way, Gallagher and

Frith [16] investigated the neural pathways for the perception and

recognition of gestures when used to express a feeling versus a

command, they discovered that the latter elicited activity in a left

lateralized system associated with language and motor imitation. Lotze

et al. [17] compared brain activation during observation of isolated

right hand movements, body-referred movements and expressive

gestures, finding that expressive gestures involved bilateral STS, medial

prefrontal cortex and Broca’s and Wernicke’s area. Lately, we

investigated the neural pathways of the recognition of symbolic or

intransitive gestures in comparison with the recognition of object-

oriented or transitive gestures [18] and found that symbolic gesture

recognition elicited a stronger activity in the left inferior frontal area.

Up to now, there is no data about how the context influences

the processing of emblematic gestures and how relevant the

information the context provides is. Therefore, we studied the

influence of visual context in the brain processing of symbolic

gesture recognition by means of functional magnetic resonance

imaging. For this purpose, we designed a paradigm where videos

of the same gestures performed by an actor were presented against

a blank background (GESTURE) or within their appropriate

visual context (G-CONTEXT). If the contextual information

provided the gesture with its full meaning and intentionality, we

predicted to find activation of the MNS as well as some brain

structures belonging to the mentalizing system. As the intention-

ality deduced in G-CONTEXT was not the only difference

between the two conditions, a large visual scenario was also

present; we additionally presented videos of the same scenario and

actor but without performing any gesture (CONTEXT) in order

to avoid visual effects in our findings.

Materials and Methods

1.1 Subjects
Nineteen healthy volunteers (10 male, 9 female) aged 29.565.6

years were recruited for this experiment. All participants were right

handed [19] and gave written informed consent approved by the

Institutional Review Board of the Institute for Neurological Research-

FLENI as well as in accordance with the Declaration of Helsinki.

1.2 Stimuli and task
The experiment consisted in the presentation of different videos

of approximately 3 s long, depicting three different scenarios. One,

called GESTURE, showed an individual performing a manual

gesture against a blank background. All gestures used involved

symbolic connotations like waving goodbye, hitchhiking, begging,

calling a taxi, asking for a coffee in a bar or for the bill in a

restaurant (the latter, being very common in our country). The

second type of videos consisted of the same gestures but in this case

performed in a more realistic scenario according to the meaning of

the gesture, i.e. hitchhiking on the road, begging on the street. We

named this category G-CONTEXT. The last group called

CONTEXT showed the complex scenario with the subject in it,

but in this case the person remained inactive. Three different

actors performed the eighteen videos (six within each category)

and each set of three videos (same gesture in the three conditions)

was played by the same actor. All gestures involved were

performed with the right hand and the videos were presented to

the volunteer from the 3rd person perspective. Each video was

repeated 5 times in a pseudorandom order. In Figure 1 we show

single frames of one example displaying the three conditions

(permission for use of images obtained by written consent available

in supporting information).

Participants were instructed to identify the action performed by

the actor and to choose the correct answer according to a text

screen presented one second after the clip ends. Three options

were displayed: two were names of gestures (chosen among the six

used) one corresponding to the right answer and the third to the

word ‘nothing’. The order of the three options was counterbal-

anced to avoid anticipation. A fixation cross at the center of the

screen was used as baseline.

Three scan sessions of 163 volumes each were acquired per

subject. Each run contained 30 trials consisting in the presentation

of one of the videos, followed by the text screen (3 sec) and the

fixation cross within a variable time interval across trials (4–12 s,

mean = 6 s). A total of 90 stimuli were presented, 30 per condition

randomly distributed along the sessions. Sessions were counter-

balanced across subjects.

Behaviour and latency were recorded online via a response box

containing three keys for the index, middle and ring fingers. These

recordings were later coded for errors and time responses. Trials

with errors were discarded from the analysis.

1.3 Functional Magnetic Resonance Image
MRI data were acquired on a 1.5T GE HDx scanner with an 8

channel head coil. Change in blood-oxygenation-level-dependent

T2* signal was measured using a gradient echo-planar imaging

(EPI) sequence. Twenty four contiguous slices were taken in the

AC-PC plane (TR: 2.4 s, TE: 50 ms, flip angle: 90u, FOV: 24 cm,

64664 pixels per inch matrix, voxel size = 3.7563.7565). A

structural MRI was acquired with the fast SPGR-IR sequence

(120 slices, 1.6-mm thick slices, TR 12.956 ms, TE 6.1 ms, flip

angle 15u, FOV 24 cm, 5126512 matrix). Three scans of 163

volumes were taken per subject.

1.4. Functional MRI Data analysis
Image processing was carried out using SPM2 (Wellcome

Department of Cognitive Neurology, London, UK) implemented

in MATLAB 7 (Mathworks Inc., Sherborn, MA, USA). Slice-

timing correction was applied to each volume. The imaging time

series was realigned to the first volume and spatially normalized to

the stereotactic space of Talairach and Tournoux [20] using

Montreal Neurological Institute reference brain [21]. The

normalized volumes of 26262 mm3 were spatially smoothed by

an isotropic Gaussian kernel of 8 mm at full width half-maximum

[22] and high pass filtered during analysis.

Individual analysis was computed using the general linear model

for an event-related design including the three main conditions:

GESTURE, G-CONTEXT and CONTEXT, (the text-response

stimuli was computed in the design matrix but not considered in

the posterior analysis). The design matrix included correction for

head movements. The effects were modeled by convolving a delta

function for each event type with the canonical hemodynamic

response function to create regressors of interest. Individual linear
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contrasts were applied to the design to investigate the differential

networks between conditions, and the resulting contrast images

were subjected to a random effect analysis to see effects at a group

level. We performed three comparisons: 1) G-CONTEXT -

GESTURE; 2) CONTEXT - GESTURE and 3) G-CONTEXT -

CONTEXT. From the first contrast we obtained areas related

with gesture processing in a semantically congruent context but

also areas related with the context per se. The second contrast was

added to the analysis to observe this environmental effect,

although it did not represent sufficient control for the purely

visual context effect. The third contrast was proposed to separate

related effects from the gesture processing alone.

Therefore, in order to isolate specific activation for gesture

processing in a semantically congruent context, neither elicited by

gesture processing per se or the visual characteristics of the context

itself, we combined contrasts in a conjunction analysis between (G-

CONTEXT – GESTURE) AND (G-CONTEXT – CONTEXT)

to obtain a statistical approach. This analysis identified brain

activations exclusive to G-CONTEXT that were absent in both

GESTURE and CONTEXT.

Additionally, in order to disclose the individual effect of each

condition we extract the BOLD beta weights from spheres of

7 mm radius built around the main coordinates of the relevant

clusters (although bilaterally) that survived the last analysis. All

image results were shown with an uncorrected p value of 0.001

combined with a cluster size threshold of 30 voxels. The

behavioral results were put into an ANOVA for multiple

comparisons, using the Bonferroni test for post hoc pair-wise

comparison, implemented in the SPSS 13.0 package �. Results

for this analysis were considered significant at a level of p = ,0.05.

Results

2.1 Behavioral results
For the three conditions the error rate in answer accuracies was

3,6% and the mean reaction time (RT) in milliseconds for each

condition was as follows: GESTURES 917.456192.38; G-CON-

TEXT 895.916213.34 and CONTEXT 1172.446276.61. An

ANOVA test between error rates gave a non significant result

(F = 3.3, p = 0.06). For the RT, the ANOVA showed a significant

main effect of F = 24.9, p,0.001 and post hoc Bonferroni test proved

significant for the comparisons between GESTURE vs. CONTEXT

and G-CONTEXT vs. CONTEXT with p,0.001 in both tests and

no significant effect for GESTURE vs. G-CONTEXT.

2.2 Subtraction analysis
G-CONTEXT minus GESTURE showed active clusters

within right inferior frontal gyrus (IFG), right middle frontal gyrus

(MFG) and right superior parietal lobule (SPL) as well as

bilateral precuneus (PC), right temporoparietal junction (TPJ),

right posterior cingulate cortex (PCC) and bilateral occipital areas.

CONTEXT minus GESTURE showed active clusters within

bilateral occipital areas, right middle temporal gyrus, right PCC

and right PC but only significative at voxel level. G-CONTEXT

minus CONTEXT showed active clusters within left IFG, bilateral

MFG and inferior parietal lobule (IPL), right precuneus, right

PCC, bilateral TPJ and occipital areas. Figure 2a resumes the

three comparisons and Table 1, the coordinates of the significant

clusters.

The mean BOLD signal was greater for the G-CONTEXT

condition in all regions and was higher in the right hemisphere.

Figure 2.b shows the plots of the signal of each condition in all

regions and both hemispheres. It is observable that GESTURE

was greater than CONTEXT mainly in the left hemisphere while

the opposite happened in the right hemisphere where CONTEXT

was higher than GESTURE.

2.3 Conjunction analysis
The regions that survived the comparisons (G-CONTEXT –

GESTURE) AND (G-CONTEXT.CONTEXT) were the right

PCC, PC and TPJ and less intense the right IFG, MFG and the

left PC and PCC. Activity in occipital regions was also found.

Figure 3 shows the activation map and Table 2 shows the

coordinates.

Discussion

In this study, we investigated the brain network involved in the

processing of symbolic gestures when immersed in their appro-

priate visual context. We postulated that contextual relevant

information fulfils the role of completing the meaning and

intentionality of the gesture (e.g.; a church or a hospital in the

case of the silence gesture); and so, we predicted to find activation

of brain areas within the putative human MNS in addition to some

areas of the mentalizing system. To verify this hypothesis, we

compared brain response when observing symbolic gestures with

or without their appropriate context and found significant

differences in sectors of the IFG, SPL, TPJ, and PCC, all in the

right hemisphere and bilaterally in the PC with the random effect

analysis. To verify whether these areas corresponded with the

integration of the gesture and it’s context or to environmental

effects, we performed a conjunction analysis to separate the

context and gesture processing effects and found that the regions

that corresponded exclusively to the gesture into context

condition, were the right TPJ, the PCC, the PC, the right IFG

and the MFG. Furthermore, the pattern of activation for each

condition obtained within the selected regions of interest revealed

Figure 1. Experimental conditions. Image frames captured from some of the videos presented. Examples of one gesture (asking for the bill in a
bar) in the three types of presentation: isolated, within the context and the context without the gesture (respectively from left to right).
doi:10.1371/journal.pone.0029644.g001
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that G-CONTEXT presented the highest mean value in both

hemispheres which was expected since all items, gesture and rich

environment, were presented in this condition. In relation to the

other two conditions we noticed that in some areas (right IFG,

bilateral PCC and right PC) CONTEXT was higher than

GESTURE, while in turn, there were other zones (left IFG,

Figure 2. Subtraction analysis. Signal increase for (a) G-CONTEXT – GESTURE; (b) CONTEXT – GESTURE and (c) G-CONTEXT – GESTURE. The
coordinates of the planes shown are z = 53 (top axial planes); z = 18 (bottom axial planes); x = 243 (top sagital planes); x = 43 (botton sagital planes).
The most relevant regions are labelled. (d) BOLD signal for the three conditions and both hemispheres. In Black: GESTURE, Orange: G-CONTEXT and
Blue: CONTEXT. up) Left hemisphere; down) Right hemisphere.
doi:10.1371/journal.pone.0029644.g002
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bilateral TPJ and left PC) where we found the inverse relation:

GESTURE was higher than CONTEXT suggesting perhaps a

gesture processing preference role within these areas. Therefore,

we confirmed our prediction that when an emblematic gesture is

observed within it’s appropriate context, the intention behind the

gesture is fully captured and so, areas belonging to the mentalizing

system in addition to the putative human MNS also become

active.

Right IFG was associated in previous works with intentional

recognition processes besides action processing, implying a

visual environment as a supplementary or complementary

source of information. Related with object-directed actions, we

already mentioned Iacoboni et al. [7] who compared a hand

grasping action within different visual contexts and reported an

enlargement of the same IFG area related with intention

recognition. Another study exploiting visual scenarios for

intentional purposes was done by Tylen et al. [23]. They

investigated brain activity caused by a not gestural kind of

communication: the way we exploit everyday objects when

they are perceived as signals. As an explanation they mentioned

two scenes: a cluster of flowers on the roadside and a similar

bunch of flowers cut, tied and placed on the doorstep of a

house. Clearly, the second scene has a social, communicative

connotation: someone left the flowers for another person to find

them and understand the message. Following this line of

thought, they compared the brain activity of different commu-

nicative object scenarios versus other more conventional and

non-communicative object scenarios. They found bilateral

activity in the inferior frontal cortex predominantly on the

right side only in cases with social communicative connotation.

In spite of being the right IFG an area classically associated with

action processing and belonging to the putative human MNS

Table 1. Brain regions with significant increased BOLD contrast signal in G-CONTEXT – GESTURE, CONTEXT – GESTURE and
GCONTEXT-CONTEXT.

Regions (region abbreviation)
Cluster-level
P-FWE corrected

Cluster
size (voxels) Coordinates t-value

x y z

G-CONTEXT minus GESTURE

Right mid. occipital gyrus ,0.001 9528 34 286 14 6.37

Right posterior cingulate 20 256 18 5.11

Right precuneus 22 264 24 4.73

Right TPJ 52 250 16 5.23

Right SPL 22 268 54 4.51

Left sup. occipital gyrus ,0.001 5039 240 286 22 11.09

Left inf. occipital gyrus 222 292 28 5.53

Left precuneus 218 262 20 4.17

Right IFG 0.023 440 38 10 30 4.26

Right PMd 42 8 54 3.84

CONTEXT minus GESTURE

Right mid. occipital gyrus 0.032 356 20 286 28 7.15

Right posterior cingulate 0.028 195 20 256 16 6.63

Right mid. temporal gyrus 0.001 732 44 276 20 6.12

Left mid. occipital gyrus ,0.001 1161 224 284 26 6.02

G-CONTEXT minus CONTEXT

Left mid. occipital gyrus ,0.001 11292 244 268 4 10.13

Left TPJ 250 244 18 9.23

Left IFG 248 6 30 9.09

Left IPL 242 232 40 8.56

Left PMd 254 4 42 8.45

Left postcentral gyrus 252 226 38 6.85

Right TPJ ,0.001 3342 66 238 18 6

Right inf. occipital gyrus 36 292 26 4.57

Right IPL ,0.001 4317 34 244 56 8.61

Right postcentral gyrus 38 234 50 8.54

Right precuneus 18 248 40 5.42

Right posterior cingulate 24 258 14 4.3

Right IFG ,0.001 842 60 12 34 6.1

Right PMd 58 6 48 6

IFG: inferior frontal gyrus; PMd: dorsal premotor cortex; SPL: superior posterior parietal cortex; TPJ: temporoparietal junction.
doi:10.1371/journal.pone.0029644.t001
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[24,2], evidence in different kind of tasks using informative

scenarios highly suggests that this region of the IFG plays a

relevant role in the interpretation of the meaning of actions and

their intentionality. What is not conclusive yet, is whether the

visual modality of the context is activating this area or if the

context itself, no matter the input channel, is the relevant task

processed by this region. To answer this question further

investigation is needed.

The temporoparietal junction region was associated with the

representation of goals and intentions in the mentalizing system.

Saxe and Powell [25] demonstrated that the right and left TPJ as

well as the PCC were all recruited selectively when subjects read

stories about a protagonist’s thoughts or beliefs; being the right

TPJ particularly specific. Furthermore, damage to this region

causes selective deficits in judging the contents of other’s beliefs

[26]. Van Overwalle and Baetens [14] further suggested that the

TPJ orients to externally generated behaviour with the aim of

identifying the possible end-state of intentional behaviours.

According to Ciaramidaro et al. [27] the TPJ and the right pre-

cuneus are both activated along different social intentionality

dimensions, from private to social prospective intentions and

conversational interactions.

We found differences within the SPL on the right side during

the subtraction analysis. Previous studies have linked the SPL to

the monitoring of spatial information [28] but were not reported

to be associated to goals or belonging to intentional networks.

Since the G-CONTEXT stimulus integrates the gesture with the

appropriate environment it provides more spatial information

for orienting behavior than the other conditions; therefore,

more intensive activity would be expected in the SPL for this

condition. We also found activation of both the PC and PCC

bilaterally associated with the G-CONTEXT condition and

predominantly unilaterally mainly on the right hemisphere

in relation with CONTEXT condition. The PC and PCC are

intimate and bilaterally interconnected providing an anatomical

basis for their functional coupling [29]. The PC is also

extensively connected with the lateral parietal and temporo-

parietal-occipital cortices as well as with the frontal lobe [29].

The upper part of the PC is considered an area devoted to

multimodal sensory integration in general [30] and visuo-spatial

information processing in particular [31]. In turn, the lower part

of the PC is activated in various aspects of self-representation,

when ascribing social trait to others and during the interpre-

tation of social interaction between others [32–34]. The PCC,

together with the PC and prefrontal cortex is also active in

studies exploring theory of mind. Both, the PCC and PC

participate during the processing of our own intentions and

consequential actions and together with the TPJ in the task of

mental-state reasoning, when subject infers another person’s

thoughts or beliefs [11,25,35,36]. As a matter of fact, Joly et al

[37] demonstrated that an environment (i.e., church) raised

environmental specific social forms. The PC and adjacent PCC

are involved in the encoding and retrieval of spatial context of

events [38] and when complex goal context need to be

represented [39]. Moreover, it suggested that these areas would

be part of a core network underlying a variety of cognitive

functions which share the process of scenes construction, in

other words, the capacity of mentally generating and maintain-

ing a complex and coherent scene of events [40]. Therefore, it

seems quite possible that the PCC and PC are both recruited by

the mentalizing system to identify the situational frame and

context [41] and to provide and update complex contextual

associations; bilaterally, when the gesture is embedded in it’s

appropriate context and predominantly unilaterally (right sided)

when it is inferred through a specific environment.

Consequently, it may assume that to understand the full

meaning of a symbolic gesture performed in a natural context it is

necessary to recruit an integral network made up by components

of the putative human mirror neuron system as well as the

mentalizing one; some regions of this network like the PC and

PCC, seem to be predominantly recruited to provide contextual

associations.

Figure 3. Conjunction analysis. Regions where G-CONTEXT was
greater than GESTURE and CONTEXT.
doi:10.1371/journal.pone.0029644.g003

Table 2. Conjunction analysis between (GCONTEXT.GESTURE) AND (GCONTEXT.CONTEXT).

Regions (region abbreviation)
Cluster-level
P-FWE-corrected

Cluster
size (voxels) Coordinates t-value

x y z

Right posterior cingulate 0.037 132 14 252 16 8.22

Left sup. occipital gyrus 0.016 183 242 278 26 7.26

Right TPJ 0.034 271 50 256 16 6.93

Right precuneus 0.05 227 32 276 34 5.4

Left posterior cingulate * 0.001 38 216 262 18 5.13

Left precuneus * 0.003 226 274 24 4.1

Right IFG * 0.011 5 44 12 32 3.5

*voxel p (FDR-corr).
doi:10.1371/journal.pone.0029644.t002
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