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Abstract

Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial
communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with
inflammatory lung disease, yet the pro-inflammatory properties of individual bacterial species are unknown. In this study,
we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway
commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic
Haemophillus spp. and Moraxella spp.), healthy lungs (commensal Prevotella spp.) or both (commensal Veillonella spp. and
Actinomyces spp.). All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40
and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria provoked a 3-5 fold higher
production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine
production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella
spp. vs. Prevotella spp. and Veillonella spp. vs. Actinomyces spp.) reflecting their pro-inflammatory effects on DCs. Co-culture
experiments found that Prevotella spp. were able to reduce Haemophillus influenzae-induced IL-12p70 in DCs, whereas no
effect was observed on IL-23 and IL-10 production. This study demonstrates intrinsic differences in DC stimulating
properties of bacteria associated with the airway microbiota.
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Introduction

The human body is host to an immense variety of bacterial
species living in microbial communities (microbiotas) which may
continuously change dependent on acquisition of bacteria
encountered in the environment and clearance mediated by the
immune system. It is becoming increasingly apparent that the
colonizing bacteria are not merely invasive health treats giving rise
to infections, but are symbiotes contributing to normal bodily
functions through common mutualism [1]. Advances in high-
throughput molecular biology have allowed in-depth character-
ization of microbiotas by abolishing the traditional laborious
methods of bacteria identification by cultivation [2]. Instead,
bacteria within microbial communities can be identified and
quantified highly specific based on genetic composition. Due to the
predictable importance of bacteria in the intestine, several studies
have focused on characterizing the gut microbiota and addressing
changes associated with disease, including autoimmune disease,
allergy and obesity. Yet recent focus has turned to the less
bacteria-laden mucosal surfaces of the airways, genitals, and skin,
and diseases associated with these particular organs [3].

Healthy non-infected airways have historically been considered
sterile due to the absence of identifiable bacteria using traditional
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methods of cultivation in most patients without clinically active
bacterial pneumonia [4-6]. However, recent studies using
molecular genetics have characterized the healthy human airway
microbiota and identified colonization by several commensal and
pathogenic bacteria of different phyla [7-10]. The microbiota of
healthy airways was reported to consist predominantly of
commensal bacteria from the bacteriodetes, firmicutes, proteo-
bacteria and actinobacteria phyla [8-10]. Importantly, the airway
microbiota was found to be significantly different from the gut
microbiota indicating that microbial communities in the airways
consist of bacteria adapted to live in conjunction with the
conditions present in this organ [9]. When compared to healthy
individuals, airways of asthmatics and COPD patients were
recently reported to exhibit disordered microbial airway compo-
sition [7,9-11]. Studies indicated that asthmatics and COPD
patients were more commonly colonized with pathogenic
proteobacteria (Haemophilus spp. and Moraxella spp.), whereas
healthy individuals are more commonly colonized with commen-
sal bacteriodetes (Prevotella spp.) [10]. Asthma and COPD are
diseases giving rise to airway inflammation, and since airway
bacteria are likely to interact with the immune system, it is of
interest to study the immune stimulating properties of airway-
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colonizing bacteria to increase our general insight into bacteria-
induced immunity. Furthermore, comparing properties between
commensal and pathogenic strains of the airway microbiota may
contribute to our understanding of disordered microbial commu-
nities observed in airway disease.

Dendritic cells are professional antigen presenting cells that play
a central role in bridging innate and adaptive immunity by
mstructing the development of antigen-specific T' cell responses
[12]. In the present study we used a well-established model of
human monocyte-derived dendritic cells [13,14] to examine the
immune stimulating properties of three pathogenic and six
commensal bacteria associated with the airway microbiota. The
studied airway bacteria could be segregated into three distinct
groups based on the profile of cytokines produced by DCs. We
propose that the distinct innate DC responses elicited by airway
bacteria may be similar to those reported for commensal and
pathogenic bacteria of the gastro-intestinal tract. Thus, commensal
bacteria of the airways may in a similar manner play a role in
maintaining immune homeostasis and controlling overt airway
inflammation.

Results

We selected three pathogenic and six commensal strains
associated with healthy and diseased airway microbiotas (Table 1)
for a comparative analysis. The pathogenic proteobacteria
associated with asthma and COPD were Haemophilus influenza
and Moraxella spp. (subspecies unknown) [10]. We included
Haemophilus influenza B (H. inf. B) and non-typeable Haemophilus
influenza (H. inf. N'T) as both are common airway pathogens giving
rise to infections, but structurally different as non-typeable
Haemophilus  influenza has no capsule and is predominantly
assoclated with the respiratory tract [15,16]. Moraxella catarrhalis
(M. cat.) was included as the most common pathogenic Moraxella
strain [17]. The commensal bacteroidetes Prevotella melaninogenica
(P. mel.), Prevotella nanceiensis (P. nan.) and Prevotella salivae (P. sal.)
were studied as representatives of bacteria associated with healthy
airways [10]. The firmicutes Veillonella dispar (V. disp.) was enrolled
as it is the most predominant airway commensal present in both
healthy and diseased airways [10]. Lastly, commensal Actinomyces
graevenitzit (A. grae.) and Actinomyces oris (A. oris.) were included as
less common members of the actinobacteria phylum associated
with both healthy and diseased airways [10]. All the bacteria
designated as commensal are rarely reported to cause infectious
disease compared to the common pathogenic bacteria and are
here thus considered as commensals.

Various airway bacteria induce similar dendritic cell
maturation

Dendritic cells patrol peripheral tissues sampling the environ-
ment to sense invading microorganisms by recognizing microbial-
associated molecular patterns or danger signals derived from
tissues. Upon encounter with immunogenic components DCs
acquire a mature phenotype enabling migration to nearby lymph
nodes, crosstalk with T cells, and initiation of adaptive immune
responses [12,14]. CD83 is a well established differentiation
marker used as a general indicator of DC maturation/activation
vitro [18,19]. Furthermore, mature DCs upregulate the co-
stimulatory markers CD40 and CD86 of importance for initiation
and propagation of T cell activation via DC/T cell crosstalk. Here
we used the CD83, CD40 and CD86 markers to address the
presence of immune activating entities in both pathogenic and
commensal bacteria. It was found, that all analyzed bacteria
induced expression of these markers (figure 1) when compared to

@ PLoS ONE | www.plosone.org

Dendritic Cell Responses to Airway Bacteria

immature DC (medium). Lipopolysaccharide (LPS) recognized to
promote DC maturation via TLR4 served as a positive control.
The level of CD83, CD40 and CD86 expression between each
bacterium were comparable suggesting that the bacteria had
similar capability to induce DC maturation.

Differential cytokine production by airway bacteria in
dendritic cells

Mature dendritic cells produce cytokines that mediate inflam-
mation and instruct development of antigen-specific helper T cells.
IL-12p70 and IL-23 cytokines play a central role in mediating
development or proliferation of Thl and Thl7 cells, respectively.
Furthermore, these cytokines drive inflammation by stimulating
production of the pro-inflammatory cytokines IFNvy (Thl) and IL-
17 (Th17) by T cells leading to recruitment and activation of pro-
inflammatory immune cells [20,21]. On the contrary, IL-10
exhibit anti-inflammatory properties by inhibiting production of
pro-inflammatory cytokines by various immune cells, including T
cells, macrophages and epithelial cells [22]. In order to investigate
the potential pro-inflammatory and anti-inflammatory properties
of the pathogenic and commensal airway-associated bacteria, we
analyzed the production of IL-23, IL-12p70 and IL-10 by the
stimulated DCs. For each bacterium, we found that the average
level of IL-23 and IL-10 cytokine production by DCs was
generally 2-3 fold higher than the level of IL-12p70 (Table 2).

Due to donor-specific variation, DC cytokine production was
normalized to the average response of the three pathogenic
bacteria, as these consistently induced similar and the highest
cytokine production levels within each donor. Figure 2 show
normalized cytokine production by DCs in response to the
pathogenic and commensal bacteria. It was found that bacteria
within the same family (Haemophilus spp., Prevotella spp. and
Actinomyces spp.) and the corresponding phyla (proteobacteria,
bacteriodetes, actinobacteria) induced similar levels of I1L-23, IL-
12p70 and IL-10. In general, pathogenic proteobacteria produced
3-5 fold higher levels of IL-23, IL-12p70 and IL-10 compared to
the commensal bacteria. Lowest were the production of IL-23 and
IL-12p70 by Actinomyces spp., which induced levels comparable to
that of immature DCs.

Segregation of airway bacteria into functional subgroups
based on their inflammatory properties

By use of a principal component analysis (PCA), it was possible
to separate the bacteria species into three functionally distinct
groups based on the levels of 1L.-23, IL-12p70 and IL-10 induced
in DCs (figure 3). The PC1 and PC2 of the PCA score plot shown
in figure 3 were found to describe more than 95% of the variance
between the bacteria-induced DC responses. As indicated by the
loading plot, the differences in levels of all cytokines (IL-23, IL-
12p70 and IL-10) were the main factor responsible for
discriminating the bacteria along PCl. The PCA analysis
indicated that the bacteria could be divided into three groups:
Highly stimulatory bacteria (Group I; Haemophilus spp. and
Moraxella spp.), intermediately stimulatory bacteria (Group II;
Prevotella spp. and Veillonella spp.), and weakly stimulatory bacteria
(Group III; Actinomyces spp.). Using multivariate ANOVA it was
found that the cytokine production profile were statistically
significantly different between the identified groups (Group I vs.
Group II: p<5.8 * 107" Group I vs. Group III: p<2.5* 107%,;
Group II vs. Group III: p<0.00034). These results imply that it is
possible to classify bacteria of the airway microbiota into distinct
groups based on their functional immune profiles in DC that
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reflect properties of being associated with asthma and COPD, or
healthy lungs.

Prevotella strains reduce Haemophilus-induced IL-12p70
production by DC

When present in tissues, bacteria with distinct functional
characteristics are likely to interact simultaneously with the
immune system affecting the overall response. This has been
studied and demonstrated in relation to gut bacteria that
modulated immune responses to other bacteria or MAMPs [23].
Yet it remains unknown if bacterial species associated with the
airway microbiota demonstrate similar properties. Since Haemoph-
ilus influenzae is the pathogen most strongly associated with asthma
and COPD [10], we analyzed the ability of three different Prevotella
strains to modulate Haemophilus-induced IL-23, I1-12p70 and IL-
10 production in DGCs. It was found, that all studied Prevotella
strains could partially reduce Haemophilus-induced IL-12p70
production by DCs, whereas no statistically significant effect on
IL-23 and IL-10 production was apparent (figure 4). This indicates
that commensal bacteria of the airways, similarly to the gut, may
exhibit properties that enable modulation of the immune responses
to specific pathogenic bacteria.

Discussion

The commensal microbiota of the gastro-intestinal tract has
demonstrated importance for metabolism, maturation of the
immune system and protection from invasive microorganisms
[24]. Furthermore, studies indicate that changes in the gut
microbial composition are associated with inflammatory bowel
disease [25,26], with a protective role of specific commensal
bacteria [27,28]. Only recently has the existence of a commensal
microbiota in the lower airways been appreciated and character-
ized [8-10]. The potential physiological role of these commensal
airway bacteria remains to be established. To date, no studies have
been reported addressing or comparing the immunological
properties of the airway-associated commensal bacteria included
in this study. Some studies have focused on the immunological
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Table 1. Phyla and features of the bacterial strains analyzed.

Bacterial strain Phylum Gram Feature Ref.

Haemophilus influenzae B Proteobacteria Neg Pathogenic bacteria found in the airway microbiota of asthma and [10,59]
COPD patients. Associated with development of asthma in children.

Haemophilus influenzae NT* Proteobacteria Neg Pathogenic bacteria present in the airway microbiota of asthma and [10,59]
COPD patients. Associated with development of asthma in children.

Moraxella catarrhalis Proteobacteria Neg Pathogenic bacteria found in the airway microbiota of asthma and [10,59]
COPD patients. Associated with development of asthma in children.

Prevotella melaninogenica Bacteroidetes Neg Commensal bacteria associated with the airway microbiota of healthy [10]
individuals.

Prevotella nanceiensis Bacteroidetes Neg Commensal bacteria associated with the airway microbiota of healthy [10]
individuals.

Prevotella salivae Bacteroidetes Neg Commensal bacteria associated with the airway microbiota of healthy [10]
individuals.

Veillonella dispar Firmicutes Neg The most predominant commensal bacteria associated with the airway [10]
microbiota.

Actinomyces graevenitzii Actinobacteria Pos Less predominant commensal bacteria associated with the airway [10]
microbiota.

Actinomyces oris Actinobacteria Pos Less predominant commensal bacteria associated with the airway [10]
microbiota.

*NT: Non-typeable.

doi:10.1371/journal.pone.0031976.t001

mechanisms elicited by epithelial cells, macrophages and T cells in
response to the pathogenic bacteria Haemophillus influenzae or
Moraxella catarrhalis [29-34]. However, the response by DCs to
these central respiratory pathogens remains to be clarified.

We found that all airway pathogenic and commensal bacteria
included in our study induced similar maturation of DCs. This
demonstrates that all the bacteria exhibit innate activating
properties that may enable bacteria-exposed DCs to prime T cell
responses. On the contrary to DC maturation, the bacteria
induced varied levels of the T cell-polarizing cytokines I1.-23, IL-
12p70 and IL-10. This indicates that the bacteria may elicit
different immunological processes i vivo due to the development of
distinct helper T cell responses. The bacteria-specific differences in
DC cytokine profiles are likely a result of the strain-specific
composition of microbial-associated molecular patterns (MAMPs)
that stimulate several innate receptors, including toll-like receptors
(TLRs), NOD-like receptors (NLRs) and C-type lectin receptors
(CLRs). Most strikingly is the absence of IL-23 and IL-12p70 in
DCs stimulated with the commensal Gram-positive Actinomyces spp.
when compared to the remaining airway bacteria that are all
Gram-negative in origin. This difference is most likely based on
the fact that cell membranes of Gram-positive bacteria lack LPS,
contrarily to those of Gram-negative bacteria. LPS, especially in
the presence of other MAMPs, is an effective inducer of IL-12p70
production in DCs via TLR4 [35]. Indeed, Gram-negative
bacteria in general have been shown to induce more potent
innate immune responses as compared to Gram-positive bacteria
in a TLR4-dependent manner [36].

Within the group of Gram-negative bacteria (Haemophilus spp.,
Moraxella spp., Prevotella spp. and Vellonella spp.), we observed
significantly higher levels of IL-23, IL-12 and IL-10 from DCs in
response to the pathogenic bacteria species, Haemophilus spp. and
Moraxella spp. The reason for the differences in DC cytokine-
inducing properties amongst the Gram-negative airway bacteria
could be the structure of LPS, which have been reported to vary
amongst Gram-negative bacteria [37]. Particularly the structure of
lipid A within LPS seems predominantly important for the
biological activity. Notably, the classical LPS of E. coli is composed
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Figure 1. Maturation of dendritic cells stimulated with pathogenic and commensal airway bacteria. CD83, CD40 and CD86 expression
by DCs in response to 24 h stimulation with medium, LPS, Haemophilus influenzae B (H. inf. B), non-typeable Haemophilus influenzae (H. inf. NT),
Moraxella catarrhalis (M. cat.), Prevotella melaninogenica (P. mel.), Prevotella nanceiensis (P. nan.), Prevotella salivae (P. sal.), Veillonella dispar (V. disp.),
Actinomyces graevenitzii (A. grae.) or Actinomyces oris (A. oris.). DCs were gated on viable cells. The geometric mean fluorescence intensity of the
indicated marker is given on each chart. Data represents the response from one donor out of two.

doi:10.1371/journal.pone.0031976.g001

of hexa-acylated lipid A and seems to be the most biologically
potent LPS structure [38]. However, some Gram-negative
bacteria are reported to contain less potent atypical LPS composed
of lipid A with shorter or fewer acyl chains [39-41]. LPS derived
from Haemophillus wnfluenzae and Moraxella catarrhalis has been
reported to contain hexa- and hepta-acylated lipid A, respectively
[42,43]. No studies have been reported on LPS of the Prevotella or
Veillonella species included in our study; yet LPS from other species
within these genera have been analyzed. LPS of the oral
commensal Prevotella intermedia contain penta-acylated lipid A and
demonstrate about 10-fold reduced potency compared to LPS
from E. coli [44]. Similarly, approximately 10-fold reduced
potency in LPS has been reported from the gut commensal
Veillonella parvula suggesting the absence of an optimal number of
acyl chains in lipid A for propagation of a strong pro-inflammatory
signal [45]. Combined these studies indicate, that the difference
observed in this study between Gram-negative pathogenic and
commensal bacteria of the airways may be due to varying
potencies within their LPS components. However it should be
noticed, that the pathogenic and commensal bacteria in this study
are of different genera and other MAMPs within the bacteria
could play a role in DC modulation via simultaneous engaging of
receptors with pro- or anti-inflammatory activity.

In this study, we used monocyte-derived DCs to examine the
bacteria-DC interaction as the quantity of DCs available per
donor allowed us to screen for effects of several airway bacteria
within the same donor. It should be emphasized that DCs of the
airways, the cellular subset that will interact with airway microbes
under in situ conditions, might respond differently than monocyte-
derived DCs to the microbes. However, as DCs of the conducting
airways and monocyte-derived DCs propagate from the common
myeloid progenitor [46], it is likely that they share common
response patterns. Airway DCs are known to sample environmen-
tal antigens in the airway lumen, and will likely be exposed to the
collective bacterial ecosystem of the airway tract. It is therefore
also possible that airway commensal bacteria may affect the

overall DC response to potentially pathogenic bacteria. For this
reason we studied how commensal Prevotella spp. affected the DC
response to non-typeable Haemophillus influenza associated with
asthma and COPD. We found that all Prevotella spp. reduced
Haemophillus influenza-induced IL-12p70 production in DCs by
approximate 50%, but had no effect on IL-23 and IL-10 levels.
The explanation for this effect may relate to the structural
differences in LPS between these species. Structurally atypical
tetra- or penta-acylated LPS have been show to inhibit the more
potent inflammatory response mediated by the classical hexa-
acylated LPS via a process involving competition for MD2-binding
[47-49]. While classical hexa-acylated LPS-MD2 dimerization
results in TLR4-activation, the atypical LPS structures are
suggested to affect TLR4-signaling by sequestering MD2 mole-
cules. Consequently, the deficit in MD2 molecules needed for
binding to classical LPS to initiate TLR4-signalling will result in
reduced TLR4-activation, and thus lowered IL-12p70 levels.
Studies in DCs indicate that TLR4 signaling by LPS favors IL-
12p70 production by inducing the expression of IL-12p35 [50],
whereas TLR2 ligands typically are poor IL-12p70 inducers.
Rather, stimulation with TLR2 ligands in combination with NLR
or dectin-1 ligands leads to IL-23 production in DCs by the
preferential expression of IL-23p19 [51]. Combined, our present
results suggest that the LPS of Prevotella spp., or other components
present within this bacteria spp., inhibit the ability of Haemophillus
wnfluenza LPS to elicit complete TLR4 signaling hence leading to
the reduction in IL-12p70 production by DCs. Yet, the presence of
several TLR2 and NLR ligands within the complex bacteria may
well allow for full level expression of IL-23. The biological
relevance of IL-12p70 modulation in DCs by commensal bacteria
remains elusive. However, it can be speculated that a change in
the IL-23/1L-12 balance will translate into a predominant type-17
mediated responses by the DCs as IL-23 is the key mediator of
proliferation and cytokine production by Th17 cells [52]. The
modulation could enhance Th17 cell mediated immunity, which

Table 2. Average cytokine production by DCs among all donors in response to bacteria or control stimuli.

Bacterial strain Phylum IL-23 (pg/ml) IL-12p70 (pg/ml) IL-10 (pg/ml)
Control n/a 262 73 144
LPS n/a 1829 1090 5500
Haemophilus influenzae B Proteobacteria 11450 4424 12452
Haemophilus influenzae NT* Proteobacteria 14108 5710 14797
Moraxella catarrhalis Proteobacteria 13256 5507 14176
Prevotella melaninogenica Bacteroidetes 2862 2684 6436
Prevotella nanceiensis Bacteroidetes 2976 1751 7378
Prevotella salivae Bacteroidetes 5267 2011 9869
Veillonella dispar Firmicutes 5331 2450 5167
Actinomyces graevenitzii Actinobacteria 156 81 1849
Actinomyces oris Actinobacteria 147 36 1649
*NT: Non-typeable.
doi:10.1371/journal.pone.0031976.t002
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Figure 2. Cytokine production by dendritic cells stimulated with pathogenic and commensal airway bacteria. IL-23, IL-12p70 and IL-10
cytokine production measured in DC culture supernatants following 24 h stimulation with medium, LPS, Haemophilus influenzae B (H. inf. B), non-
typeable Haemophilus influenzae (H. inf. NT), Moraxella catarrhalis (M. cat.), Prevotella melaninogenica (P. mel.), Prevotella nanceiensis (P. nan.),
Prevotella salivae (P. sal.), Veillonella dispar (V. disp.), Actinomyces graevenitzii (A. grae.) or Actinomyces oris (A. oris.). Labels within each group
represent different donors (n =3-9). Cytokine production measurements were normalized to account for donor-specific variation. *p<<0.05, **p<<0.01,

***p<0.001.
doi:10.1371/journal.pone.0031976.g002

has been show to play a central role in clearance of pathogenic
airway bacteria [53,54].

The present study was primarily initiated due to the observation
that commensal Prevotella spp. were absent, whereas pathogenic
Haemophillus spp. and Moraxella spp. colonized the airways of
asthmatics and COPD patients [10]. This finding suggests a
divergent role of airway bacteria in chronic inflammatory airway
diseases with a protective or modulator role in disease develop-
ment. The association between pathogenic proteobacteria airway
bacteria and COPD has been investigated for several decades
giving rise to some controversy [35]. Yet, it is now established that
pathogenic airway bacteria are associated with acute disease
exacerbations, which leads to significant morbidity and mortality
within this patient group [56,57]. Pathogenic proteobacteria has

more recently been associated with asthma in case-control studies
[10], during exacerbation attacks [58], and reported as a risk
factor for asthma development in children [59]. Interestingly,
COPD, asthma exacerbations and some asthma phenotypes are
associated with neutrophilic airway inflammation [60,61,56].
Th17 cells producing IL-17 are central mediators of neutrophil
recruitment and activation in tissues, and shown to play a role in
clearance of Gram-negative extracellular pulmonary pathogens
[21]. This inflammatory pathway are primed and driven by 11.-23
production by dendritic cells. In this study we found that
pathogenic airway bacteria were potent inducers of 1L.-23 and
IL-12p70 in DCs suggesting the development of bacteria-specific
Th17 and Thl cells i vivo. Studies in humans have demonstrated
the development of a Thl response to non-typeable Haemophillus
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Figure 3. Principal component analysis of dendritic cell cytokine profiles in response to pathogenic and commensal airway
bacteria. Principal component analysis reveals clustering of DC responses to airway bacteria. Three significantly different groups are distinguished
by the production of IL-23, IL-12p70 and IL-10 cytokines. I: Pathogenic Gram-negative Haemophilus influenzae B (H. inf. B), non-typeable Haemophilus
influenzae (H. inf. NT) and Moraxella catarrhalis (M. cat.); Il Commensal Gram-negative Prevotella melaninogenica (P. mel.), Prevotella nanceiensis (P.
nan.), Prevotella salivae (P. sal.) and Veillonella dispar (V. disp.); lll: Commensal Gram-positive Actinomyces graevenitzii (A. grae.) and Actinomyces oris (A.
oris.). Responses to each bacterium were based on 3-6 different donors. Shaded areas represent the 67% confidence area within the three bacteria
groups.

doi:10.1371/journal.pone.0031976.g003
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Haemophilus-induced cytokine production was calculated relative to Haemophilus stimulation alone for each donor. The numbers identify individual

donors (n=3-5). *p<<0.05, **p<<0.01.
doi:10.1371/journal.pone.0031976.g004

influenzae [33], but the involvement of Th17 cells i vivo remains to
be investigated. Yet some studies have reported neutrophilic
airway inflammation, that share features with COPD and
asthmatic inflammation, after airway installation of non-typeable
Haemophillus influenzae in mice [62,63]. This suggests the nvolve-
ment of Thl7 mediated inflammation in the response to
pathogenic airway bacteria. It remains an enigma why pathogenic
airway bacteria would induce potent inflammation that may drive
their own clearance. However it could be speculated, that the
potent inflammatory properties of pathogenic bacteria in combi-
nation with chronic colonization would translate into low-grade
inflammation in tissues contributing to disease progression in both

COPD and asthma.

Materials and Methods

Bacteria growth and preparation

Haemophilus influenzae B (KAKDS10), Haemophilus influenzae N'T
(KAK509) and Moraxella catarrhalis F48 (KAK508) reference stains
were kindly provided by Karen Krogfelt and Jorgen Skov Jensen,
Statens Serum Institut, Copenhagen, Denmark. Prevotella melanino-
genica (DSM7089), Prevotella nanceiensis (DSM19126), Prevotella salivae
(DSM15606), Veillonella dispar (DSM20735), Actinomyces graevenitzii
(DSM15540), Actinomyces oris (DSM23056) were obtained from
Deutsche Sammlung von Mikroorganismen und Zellkulturen
(DSMZ), Braunschweig, Germany. Haemophilus and Moraxella
strains were grown on chocolate agar plates (Statens Serum
Institut) under 37°C microaerobic (5% COy) conditions. Prevotella
strains were grown on anaerobic agar plates (Statens Serum
Institut) under 30°C anaerobic conditions. Veillonella dispar was
grown on anaerobic agar plates under 37°C anaerobic conditions.
Actinomyces strains were grown on chocolate agar plates under 30°C
aerobic conditions. All strains were resuspended from plates with
uniform growth and washed once in PBS. Bacteria were
resuspended in PBS to OD 1 and UV-irradiated for 45 minutes.
UV killing were confirmed by plating. Dry weights of bacteria
suspensions in PBS were determined on 3x1 ml portions after
freeze-drying (subtracted by weight of PBS). Bacterial suspensions
were frozen and stored at —80°C.
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Dendritic cell preparation

Bufty coats prepared freshly from healthy anonymous blood
donors were kindly provided by Rigshospitalet’s Blood Bank,
Copenhagen, Denmark. A total of 10 donors were used and they
were picked randomly among eligible adult blood donors by blood
bank staff. Experiments were performed at different days using one
donor per day. Bufty coats were diluted 3-fold in complete RPMI
1640 medium (Lonza, Basel, Switzerland) supplemented with
2 mM L-glutamine (Cambrex, East Rutherford, NJ) and 100 U/
ml penicillin/streptomycin (Lonza). PBMCs were isolated from
diluted buffy coats by density centrifugation on Ficoll-Paque
(Amersham Biosciences, Uppsala, Sweden). Monocytes were
isolated from PBMCs using a CD14+ magnetic cell sorting kit
(MACS; Miltenyi Biotec, Bergisch Gladbach, Germany) according
to manufacturer’s recommendations. Monocytes were differenti-
ated into dendritic cells by plating 6%10° cells/well (48-well plates)
i 500 pl completed RPMI 1640 medium containing 10% FCS
(Lonza), 30 ng/ml rhIL-4 and 20 ng/ml rhGM-CSF (both
cytokines from Cellgenix, Freiburg, Germany) at day 0. Cytokines
were refreshed on day 3, and fully differentiated dendritic cells
were used at day 6. Differentiation of CD14" monocytes into
CD147CDla" DCs was confirmed in our assay using flow
cytometry.

Dendritic cell stimulation and analysis

Dendritic cells were stimulated by replacing medium with
complete RPMI 1640 medium containing stimuli supplemented
with 50 pg/ml gentamycin (Sigma-Aldrich, Copenhagen, Den-
mark) to ensure no bacterial outgrowth. In preliminary experi-
ments, the gentamycin at 50 ug/ml was found not to affect LPS-
induced activation of DGCs. All stimulations were done in
triplicates, and a concentration of 50 pg/ml was used for all
bacterial stimulations. In experiments with mixtures of two
bacteria the concentration of each bacteria was 50 pg/ml. LPS
(100 ng/ml) and medium alone were included to serve as a
positive and negative control, respectively.

24 h after stimulation at 37°C, 5% COg, DC supernatants were
collected and stored at —20°C until analyses. Cytokines were
measured in supernatants using commercial ELISA kits (IL-23;
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eBioscience, San Diego, CA; IL-12p70 and IL-10; R&D Systems,
Minneapolis, MN) according to manufacturer’s recommendations.
In some experiments, DC surface expression of CD83, CD40 and
CD86 were measured by flow cytometry. Briefly, 2%10° cells were
stained with fluorescein isothiocyanate-conjugated anti-hCD83,
anti-hCD40 or anti-hCD86 (all from BD Pharmingen, San Jose,
CA) in PBS containing 1% FCS and 0.1% sodium azide for
30 minutes at 4°C. Cells were analyzed on a BD FACSCanto™
II' system running FACSdiva 6.0 software (BD Biosciences, San
Jose, CA) followed by data analysis in FCS Express v4 (De Novo,
Los Angeles, CA).

Data analysis and statistics

Univariate statistical analysis was performed using GraphPad
PRISM 5.01 (GraphPad Software, La Jolla, CA). Differences in
normalized cytokine production were analyzed by one-way
ANOVA with Tukey’s multiple comparison test. Prevotella strains
effect on Haemophilus-induced cytokine production in DCs were
analyzed using Student’s one sample t-test. Principal component
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analysis and multivariate ANOVA (MANOVA) analysis used to
compare groups of bacteria were performed using the R software
package (Foundation for Statistical Computing, Vienna, Austria).
The PCA was performed with the prcomp function that uses
Singular Value Decomposition on the covariance matrix for the
PCA  computations. P-values below 0.05 were considered
statistically significant.
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