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Abstract

Grain size is a major yield component in rice, and partly controlled by the sizes of the lemma and palea. Molecular
mechanisms controlling the sizes of these organs largely remain unknown. In this study, we show that an antagonistic pair
of basic helix-loop-helix (bHLH) proteins is involved in determining rice grain length by controlling cell length in the lemma/
palea. Overexpression of an atypical bHLH, named POSITIVE REGULATOR OF GRAIN LENGTH 1 (PGL1), in lemma/palea
increased grain length and weight in transgenic rice. PGL1 is an atypical non-DNA-binding bHLH and assumed to function
as an inhibitor of a typical DNA-binding bHLH through heterodimerization. We identified the interaction partner of PGL1
and named it ANTAGONIST OF PGL1 (APG). PGL1 and APG interacted in vivo and localized in the nucleus. As expected,
silencing of APG produced the same phenotype as overexpression of PGL1, suggesting antagonistic roles for the two genes.
Transcription of two known grain-length-related genes, GS3 and SRS3, was largely unaffected in the PGL1-overexpressing
and APG-silenced plants. Observation of the inner epidermal cells of lemma revealed that are caused by increased cell
length. PGL1-APG represents a new grain length and weight-controlling pathway in which APG is a negative regulator
whose function is inhibited by PGL1.
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Introduction

Grain size is an important yield component, and thought to be

partly controlled by sizes of glumes; the lemma and palea [1–3].

Enlargement of these organs results in a bigger grain, when grain-

filling ability remains unchanged. To date, two genes controlling

lemma/palea length and two genes involved in grain width have

been isolated and characterized. A major QTL (quantitative trait

locus) for grain length, GS3, encodes a protein with four different

domains including the plant-specific organ size (OSR) domain.

This domain is necessary and sufficient to function as a negative

regulator of rice grain length [4]. Another grain length gene Small

and round seed 3 (SRS3) encodes a kinesin13 protein. Constitutive

expression of SRS3 rescued and complemented the short grain

phenotype of an srs3 mutant, suggesting a positive role for SRS3 in

rice grain length [5]. A QTL for seed width on chromosome 5,

qSW5, was shown to control cell numbers of the lemma and palea,

and identified to be functional nucleotide polymorphisms (FNP)

for a putative nuclear protein [1]. A QTL for grain width on

chromosome 2, GW2, encodes a RING-type ubiquitin E3 ligase

and controls cell numbers of the lemma and palea [2]. Although

grain size is controlled by a complex genetic network in which the

above mentioned four genes are also involved, it is expected that

many genes are yet to be identified.

Basic helix-loop-helix (bHLH) proteins are the second largest

class of plant transcription factors [6]. They comprise two distinct

functional regions, a basic region and a helix-loop-helix. The

former is required for DNA binding whereas the latter is needed

for protein dimerization [7,8]. Based on DNA-binding ability, the

proteins are divided into two groups, 1) DNA-binding bHLH and

2) non-DNA-binding bHLH (HLH) also known as atypical bHLH

[9]. It is likely that atypical bHLH function to inhibit bHLH from

binding to DNA through heterodimerization [8,10]. A typical

bHLH protein, PIF3, encoded by Phytochrome Interaction Factors 3,

can bind to the G-box motif (CACGTG) in the promoter region of

target genes and is involved in light signaling [11]. In contrast, an

atypical bHLH protein, HFR1 (long hypocotyl in far-red), is

unable to bind either phytochrome A or B proteins. However,

HFR1 modulates phytochrome signaling through heterodimeriza-

tion with PIF3 [12].

Recent studies have revealed antagonistic roles of HLH/bHLH

proteins in various plant organ sizes. For instance, an antagonistic

pair of bHLH proteins, Increased Leaf Inclination (Ili) and ILI1 binding

bHLH (OsIBH1), controls cell length in the lamina joint and leaf

bending in rice. Likewise, an Ili homolog of Arabidopsis,

Paclobutrazol Resistance1 (PRE1), and AtIBH1 regulate cell elongation

[13]. Activation-tagged bri1 suppressor 1-Dominant (atbs1-D) and ATBS1

interaction factors (AIFs) regulate leaf cell size through a brassinoster-

oid signaling pathway [14].

It is predicted that there are 167 bHLH genes in Arabidopsis,

177 in rice, 99 in poplar, 190 in moss and 13 from five algae

species [9,15]. Despite its vital role, the function of rice bHLH is

poorly understood; so far, only ,10% (19 of 177 genes) of genes

have been characterized in rice, compared to 38% (64 genes) in

Arabidopsis. In this study, we overexpressed an atypical bHLH

gene named POSITIVE REGULATOR OF GRAIN LENGTH 1

(PGL1) in rice lemma/palea and found increases in the length and

weight of the grain. We identified a typical bHLH protein named

PLoS ONE | www.plosone.org 1 February 2012 | Volume 7 | Issue 2 | e31325



ANTAGONIST OF PGL1 (APG) as an interaction partner of

PGL1 and the complex of them is localized in the nucleus.

Silencing of APG by RNAi resulted in the same grain phenotype

overexpression of PGL1. Our results suggest that PGL1 and APG

antagonistically regulate rice grain length and weight by

controlling cell elongation in lemma/palea through heterodimer-

ization.

Results

Overexpression of an atypical PGL1 increases grain
length and weight

Os03g0171300 (LOC_Os03g07510 in MSU Rice Genome

Annotation Project) is an atypical bHLH gene that is not included

in the predicted 177 bHLH genes of rice [9,15], and is reported to

be homologous to tomato Style2.1, a gene that controls style cell

length in tomato [16], at a level of 66% and 63% amino acid

identity for the whole sequence and HLH domain, respectively

(Figure S1). Analyses of a rice homolog of Os03g0171300 and

Style2.1, Ili1, showed that it is involved in cell length in

determining lamina joints of rice [13]. Based on sequence

homology, they detected six homologs of Ili1 in the rice genome,

and called one of them, Os03g0171300, Ili6 [13]. Most members

of the ILI family belong to subfamily 16 of the atypical bHLH

protein family [15], however, the function of Os03g0171300/

ILI6 has not been elucidated yet. We named Os03g0171300 as

POSITIVE REGULATOR OF GRAIN LENGTH 1 (PGL1, see

below), and analyzed its expression by RT-PCR. The result

showed that it is expressed in the pistil, lemma/palea, young

panicle, and predominantly in root but not leaf (Figure S1). To

analyze the function of PGL1, we overexpressed the gene by using

a rice chitinase promoter, which was reported to induce gene

expression predominantly in rice florets especially in pistils [17]

(Figure 1a). Twenty-four and nine independent T0 transgenic

lines overexpressing PGL1, PGL1:OX lines, were produced for

two cultivars, Nipponbare and Kita-ake. Although the expression

of PGL1 was significantly increased in pistils, it didn’t affect pistil

length (Figure S1).

We observed that grain sizes of T0 PGL1:OX lines are larger

than those of wild types. We examined if the expression level of

PGL1in lemma/palea correlates with the size of grains. Four

representative T0 PGL1:OX lines from both backgrounds were

selected for analysis. As expected, expression of PGL1 in lemma/

palea was increased and correlated to grain size in the T0

transgenics (Figure 1b–d). Quantitative PCR (qPCR) analysis

revealed that line Ni9 (T0) accumulating 170-fold more of the

PGL1 transcript in lemma/palea showed a 43% increase in 1000-

grain weight, while line Ni1 with a 13-fold increase in PGL1

showed 3% increase in grain weight (Table 1). The large grain size

is most probably caused by increased grain length rather than

width (Figure 1d). The same results were obtained in Kita-ake

background transgenics (Figure S2). The transgenic Ni9 (T0) plant

with the largest grain was self-pollinated and ten segregated plants

were randomly selected for further analysis. The Ni9 (T1) plants

which were T-DNA-positive remained long whereas the T-DNA

negative plant showed a grain length comparable to the wild type

(Figure S4). Taken together, it was shown that overexpression of

the PGL1 gene in lemma/palea increases grain length and weight

in rice.

Interaction between PGL1 and a typical bHLH protein,
APG

PGL1 is an atypical bHLH and lacks the basic domain

required for DNA-binding, suggesting that it would hetero-

dimerize with other DNA-binding bHLH proteins and abolish

their functions as in the case of human Inhibitor of DNA binding

(Id) proteins [10]. In order to search for interaction partners

of PGL1, we adopted information from the protein-protein

interaction network of Arabidopsis. First, we identified an

Arabidopsis protein with an HLH motif very similar to that of

PGL1. A BLAST search for Arabidopsis proteins (http://www.

arabidopsis.org) using the HLH region of PGL1 as a query

revealed that PGL1 is highly homologous to Arabidopsis KIDARI

(KDR, At1g26945) which has 77% and 75% identity with PGL1

for the whole amino acid sequence and HLH domain, respec-

tively. KDR was reported to interact with HFR1 (bHLH026,

At1g02340) [18]. Then we used the bHLH domain of HFR1 to

search the rice genome (http://rapdb.dna.affrc.go.jp/) and

found several bHLH proteins as candidates for interaction

partners of PGL1. Proteins with E-values of ,4e212 were selected

for analysis; Os12g0610200, Os01g0286100, Os05g0139100, and

Os04g0618600. Except for Os04g0618600, all candidates

contained amino acids conserved in the basic domain required

for binding to DNA [9]. We found expression in the lemma/

palea of these candidates. Thus, we chose these four candidates

for analysis of interaction with PGL1. For Os05g0139100, the

size of the cDNA isolated from lemma/palea (1299 bp for the

coding sequence) was different from that of the reported sequence

(1518 bp for the coding sequence and 1791 bp for the full-length

cDNA, AK287958), probably because of alternative splicing,

although we found no longer band corresponding to AK287958

in all the organs analyzed by RT-PCR experiment (Fig. S6). We

named Os05g0139100 as ANTAGONIST OF PGL1 (APG, see

below), and deposited the cDNA sequence derived from lemma/

palea in DDBJ/Genbank/EMBL under accession number

AB667900.

PGL1 and the four candidates were translationally fused to

either maltose binding protein (MBP), glutathione S-transferase

(GST) or thioredoxin (Trx) to express soluble recombinant

proteins in E. coli for the in vitro pull-down assay. We found that

MBP-APG co-precipitated with GST-PGL1, suggesting the

interaction of these proteins in vitro (Figure 2a). Co-precipitation

with PGL1 was not found for the other candidates (Figure S5).

To examine the interaction between PGL1 and APG in vivo, we

performed a bimolecular fluorescent complementation (BiFC)

assay. Agrobacterium harboring constructs for expression of the N-

terminal half of enhanced yellow fluorescent protein (EYFP) fused

to PGL1 (YN-PGL1) and C-terminal half of EYFP fused to APG

(YC-APG) were co-infiltrated into Nicotiana benthamiana leaves. The

YFP fluorescence was observed in the nucleus (Figure 2c),

indicating that the two proteins interact in vivo and are localized

in the nucleus. YFP signals were not observed for the in

combination of YN-PGL1 and C-EYFP (YC) or N-EYFP (YN)

and YC-APG (Figure 2c), further suggesting that interaction

between PGL1 and APG is necessary for reconstruction of the

YFP protein.

We analyzed the intracellular localization of these proteins

separately. APG and PGL1 were fused downstream to green

fluorescent protein (GFP) gene and agro-infiltrated into N.

benthamiana leaf epidermal cells. Fluorescent signal was observed

in the nucleus for GFP-APG and both the cytoplasm and nucleus

for GFP-PGL1 (Figure 3), consistent with the BiFC results.

To test whether APG can form a homodimer, Agrobacterium

harboring constructs for YN-APG and YC-APG were co-

infiltrated into N. benthamiana leaves. YFP signals were detected

in the nucleus (Figure 2d), indicating that APG is capable of

forming a homodimer in plant cells. In vitro pull down assay also

revealed that GFP-APG co-precipitated with MBP-APG

HLH/bHLH Pairs for Grain Length and Weight in Rice
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(Figure 2b). Taken together, the results suggested that the APG

protein is able to form both a homodimer and a heterodimer with

PGL1.

A RT-PCR analysis of APG in the wild type showed that it is

expressed in the lemma/palea and predominantly in the root

(Figure S6). A previous genome-wide study of bHLH proteins

categorized APG in subfamily 24 as OsbHLH106 [15].

Suppression of APG, an interaction partner of PGL1,
increases grain length

Given that overexpression of PGL1 in lemma/palea results in

long grains, and that PGL1 lacks the basic domain for DNA

binding while its interaction partner APG retains it, we raised the

hypothesis that APG is a negative regulator of rice grain length,

and its function is inhibited by PGL1 through heterodimerization.

This hypothesis predicts that suppression of APG and overexpres-

sion of PGL1 would give similar phenotypes. To examine this, we

knocked down APG by the RNAi method in the Nipponbare

background, and observed grain size phenotype (Figure 4a).

Twenty T0 transgenics were produced. As expected, the APG

RNAi lines had significantly longer grains than the wild type

(Figure 4b–d). The most severely suppressed line, Ri-12, in which

APG mRNA accumulation was ,10% of that in the wild type,

showed the longest grain length, with a 12% increase in 1000-

grain weight (Table 1).

PGL1/APG-mediated grain length is caused by elongated
cells in lemma

We selected two transgenic lines with different grain sizes from

APG RNAi (Ri-1 and Ri-12) and PGL1:OX (Ni9 and Ni23) to

compare their lemma inner epidermal cells to those of wild type.

Confocal microscopic observations revealed that the longer grain

is caused by enhanced cell length (Figure 5a). Transgenic plants

with long grains produced more long cells than the wild type,

though the width of cells was largely unaffected (Figure 5b–c). The

results were consistent between the APG RNAi lines and PGL1:OX

lines of both the Nipponbare (Figure 5a–d) and Kita-ake

backgrounds (Figure S2). Observation of palea inner epidermal

cells of PGL1:OX (Ni9) and APG RNAi (Ri-12) showed similar

results (Figure S3).

Grain filling rate is another major factor determining grain

weight. We obtained three sterile PGL1:OX lines (Ni5, Ni8 and

Ni10) which are unable to fill the grain. However, these lines had

large lemma/palea, suggesting that the elongated grain in

PGL1:OX is not related to grain filling rates (Figure S1). This is

consistent with that grain size is rigidly controlled by the sizes of

Figure 1. Overexpression of PGL1 increased grain size in rice. A) Structure of the chitinase promoter and PGL1 gene in the pPZP2H-lac binary
vector. B) Grain phenotype of T0 transgenic plants (Ni#) compared with the Nipponbare wild type (NiWT) (bar = 1 cm) C) Quantitative PCR expression
analysis of PGL1 in the lemma/palea of T0 plants compared with the wild type (WT = 1) normalized by OsActin. Error bar indicates 6sd over three
biological repeats. D) Comparison of grain length and width of transgenic T0 and wild type plants (error bar, 6sd, n = 10). Asterisks denote a
significant difference from the wild type as determined by Student’s t tests (ns, not significant; **, p,0.01; ***,p,0.001).
doi:10.1371/journal.pone.0031325.g001
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lemma/palea, and thus grain cannot grow to a size greater than

that permitted by lemma/palea [1–3,19].

APG and PGL1 does not affect the expression of known
grain length controlling genes

To examine whether the increased grain sizes of the APG RNAi

lines and PGL1:OX lines resulted from the alteration of known

grain size-related genes, we analyzed expression levels of two

known grain length controlling genes SRS3 [5] and GS3 [4] in our

transgenics. qRT-PCR analysis indicated the expression of SRS3

and GS3 to be largely unaffected in the selected APG RNAi lines

(Ri-1 and Ri-12) and PGL1:OX lines (Ni9 and Ni37) (Figure 6).

PGL1 is a brassinosteroid-related gene
Overexpression of the BR signaling gene BRASSINOSTEROID

UPREGULATED1 (BU1), an atypical bHLH gene, increased leaf

inclination [20]. In our PGL1:OX lines, we found marked leaf

bending in most lines. Interestingly, levels of bending seemed to

correlate to grain length and the expression level of PGL1 in

lemma/palea (Figure 7). Analysis for coleoptile length growth

under different concentrations of barassinolide (BL) revealed that

the PGL1:OX lines are hypersensitive to BL (Figure 7). Together,

these results suggest that PGL1 is a BR signaling gene like BU1.

However, exogenous BL treatment had subtle or no effect on gene

expression for PGL1 and APG, respectively, while it enhanced BU1

expression for , three times, being consistent with previous report

on BU1 [20] (Figure S7).

Three APG RNAi lines (Ri-1, Ri-5 and Ri-13) showed obvious

leaf bending (Figure 4a). This is consistent with the idea that APG

and PGL1 interact and have antagonistic roles.

Discussion

Genetic control of grain size
Rice grain size is a major yield component, and controlled by at

least four factors; grain width, length, thickness and the ability to

fill the grain [21]. Findings on the genetic networks underlying

these factors are very limited at present. In this study, we showed

the involvement of an antagonistic pair of HLH/bHLH proteins

in determining grain length; the positive regulator PGL1, an

atypical bHLH, and the negative regulator APG, a typical DNA-

binding bHLH.

To date, two grain length-controlling genes have been

reported, an OSR domain-containing protein gene GS3 and a

kinesin 13 protein gene SRS3 [4,5]. The srs3 mutant showed

significantly decreased cell length in lemma but only slightly

affected cell width (not significant at p,0.01) compared to the

wild type [5]. Although alterations of neither cell size nor cell

number were described for the GS3 mechanism, the gene

negatively regulates grain length and has a small positive effect

on width [4]. The expression of GS3 and SRS3 in the

PGL1:OX and APG RNAi lines was largely unaffected,

suggesting that the genetic pathway through which PGL1 and

APG regulate grain length is independent of these genes,

although the possibility of PGL1 and APG being downstream of

these genes can not be excluded. We also showed that the

PGL1 and APG proteins interact in vitro and in vivo, and the

complex of them is localized at the nucleus. bHLH proteins are

reported to function either as transcription activators [22,23]

or as transcription repressors [24]. Given that the basic region

of APG retains all amino acids required for binding to G-box,

His 9, Glu 13 and Arg 16 [15] (Figure S6), while PGL1 lacks

the basic domain required for DNA binding, APG would form

a homodimer or heterodimerize with other unidentified bHLH

protein, and function as a transcription factor that either

activates the expression of a negative regulator of grain length

or suppresses a positive regulator, while PGL1 would inhibit

the effect of APG through heterodimerization (Figure 8).

Taken together, our results show that the antagonistic pair of

HLH/bHLH genes PGL1 and APG represents a novel genetic

pathway controlling rice grain size by regulating cell length in

the lemma and palea.

Table 1. Grain traits and lemma inner epidermis cell of PGL1:OX and APG RNAi lines.

Line 1000-grain weight Grain lengtha Grain widthb Cell lengthc Cell widthd

(g) (mm) (mm) (mm) (mm)

NiWT 23.2(100%) 6.960.3 2.860.2 102.2620.6 43.766.8

Ri-1 26.4(114%) 7.960.1*** 3.060.1* 140.6623.7*** 42.765.4*

Ri-2 25.3(109%) 7.760.1*** 3.060.1ns - -

Ri-9 24.5(106%) 7.860.1*** 3.060.1ns - -

Ri-12 26.0(112%) 8.060.2*** 3.160.1* 145.9628.1*** 43.866.0ns

Ni1 23.9(103%) 7.360.3*** 3.260.1ns - -

Ni9 33.4(144%) 8.860.3*** 3.660.1* 155.1628.4*** 47.266.9***

Ni23 26.1(113%) 7.960.2*** 3.260.1ns 121.7626.5*** 45.265.7**

Ni37 26.0(112%) 7.960.3*** 3.360.2ns 128.6629.4*** 44.665.3*

a,b: data are the average of 10 samples (6sd).
c,d: data are the average of 250 samples (6sd).
ns, none-significant;
*p,0.05;
**p,0.01;
***p,0.001.
NiWT, Nipponbare wild type.
Ri#, APG RNAi line.
Ni#, PGL:Ox line.
doi:10.1371/journal.pone.0031325.t001
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Figure 2. Interaction between PGL1 and APG. A) Interaction between PGL1 and APG in vitro detected by pull-down assay. Amylose resin–bound
MBP-APG or MBP was incubated with an equal amount of GST-PGL1. Proteins co-precipitated with the amylose resin were detected by
immunoblotting using anti-GST antibody. B) In vitro homodimerization of APG detected by pull-down assay. Amylose resin–bound MBP-APG or MBP
was incubated with an equal amount of GFP-APG extracted from N. benthiamiana leaves. Proteins co-precipitated with the amylose resin were
detected by immunoblotting using anti-GFP antibody. C) Confocal images of interaction in vivo between PGL1 and APG revealed by BiFC assay in N.
benthiamiana leaf epidermis. BF, bright field image; YFP, yellow fluorescent protein; DAPI, 49,6-diamidino-2 phenylindole for nuclear staining; MERGE,
merged view of the YFP and DAPI images. YN-PGL1+YC-APG indicates Agrobacterium mediated co-infiltration of constructs encoding N-EYFP-PGL1
and C-EYFP-APG (upper); YN-PGL1+YC, co-infitration of N-EYFP-PGL1 and C-EYFP alone (middle); YN+YC-APG, co-infiltration of N-EYFP alone and C-
EYFP-APG (lower). (bar = 75 mm) D) Light microscopic images of homodimerization in vivo of APG revealed by BiFC assay. YFP was detected in the
nucleus when YN-APG was co-infiltrated with YC-APG, suggesting that the protein forms a homodimer to reconstruct the YFP signal (upper). In
contrast, the YFP signal was not detected when YN-APG or YC-APG was used alone. (bar = 50 mm).
doi:10.1371/journal.pone.0031325.g002
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Homologs of PGL1 and cell elongation in different plant
species

Based on sequence homology, PGL1 was previously classified in

the Ili gene family consisting of seven rice genes, and named Ili6

[13]. The Ili homologs of Arabidopsis were named the PRE gene

family [13]. The members of the Ili and PRE gene families were

grouped to subfamily 16 of the 32 plant bHLH subfamilies [15].

Many members of subfamily 16, such as rice ILI1 and BU1,

Arabidopsis PRE1 and ATBS1, and tomato Style2.1, were

reported to control cell elongation and expansion in specific

organs probably through heterodimerization with other bHLH

proteins. We showed that PGL1 positively controls cell length in

lemma/palea. Ili1 and BU1 control cell elongation in rice laminar

joints [13,20]. ATBS1 (also known as PRE3 or TMO7) and PRE1

regulate cell expansion in Arabidopsis leaves through brassinos-

teroid signaling [13,14]. Style2.1 controls cell elongation in the

developing tomato style [16]. Although these atypical bHLH

proteins of subfamily 16 are involved in determining cell length,

their interaction partners belong to different subfamilies. PGL1

interacts with a typical bHLH protein, APG, belonging to

subfamily 24, while ILI1 binds to OsIBH1 which is an atypical

bHLH protein of subfamily 18 [13]. Arabidopsis PRE1 interacts

with AtIBH1, a member of subfamily 18 [13]. Interaction partners

of ATBS1 is an atypical bHLH protein, AIF1, belonging to

Figure 3. Localization of PGL1 and APG protein in plant cells.
Fluorescence signal detected using a light microscope from GFP-APG
(upper) and GFP-PGL1 (midle) and GFP protein (lower) expression under
the 35S promoter in N. benthiamina leaf epidermis cells; GFP, green
fluorescent; MERGE, merged view of the GFP and DAPI images.
(bar = 50 mm).
doi:10.1371/journal.pone.0031325.g003

Figure 4. Phenotypes of APG RNAi lines. A) RNAi lines Ri-1 and Ri-12, and Nipponbare WT. Inset indicates the laminar joint leaf of each line with
arrow heads (bar = 10 cm). B) Grain phenotype of representative transgenic T0 (bar = 1 cm). C) Quantitative PCR expression analysis of APG in lemma/
palea of T0 plants (WT = 1) normalized by OsActin. The error bar indicates 6sd over three biological repeats. D) Comparison of grain length and width
of transgenic T0 and wild type plant (error bar 6sd, n = 15). Asterisks denote a significant difference from the wild type as determined by Student’s t
tests (ns, not significant; *, p,0.05; ***,p,0.001).
doi:10.1371/journal.pone.0031325.g004
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subfamily 19 [14]. Functional analyses showed that each of the

proteins interacting with bHLH is antagonistic [13,14]. It is not

clear why the bHLH proteins of subfamily 16 have a similar

function, the elongation of cells, even though their interaction

partners belong to different bHLH subfamilies. Particularly, ILI1-

OsIBH1, PRE1-AtIBH1 and ATBS1-AIF are pairs of atypical

bHLH proteins considered incapable of DNA binding. AIF1 is

speculated to also interact with DNA binding bHLH besides

ATBS1 [14]. The subfamily 16 bHLH proteins and their

interactors would interact more than two bHLH proteins.

Figure 5. Inner epidermal cells observed by confocal microscopy. A) Lemma inner epidermal cells of NiWT and transgenic PGL1:OX (Ni9) and
APG RNAi (Ri-12) (bar = 100 mm). B) Distribution of the number of cells at various cell lengths. C) Distribution of the number of cells at various cell
widths; NiWT, Nippobare wild type cyan; T0 transgenic PGL1:OX line Ni9, red; Ni23 green; RNAi T0 line Ri-1, purple; and Ri-12, blue. Triangles represent
average values of the respective lines.
doi:10.1371/journal.pone.0031325.g005

HLH/bHLH Pairs for Grain Length and Weight in Rice
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Consistent with this, overexpression of rice PGL1 (Os03g0171300)

in Arabidopsis resulted in increased rosette leaf size [25], http://

ricefox.psc.riken.jp/, rice FOX Arabidopsis line R90261). Clari-

fication of the protein-protein interaction networks of subfamily 16

bHLH proteins and downstream genes regulated by these proteins

would show how the members of subfamily 16 control cell

elongation in different organs and species through interaction with

different classes of proteins.

We found that overexpression of PGL1 didn’t affect pistil length

even though a high level of transcript was accumulated in the

organ (Figure S1), suggesting the function of bHLH to be

dependent on different organ-specific factors. Given that APG is

expressed in both the pistil and lemma (Figure S6), the function of

APG might be strongly inhibited by an atypical bHLH other than

PGL1 in the pistil. Another possibility is that the expression of

downstream target gene(s) of APG is regulated differently between

the lemma/palea and pistil. The identification of downstream

target gene(s) of APG and other interactor(s) than PGL1 would

improve our understanding of the HLH/bHLH-based regulation

of cell elongation in different organs.

APG was grouped to subfamily 24 together with PIFs [15]. The

bHLH domain of APG is highly homologous to that of the

Arabidopsis PIF family (91% and 81% amino acid identity to PIF3

and PIF4, respectively). The bHLH domain is required for PIF4 to

interact with REPRESSOR OF GA INSENSITIVE 1–3 (RGA1), a

DELLA protein, to regulate cell elongation in Arabidopsis [22].

However, overall amino acid identity to APG is as low as 27% for

PIF3 and and 22% for PIF4. It is possible that regions of APG

other than bHLH are involved in the functional difference

between the PIF family and APG. For instance, The APB (active

phytochrome binding) motif of PIFs is necessary for binding to

Figure 6. Quantitative PCR analysis of the grain length related
genes GS3 and SRS3 in transgenic plants overexpressing PGL1
and APG RNAi T0 lines. A, B: Quantitave PCR analysis of the SRS3
gene (A) and GS3 (B) in lemma/palea in T0 transgenic plants
overexpressing PGL1 and APG RNAi normalized by OsActin. The error
bar indicates 6sd over three biological repeats. Asterisks denote a
significant difference from the wild type determined by Student’s t tests
(ns, not significant; *, p,0.05).
doi:10.1371/journal.pone.0031325.g006

Figure 7. Correlation between leaf bending, grain size and
expression of the PGL1 gene in lemma/palea. A) Grain phenotype
(upper), Leaf bending of transgenic T2 and Nippobare WT plants
(middle) and expression of PGL1 in lemma/palea analyzed by RT-PCR
(lower). B) Coleoptile length of 5 days-old seedling growth in medium
containing different concentrations of brassinolide (BL) under contin-
uous light at 28uc of Kita-ake wild type and Ki3 T4 overexpressing line,
(error bars indicated of 6sd, n = 15).
doi:10.1371/journal.pone.0031325.g007
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phytochrome B [26], while APG has a Q to A amino acid

substitution in the APB consensus sequence (Figure S6).

Brassinosteroid-related genes and grain size
BR-related genes are reported to be important in the

regulation of rice grain size [20,27–29]. For instance, overex-

pression of the BR biosynthesis related gene Zm-CYP-1 increased

grain yield by enhancing grain filling in rice [28]. Mutations of

either the BR receptor gene OsBRI1/D61, or the BR signaling

gene RGA1/D1 resulted in small grains [27,29–31]. A recent

study revealed that overexpression of the BR signaling gene BU1

also increased grain size, although most of the OX lines were

sterile [20]. We showed that a new probable BR signaling protein

PGL1 is also involved in determining grain size through

interaction with the antagonistic protein APG. Identification of

target genes regulated by APG-PGL1, and other interactor of

APG and PGL1 would uncover how the BR signaling pathway

regulates grain size in rice.

Materials and Methods

Plant materials and observation of phenotypes
Rice (Oryza sativa L.) cv Nipponbare and Kita-ake were used for

transformation as described previously [32]. Ten fertile seeds from

transgenics and wild types were chosen at random for measuring

grain length and width with vernier calipers. Thousand seeds

weight was calculated from the weights of 200 fully fertile seeds

after drying at 41uC for 1 week after harvest [28].

Gene expression analysis by qPCR
Total RNA (2 mg) extracted from lemma/palea at the pre-

anthesis stage (Methods S1) was used to synthesize first-strand

cDNA with cDNA synthsis kit (Toyobo). Quantitative PCR

(qPCR) for gene expression analysis was carried out with SYBR

Thunderbird (Toyobo) using gene specific primers. The rice actin

gene was used as a control [33]. Data were collected using an ABI

PRISM 7000 sequence detection system (Applied Biosystems) and

analyzed according to the instruction manual.

Construction of plasmids
a) chitinase::PGL1 and APG RNAi construct. The

1685 bp upstream region of a rice chitinase gene (AB012855),

hereafter refered as the chitinase promoter [17], was amplified

from Nipponbare genomic DNA by PCR, fused to the 663 bp

genomic sequence of PGL1 (Os03g0171300), and inserted into a

binary vector pPZP2H-Lac to create chitinase::PGL1 [34]

(Methods S1, Figure 1a). The first exon of APG (Os05g0139100),

262 bp, was amplified from Nipponbare lemma/palea cDNA and

subcloned into pHANNIBAL at EcoRI/KpnI and ClaI/BamHI [35]

to create a hairpin structure for RNAi. The plasmid was digested

with BamHI and subcloned into the binary vector pBI101H-Ub to

create Ubi::APG RNAi [36,37]. The binary vectors harboring

chitinase::PGL1 and Ubi::APG RNAi were introduced into

Agrobacterium tumefaciens strains EHA101 and EHA105, respectively.

b) protein expression constructs. The open reading frame

of each gene was amplified from Nipponbare lemma/palea cDNA

by gene specific primers (Table S1). The PGL1 fragment was

subcloned into pGEX-4T.1 (GE Healthcare) to generate GST-

PGL1 (Methods S1 for other candidates). The APG fragment was

fused to the coding sequence of maltose binding protein (MBP)

[38] and subcloned to pColdII (Takara).

All PCR products were sequenced before further cloning by

BigDye terminator ver. 3.1 (Applied Biosystems).

Pull down assay
The protein expression constructs were introduced into

Escherichia coli strain BL21(DE3 pLysS) (Novagen). MBP and

MBP-APG proteins were purified using amylose resin beads (New

England BioLabs). GFP-APG was transiently expressed in N.

benthiamiana leaves under the control of the 35S promoter by Agro-

infiltration. The expressed GFP-APG protein was extracted by

binding buffer (20 mM Tris-HCl, pH 7.5, 100 mM NaCl, 1 mM

EDTA, and 1 mM DTT, 0.2% 2-mercaptoethanol). Binding was

carried out as described previously [13]. MBP beads bound to

MBP-APG or MBP were incubated with GST-PGL1 in binding

buffer supplemented with 16 final concentration of protease

inhibitor complete (Roche). The mixture was rotated at 4uC for

2 hours, and the beads were washed five times with washing buffer

(20 mM Tris-HCl, pH 7.5, 300 mM NaCl, 0.05% Tween-20,

1 mM EDTA and 1 mM DTT). The proteins were eluted from

the beads by heating at 65uC for 5 min in 30 ml of 26 SDS

loading buffer (100 mM Tris-HCl pH 6.8, 4% SDS, 2% 2-

mercaptoethanol and 20% glycerol). From each sample, 10 ml was

loaded onto a 13% SDS-PAGE gel. Gel blots were reacted with

anti-GST monoclonal antibody (Novagene), anti-His monoclonal

antibody (Covance) or anti-GFP monoclonal antibody (MBL,

Japan).

Bimolecular fluorescence complementation (BiFC) and
protein localization

PGL1 and APG were amplified from Nipponbare lemma/palea

cDNA and inserted into binary pBiFC vectors (Niwa, M., Daimon,

Figure 8. A model for grain length control by PGL1 and APG in
rice. A) APG is a transcriptional activator of the cell elongation
suppressor gene in rice lemma/palea. APG forms homodimer or
heterodimer with unidentified typical bHLH (not shown). Overexpres-
sion of PGL1 abolished the function of APG and suppressed the target
gene expression allowing the cell to elongate (in the PGL1:OX line).
Silencing of APG repressed the target gene expression and resulted in
cell elongation (in the APG RNAi line). B) APG is a transcriptional
repressor of the cell elongation activator gene in rice lemma/palea. APG
forms homodimer or heterodimer with unidentified typical bHLH (not
shown). In contrast to (a), the APG target gene promotes cell elongation
and its function is repressed by APG in the wild type but activated in
PGL1:OX and APG RNAi, allowing the cells to elongate in the lemma/
palea.
doi:10.1371/journal.pone.0031325.g008
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Y., and Araki, T. unpublished). The same cDNA fragments were

cloned into the binary vector pBINPLUS [39] for expression of the

fusion proteins GFP:APG and GFP:PGL1 under the control of the

35S promoter (Methods S1). All eight possible pairwise combina-

tions of BiFC constructs, GFP-PGL1 and GFP-APG, were

transformed into A. tumefaciens COR308 [40]. A construct for

expression of the p19 protein of tomato bushy stunt virus was used

to suppress gene silencing [41]. Agrobacteria harboring BiFC

constructs and GFP constructs were co-infiltrated with the p19

construct in four-weeks-old leaves of N. benthamiana at an OD600

ratio of 0.7:0.7:1.0 and 1.0:1.0, respectively, for YFP/GFP

localization. The plants were kept for 48 hours after infiltration

under continuous light at 26uC prior to observation. Yellow

fluorescence protein (YFP) and the GFP signal were visualized by

confocal microscope (Leica Microsystems, Heerbrugg, Germany)

or Leica DMR fluorescent microscope.

Lemma inner epidermis cell measurement
Ten pre-anthesis florets were randomly selected. The inner

epidermal layers were stained using 1 M Tris-HCl pH 9.0 with

0.1 mg/L of calcofluor (fluorescent brightener 28, Sigma-AL-

DRICH) and images taken under the Leica confocal microscope

(Methods S1). A total of 250 random cells from 10 lemma images

were measured using ImageJ software (http://rsb.info.nih.gov/ij/)

for cell length and width.

Supporting Information

Figure S1 Homologs of PGL1 and overexpression of
PGL1 in rice pistil. a) Amino acid alignment of PGL1

(Os03g0171300) homologs from rice BU1 (Os06g0226500), ILI1

(Os04g0641700); Arabidopsis KDR (AT1G26945), ATBS1 or

TMO7 (AT1G74500), PRE1 (AT5G39860) and tomato Style2.1

(NM001247361) using GENETYX-MAC software. The dotted

line indicates the basic region, solid lines indicate helix and curve

line indicates a loop region. b) RT-PCR analysis of PGL1 in

Nipponbare wild type. G, genomic DNA; R, root; L,leaf; P, pistil;

L/P, lemma/palea and YP, young panicle. c) Pistil phenotypes of

T0 transgenic and wild type plants (bar = 1 mm). d) Comparison of

pistil lengths of T0 transgenic and wild type plants, (error bar 6sd,

n = 10). ns denotes no significant differences between wild type

and transgenic plants as determined by Student’s t tests. e) RT-

PCR analysis of PGL1 in pistils of T0 transgenic compared with

wild type plant. f) Pistil and grain phenotypes of Nipponbare WT

and the sterile line Ni10 (bar = 2 mm). g) Quantitative PCR

analysis of PGL1 in lemma/palea normalized by OsActin. Error bar

indicates 6sd over three biological replicates.

(PPT)

Figure S2 Overexpression of PGL1 increased grain size
in Kita-ake. a) Quantitative PCR analysis of PGL1 in lemma/

palea of Kita-ake T0 plants compared with wild type plants

(WT = 1) normalized by OsActin. Error bar indicates 6sd over

three biological repeats. b) Comparison of grain length and width

between Kita-ake transgenic T0 and T4 (Ki3(T4)) plants and the

wild type (error bar indicates 6sd, n = 10). Asterisks denote a

significant difference from the wild type as determined by

Student’s t tests (ns, not significant; *, p,0.05; ***,p,0.001). c)

Lemma inner epidermal cells of Kita-ake wild type (KiWT) and

transgenic plants overexpressing PGL1 Ki3 transgenic T4 (Ki3(T4)

(bar = 100 mm). d,e) Distribution of the number of cells by cell

length (d), and cell width (e); KiWT, Kita-ake wild type cyan color;

transgenic T0 overexpressing PGL1 line Ki3, red; Ki7 green; T4

line Ki3(T4), purple. Triangles represent average values.

(PPT)

Figure S3 Inner epidermal cells observed by confocal
microscopy. A) Palea inner epidermal cells of NiWT and

transgenic PGL1:OX (Ni9) and APG RNAi (Ri-12)

(bar = 150 mm). B) Distribution of the number of cells at various

cell lengths. C) Distribution of the number of cells at various cell

widths; NiWT, Nippobare wild type cyan; T0 transgenic

PGL1:OX line Ni9, red; Ri-12, green. Triangles represent average

values of the respective lines.

(PPT)

Figure S4 T-DNA segregation and phenotype of Ni9 T1.
a) Grain phenotype of T-DNA positive (+) and negative (2) plants

compared to wild type and Ni9 T0 plants. b) RT-PCR analysis of

PGL1 in lemma/palea of Ni9 T1 segregated plants compared to

wild type and Ni9 T0 plants.

(PPT)

Figure S5 In vitro interaction between PGL1 and other
candidates revealed by pull-down assay. a) In vitro

interaction between GST-PGL1 and MBP-Os01g (Os01g-

0286100) detected by pull-down assay. Amylose resin–bound

MBP-Os01g or MBP was incubated with an equal amount

GST-PGL1. Proteins co-precipitated with amylose resin were

detected by immunoblotting using anti-GST antibody. b) In

vitro interaction between GST-Os04g (Os04g0618600) and

MBP-PGL1. Amylose resin–bound MBP-PGL1 or MBP was

incubated with an equal amount GST-04g. Proteins co-

precipitated with amylose resin were detected by immunoblot-

ting using anti-GST antibody. c) In vitro interaction between

GST-PGL1 and Trx-Os012g (Os012g0610200). Glutathione

beads bound to GST-PGL1 or GST-GFP were incubated with

equal amounts Trx-Os12g. Proteins co-precipitated with

glutathione beads were detected by immunoblotting using

anti-His antibody.

(PPT)

Figure S6 Genomic and amino acid structure of APG
and RT-PCR analysis of APG in different tissues of
Nipponbare wild type. a) Genomic structure of the APG gene,

the underline indicates the fragment used for the RNAi construct

and bHLH protein domain. b) bHLH domain based alignment of

APG1, PIF3 and PIF4. The dotted line indicates the basic region,

solid lines indicate helix regions and curve line indicates a loop

region. Asterisks (*) indicate conserved His 9, Glu 13 and Arg 16

required for binding G-box (CACGTG). c) Alignment of the N-

terminal (1 to 50) amino acid sequence of APG, PIF3 and PIF4.

The line indicates the APB (active phytochrome binding) motif

which is required for PIF3 and PIF4 to bind to phytochrome. d)

RT-PCR analysis of APG (upper), and control OsActin (lower). L,

leaf; R, root; P, pistil; YP, young panicle (,10 cm); L/P, lemma/

palea; and g, genomic DNA.

(PPT)

Figure S7 Effect of Brassinolide on PGL1 and APG
expression. Expression of PGL1, APG and BU1 of two weeks

old shoot (without root) from Nipponbare treated with 10 mm of

BL or mock, Error bar indicates 6sd over three independent

experiments.

(PPT)

Table S1 List of primers used in this study.

(DOC)

Methods S1 Supporting Information materials and
methods.

(DOC)
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