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Abstract

Tuberculosis (TB) remains a major worldwide health problem. The only vaccine against TB, Mycobacterium bovis Bacille
Calmette-Guerin (BCG), has demonstrated relatively low efficacy and does not provide satisfactory protection against the
disease. More efficient vaccines and improved therapies are urgently needed to decrease the worldwide spread and burden
of TB, and use of a viable, metabolizing mycobacteria vaccine may be a promising strategy against the disease. Here, we
constructed a recombinant Mycobacterium smegmatis (rMS) strain expressing a fusion protein of heparin-binding
hemagglutinin (HBHA) and human interleukin 12 (hIL-12). Immune responses induced by the rMS in mice and protection
against Mycobacterium tuberculosis (MTB) were investigated. Administration of this novel rMS enhanced Th1-type cellular
responses (IFN-c and IL-2) in mice and reduced bacterial burden in lungs as well as that achieved by BCG vaccination.
Meanwhile, the bacteria load in M. tuberculosis infected mice treated with the rMS vaccine also was significantly reduced. In
conclusion, the rMS strain expressing the HBHA and human IL-12 fusion protein enhanced immunogencity by improving
the Th1-type response against TB, and the protective effect was equivalent to that of the conventional BCG vaccine in mice.
Furthermore, it could decrease bacterial load and alleviate histopathological damage in lungs of M. tuberculosis infected
mice.
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Introduction

Mycobacterium bovis Bacille Calmette-Guerin (BCG), a live, attenu-

ated mycobacterial strain first used in humans in 1921 is still

currently the only vaccine available against tuberculosis (TB) [1],

but its protection is extremely variable. While effective against the

severe forms of the disease in children, BCG displays limited

effects on adult pulmonary TB and transmission of the causative

agent, Mycobacterium tuberculosis (MTB) [2]. Hence, improved

vaccines against TB are desperately needed. Mycobacterium

smegmatis is a rapidly growing saprophyte, able to propagate one

generation every 1–3 h. It is non-pathogenic and commensal in

humans and can act as a powerful cellular immune adjuvant [3,4].

M. smegmatis also has a number of properties that renders it an

effective vaccine vector. This fast-growing Mycobacterium is unable

to arrest phagolysosome maturation and cannot evade intracellu-

lar killing [4,5,6]. Moreover, its rapid clearance by the host differs

from that of M. tuberculosis or even the vaccine strain BCG [7]. M.

smegmatis can activate dendritic cells and induce CD8-mediated

immune responses, and immunization with recombinant M.

smegmatis has been shown to generate more durable memory T

cells as compared to intramuscular DNA vaccination [8,9,10].

These observations encourage further development of mycobac-

teria as efficient recombinant vaccine delivery vectors.

Aside from having an efficient delivery vector, the choice of an

immunogenic target antigen is also important for developing a

successful vaccine. The heparin-binding hemagglutinin (HBHA) is

a mycobacterial cell surface protein that mediates adhesion to

epithelial cells and that has been implicated in the dissemination of

M. tuberculosis from the site of primary infection [11]. The

lymphocytes from healthy human individuals infected with M.

tuberculosis produce high levels of HBHA-specific interferon-c (IFN-

c). Protective immunity induced by methylated HBHA is

comparable to that afforded by vaccination with BCG, and

DNA vaccination with the HBHA gene has resulted in both

HBHA-specific antibodies and IFN-c production [12,13]. Re-

combinant HBHA which has no methylation produced in

Escherichia coli is not immunogenic. Methylation of HBHA is

required for the full immunological properties of the protein [14].

It has been proved that HBHA produced in recombinant M.

smegmatis (rMS) can express the immunogenic methylated form of

HBHA [15].

Mycobacterial infections lead to the activation of innate

immunity, followed by the induction of the Th1 T cell subset,
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which is thought to be influenced by IL-12 in an antigen-specific

fashion [16]. IL-12 is a novel potential cytokine immunotherapy

for the treatment of Mycobacterium tuberculosis infection. It has been

proved IL-12 cound stimulate lymphocytes to produce Th1

cytokines and enhance both innate and cellular immunity in many

ways against intracellular pathogens [17]. Okada M [18] reported

that DNA vaccine expressing mycobacterial heat shock protein 65

and IL-12 exerted strong therapeutic efficacy (100% survival and

augmentation of immune responses) in the TB-infected monkeys.

In order to further enhance the immunogenicity of HBHA and

hIL-12 against M. tuberculosis infection, we generate a multivalent,

vectored vaccine candidate utilizing the M. smegmatis strain to

tandemly express HBHA and hIL-12. Subcutaneous immuniza-

tion of this recombinant M. smegmatis vaccine (rMS) is performed

to evaluate its efficacy and protective immune responses against M.

tuberculosis in mice. Furthermore, the mouse infection with M.

tuberculosis is also used to evaluate the therapeutic efficacy of the

rMS.

Results

Expression of HBHA-hIL12 fusion protein by rMS
In order to create a recombinant M. smegmatis strain to express a

fusion protein of HBHA and hIL12, the expression vector was first

constructed by cloning the HBHA and hIL12 genes as described

in Methods (Fig. 1). Sequence of all the resulting PCR products

(not shown) were similar to that reported in GeneBank. The

HBHA-hIL12 expression cassette including an encoded flexible

linker was then cloned into pSMT3 by utilizing the BamH I and

Hind III restriction endonucleases. The positive rMS stains were

screened on 7H10 agar plates containing OADC and hygromycin,

and confirmed by PCR (not shown). The HBHA-hIL12 fusion

protein expressed in rMS was detected by staining with antibodies

against HBHA and hIL12 separately. Due to the high fluorescence

signals, rMS could easily be detected under a standard

fluorescence microscope (Fig. 2). Western blot analysis of the

recombinant M. smegmatis revealed an expression band at a size of

approximately 86 kDa (Fig. 3), which matched the combined

molecular weights of HBHA (28 kDa) and hIL-12 (58 kDa). These

results confirmed that the HBHA-hIL12 fusion protein was

efficiently expressed in rMS.

Growth rates of M. smegmatis and rMS
The growth patterns of M. smegmatis and rMS were determined

over the course of 107 h of culture. OD values of M. smegmatis and

rMS were observed a similarly consistent trend, entered the

plateau phase at the same time (Fig. 4). M. smegmatis and rMS

strains showed no significant differences in proliferation charac-

teristics..

IFN-c ELISPOT responses to TB antigens in splenocytes of
immunized mice

Mice were inoculated twice at 2 weeks apart with M. smegmatis,

rMS, BCG or saline as described in Methods (Fig. 5A). Two weeks

after the final vaccination, the frequency of antigen-specific IFN-c
cells in the splenocytes of each group was assessed by mouse

ELISPOT assays. Significantly increased frequencies of IFN-c
secreting cells were observed in splenocytes of groups vaccinated

with rMS or BCG compared to the saline group. By contrast, no

significant difference was found between the saline group and the

M. smegmatis group (Fig. 6).

Serum cytokine responses to immunization
In examining the serum cytokine profile elicited by rMS, M.

smegmatis and BCG, we observed increases in serum IFN-c and IL-

2 at 2 weeks following the second immunization compared to the

saline group. Meanwhile, significantly diminished levels of IFN-c

Figure 1. Basic gap-repair cloning procedure. The HBHA gene was PCR cloned from M. tuberculosis genomic DNA using the primer pair: p1 and
p2. hIL12 P40 was cloned from the cDNA using the primer pair: p3 and p4. The 542 base pair upstream sequence of hIL12 P35 was amplified with
primers p5 and p6, and the 220 base pair downstream sequence of hIL12 P35 was extracted using the primer p7 and p8. The two PCR products then
then used as templates to amplify the full hIL12 P35 gene using the primer pair: p5 and p8. The PCR product was cloned into the pMD18-T vector for
sequencing and subsequently transferred to the cloning vector pEGM-3zf(+) for digestion with the appropriate restriction endonucleases for insertion
into the pSMT3 construct.
doi:10.1371/journal.pone.0031908.g001

Recombinant M. smegmatis against MTB in Mice
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and IL-2 were found in the rMS, M. smegmatis and BCG

immunized mice 6 weeks following immunization compared to

the saline group (Fig. 7A and B). However, the levels of IL-12 were

higher in the saline group than in the rMS, M. smegmatis and even

BCG groups at two measured time points (Fig. 7C).

CD4+ and CD8+ T cell phenotypes in PBMCs of
immunized mice

Cellular composition of PBMCs was assessed by 2-color flow

cytometry. The total CD4+ T cell numbers decreased following

BCG vaccination, although it was not statistically significant at 2

weeks (P = 0.13) and 6 weeks (P = 0.28) following vaccination. The

total CD8+ T cell numbers were not significantly different between

the BCG group and the saline group after 2 and 6 weeks (P = 0.59

and P = 1, respectively). Compared to these results with BCG

vaccination, similar trends in the total number of CD4+ and CD8+

T cells were observed following rMS vaccination, The total CD4+

T cell number of the rMS group was lowest among the 4 groups at

both 2 and 6 weeks post-vaccination (Fig. 8A). A decrease was

found in the total CD8+ T-cell number in the M. smegmatis group

when comparing the 2 week and 6 week time points (P,0.001)

(Fig. 8B).

Protective effects of the rMS vaccine
A treatment protocol was designed (Fig. 5B). Four weeks after

the immunized mice were infected with the M. tuberculosis H37Rv

strain the bacterial loads were 5.5460.16, 6.9360.22, 5.7960.18

and 7.3460.27 per lung in the rMS, M. smegmatis, BCG and saline

Figure 2. Immunofluorescence detection of HBHA-hIL12 fusion
protein expressed in rMS (10006). (A) Binding of M. smegmatis
(negative control) with anti-HBHA mAb. (B) Binding of rMS with anti-
HBHA mAb. (C) Binding of M. smegmatis with anti-hIL12 mAb. (D)
Binding of rMS with anti-hIL12 mAb.
doi:10.1371/journal.pone.0031908.g002

Figure 3. Expression of HBHA-hIL12 fusion protein in the rMS
by Western blot analysis. (A) The expressed fusion protein was
recognized using anti-HBHA mAb. (B) The expressed fusion protein was
recognized using anti-hIL12 mAb.
doi:10.1371/journal.pone.0031908.g003

Figure 4. Growth curves of M. smegmatis and rMS. Bacteria
populations were monitored by optical density at 600 nm. Data are
shown as mean 6 SD of values from four experiments.
doi:10.1371/journal.pone.0031908.g004

Figure 5. Schedule of treatments and sampling. (A) rMS, M.
smegmatis or BCG was given two times with a 2-week interval. Serum
was obtained from immunized mice at 2 and 6 weeks after the second
immunization. The mice were injected with the H37Rv strain via the tail
vein at 2 weeks after the second immunization. Determination of
bacterial burden and histopathology were performed at 4, 6 and 8
weeks post-challenge. (B) Mice were given NIH+RFP in the drinking
water from 4 to 8 weeks post-infection (upper panel). Determination of
bacterial burden and histopathology were performed at 8 and 10 weeks
post-infection.
doi:10.1371/journal.pone.0031908.g005

Recombinant M. smegmatis against MTB in Mice
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immunized mice, respectively (Fig. 9). During the initial phase of

infection, mice immunized with the rMS showed robust inhibition

of growth of virulent M. tuberculosis. A similar trend in reduction of

bacteria load compared to saline immunized mice was observed at

6 and 8 weeks following challenge. Considerably lower loads of the

virulent strain were observed in the lungs of rMS immunized mice

after 4, 6 and 8 weeks of infection compared to the saline control

group (Fig. 9). This data revealed that the protective effect of the

rMS was equivalent to that provided by BCG (P.0.05) over the

course of infection. In the M. smegmatis group, we observed a

reduced bacillary load in the lungs compared to the saline group at

4 weeks post M. tuberculosis infection (P,0.05), but the bacteria

loads were not significantly different between two groups after 6

and 8 weeks of infection (P.0.05). Analysis of lung histopathology

in mice immunized with rMS revealed less lung consolidation

compared to the control mice (saline-treated) (Fig. 10). Based on

the observed pathological changes, the protective effect provided

by rMS in the lungs was apparently equivalent to that by the BCG

vaccine.

Therapeutic effects of the rMS vaccine
Mice infected with the M. tuberculosis H37Rv strain were treated

with either rMS or M. smegmatis, and the therapeutic effects were

determined by the bacteria load in the lung. The decrease in

bacterial burden in mice that received rMS correlated with a

decrease in lung consolidation and number of pathological lesions

when compared to the saline treated group (P,0.05) at the two

measured time points (Fig. 11). A significant reduction in the

reactivation of M. tuberculosis was observed in the lungs of mice

treated with INH+RFP. These results indicated that rMS played a

role in the inhibition of M. tuberculosis infection; however,

treatment with the rMS vaccine was significantly less effective

than treatment with INH+RFP. As shown in Figure 12, extensive

lymphocytic infiltration and aggregation of interstitial mononu-

clear cells could be seen in the pulmonary alveoli of mice treated

with two doses of rMS. The M. smegmatis-treated mice showed

more lymphocytes accumulating around the bronchii (Fig. 12) and

had significantly greater pathological damage similar to the saline

controls and more polymorphonuclear leukocytes than observed in

lungs of rMS-treated mice. In the group treated with NIH+RFP,

lesions in the lungs were slight, and much less aggregation of

lymphocytes could be seen than in the other three groups (Fig. 12).

Discussion

Mycobacterium smegmatis is an attenuated species of Mycobacterium

that has been previously used as a carrier of vaccine antigens

against tuberculosis with ambiguous results [19]. However, it has

shown promise as an effective vaccine vector to deliver cytokines

that can skew Th1 immunity in mice [16]. We previously

evaluated a recombinant vaccine prepared from M. smegmatis

expressing a fusion of early secreted antigenic target 6-kDa antigen

(ESAT6) and culture filtrate protein 10 (CFP10) [20]. After M.

tuberculosis challenge in mice, a dramatic reduction in bacteria load

in the lungs was observed for the mice immunized with the rMS

(rMS-e6c10). The protective efficacies of rMS-e6c10 and BCG

vaccination were found to be similar based on measures of M.

tuberculosis burden and lung pathology.

We have constructed a vector pQE80-HBHA in E. coli, but

recombinant HBHA produced in E. coli does not effectively protect

mice from M. tuberculosis challenge as reported. HBHA produced

in E. coli is not immunogenic. The native HBHA protein contains

20–26 methyl groups on residues 159–199. These methyl groups

are not present in the recombinant form of HBHA produced by E.

Figure 6. Detection of IFN-c producing splenocytes by ELI-
SPOT. (A) Photographs of representative wells. (B) Bars representing
the mean 6 SEM of SFUs. A significant difference was found between
the IFN-c secretion from splenocytes of the rMS group and the BCG
group and that from the saline group. No significant difference was
found between the saline group and the M. smegmatis group.
doi:10.1371/journal.pone.0031908.g006

Figure 7. Th1 cytokine induction post-challenge. Total levels (pg/mL) of Th1 cytokines, (A) IFN-c, (B) IL-2, and (C) IL-12 measured in the serum
of rMS, M. smegmatis, BCG or saline immunized mice 2 weeks and 6 weeks following second immunization. Results are expressed as mean 6 SEM of 3
animals per group.
doi:10.1371/journal.pone.0031908.g007

Recombinant M. smegmatis against MTB in Mice
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coli, and methylation of HBHA is required for the full

immunological properties of the protein [13,21]. Giovanni Delogu

et al. [22] had constructed a recombinant M. smegmatis strain

expressing a histidine-tagged recombinant HBHA protein from M.

tuberculosis (rHBHAms). The methylation pattern of rHBHAms

was similar to that observed for nHBHA (rHBHAms <16 methyl

groups vs. <23 methyl groups in nHBHA), and this partial

methylation was shown to be sufficient to rescue the immunolog-

ical properties of HBHA as shown in humoral response studies

[15]. They showed the methylated HBHA of M. tuberculosis

produced in M. smegmatis was antigenic and potentially useful to

exclude active TB in a T-cell based in vitro system. Then we

constructed a vector pSMT3 expressing HBHA protein in M.

smegmatis (rMS-HBHA). But the protection of this vaccine was

significantly less effective than that of rMS-e6c10 which we

constructed. The recombinant M. smegmatis vaccine (rMS-HBHA)

needs to further enhance its immunogenicity. Interleukin 12 (IL-

12) plays an important role in anti-intracellular pathogens by

augmenting innate and cellular immunity in many ways. It is

essential to the generation of a protective immune response to M.

tuberculosis mainly by the induction of IFN-c expression and the

activation of antigen-specific lymphocytes which could form a

protective granuloma [23,24]. Yang C et al [24] had constructed

the eukaryotic co-expression plasmid encoding human GLS and

murine IL-12, transformed this plasmid into M. smegmatis. This

rMS had immunotherapeutic effects associated with a switch to

the Th1 response and the antibacterial activity of GLS. So we

constructed recombinant M. smegmatis expressing the IL12 and

HBHA fusion protein in order to further improve the immuno-

therapy effects of rMS on the M. tuberculosis infection and confirm

its capable of stimulating host specific immune responses against

M. tuberculosis.

To ensure that the HBHA and IL-12 fusion protein had

sufficient space for correct folding was important, we introduced a

48 bp sequence encoding a peptide linker into the forward primer

of the hIL-12 gene. This commonly used flexible linker consists of

hydrophibic glycine and serine resides and allows two fusion

proteins to correctly fold without impacting the biological activity

of each protein [25]. The immunofluorescence detection and

Western blot analysis of rMS showed that the fusion protein

reacted not only with anti-HBHA mAb but also with anti-human

IL-12 mAb, indicating that the expressed product of the HBHA–

IL-12 fusion gene in eukaryotic cells had intact binding sites for

both HBHA and hIL-12 specific antibodies.

An optimized vaccine protocol, in which recombinant M.

smegmatis is administered followed by boosting, may result in an

appreciable increase in its protective efficacy. Cayabyab et al. [9]

Figure 8. Percentages of CD4+ and CD8+ T cells in PBMCs from immunized mice. Groups of mice were vaccinated twice 2 weeks apart
subcutaneously with rMS, M. smegmatis, BCG or saline. Three animals from each group were euthanized 2 weeks and 6 weeks following second
immunization. Results are expressed as mean 6 SEM of 3 animals per group.
doi:10.1371/journal.pone.0031908.g008

Figure 9. Assessment of protection in immunized mice. Growth
of virulent H37Rv in the lungs of mice immunized with rMS, M.
smegmatis, BCG or saline was assessed 4, 6, and 8 weeks after challenge.
Results are expressed as mean 6 SEM of 3 animals per group.
doi:10.1371/journal.pone.0031908.g009

Figure 10. Histopathology of lung tissue after challenge.
Sectioned lung tissue from naive and immunized mice taken 4, 6 and
8 weeks after virulent challenge (all panels 4006 magnification, H&E
stained).
doi:10.1371/journal.pone.0031908.g010

Recombinant M. smegmatis against MTB in Mice
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constructed a recombinant M. smegmatis strain expressing the

human deficiency virus gp120 envelope protein. Mice were

inoculated twice with an interval of 10 weeks. The peak responses

after the two inoculations were not greater than those seen

following a single inoculation, but the responses in the boosted

mice remained detectable even 1 year following the initial

immunization. Their results suggest that recombinant M. smegmatis

may be useful as a priming vector in prime/boost vaccine

regimens.

In the current study, groups of mice were vaccinated 2 times at

2 weeks apart in a homologous prime-boost schedule. While

antigen specific cellular responses was achieved as determined by

IFN-c ELISPOTs, FACS analysis showed that the total CD4+ and

CD8+ cells were not increased in the BCG group compared to the

saline group. In the study by Harari et al. [14], M. tuberculosis-

specific CD4+ T cell responses in a representative subject with

latent M. tuberculosis infection were mostly (.70%) polyfunctional,

i.e., producing IFN-c, IL-2 and TNF-a, while a representative

subject with active TB disease showed a dominant (.70% of

CD4+ T cells) TNF-a–only response. Chen et al. [26] showed that

the number of CD4+ CD25+ FoxP3+ Treg is increased in the

blood of active TB patients. Foxp3+ CD25+ CD4+ natural Tregs

suppress the proliferation of naive T cells and their differentiation

to effector T cells in vivo. They can also suppress effector activities

of differentiated CD4+ and CD8+ T cells [27]. BCG-induced

immunity is perhaps better described in terms of the T cell subset

patterns, such as the proportion of CD4+ T cells producing

cytokines (e.g., IFN-c, IL-2 and TNF-a) and even of CD4+ CD25+

FoxP3+ Tregs. It may be the reason that a decreased number of

CD4+ cells being observed after vaccination with recombinant M.

smegmatis in contrast with observation of an increased number of

TNF-a producing cells. BCG-induced T cell is perhaps just a part

of the T cell subset patterns, not all T cell. In sum, changes of the

total CD4+ or CD8+ T cell numbers may be not reflect protective

efficacy, and antigen-specific T cells would be a better indicator of

protective efficacy than the total number of CD4+ and CD8+ cells.

Both IFN-c and IL-2 are not only important indices for the Th1

cell immune response, but also play an important role in the

regulation of anti-mycobacterial immune responses by triggering

the activation and proliferation of CD4+ T cells [28]. The IFN-c
and IL-2 were found to increase in the blood of mice immunized

with rMS when assessed 2 weeks after the second immunization,

compared to mice that had received M. smegmatis or saline. And we

observed significantly increased frequencies of IFN-c secreting

cells in PBMCs of mice vaccinated with rMS and BCG but not

with M. smegmatis compared to the saline group 2 weeks after the

second immunization. At 6 weeks following immunization the

levels of IFN-c and IL-2 were diminished significantly in the M.

smegmatis/rMS immunized mice. An increase in these Th1

cytokines always suggested a higher ability to induce a greater

protective effect [28,29,30]. It may preferentially promote a T-

helper type 1 (Th1) cell mediated response during the primary

phase of infection. Though quantitative measurement of cytokines

is widely used to assess the ability of a vaccine to induce an

immune response, it is not always indicative of resulting protection

[31,32]. Genetic or environmental factors may influence the

cytokine profile of mycobacteria specific T cells responses to

vaccination [33]. Lalor et al. reported that Malawian infants have

been shown to generate cytokine responses following BCG

vaccination, but the cytokine profile is different from that in the

UK [34]. The number of multifunctional T cells making IFN-c,

TNF-a, and interleukin 2 (IL-2) did not correlate with protection

against disease in South Africa [33,35]. Therefore, we considered

that measurements of cytokines could be useful to evaluate a

candidate vaccine but are not always proper indicator of vaccine

efficacy. Further evaluations of the vaccine should be done,

especially counting the bacterial load [CFU] in target organs and

evaluating changes in pathology.

The bacillary load in lungs is the most important parameter

used for the evaluation of protective efficacy following challenge

with M. tuberculosis. So we examined the bacteria load in the lung

at three measured time points. The results shown that the

protection of rMS is at least as well as the control BCG vaccine in

terms of reducing load of the H37Rv strain and lung histopathol-

ogy. After the mice infected with the H37Rv were treated with

rMS, the bacterial numbers in the lungs of the mice were reduced

significantly. Previous research has shown that wild-type M.

smegmatis is unable to provide protection against challenge with M.

tuberculosis in mice [36]. However, our data showed that a reduced

bacillary load in the lungs of M. smegmatis- immunized mice at 4

weeks post M. tuberculosis infection compared to the saline group

Figure 11. Therapeutic effects of rMS, M. smegmatis or INH+RFP
on bacterial burden of lungs from M. tuberculosis-infected mice.
Four weeks after infection with H37Rv, mice were treated with rMS or
M. smegmatis two times with a 2-week interval, and lung mycobacterial
loads were determined 8 and 10 weeks after challenge. INH (54.25 mg/
L) co-administered with RFP (52.5 mg/L) was delivered in drinking water
for 4 weeks from 4 weeks after infection. Results are expressed as mean
6 SEM of 3 animals per group.
doi:10.1371/journal.pone.0031908.g011

Figure 12. Effect of rMS, M. smegmatis or INH+RFP on
histopathology of lungs from M. tuberculosis-infected mice.
Sectioned lung tissue from rMS, M. smegmatis or INH+RFP treated mice
8 and 10 weeks after virulent challenge (all panels 4006magnification,
H&E stained).
doi:10.1371/journal.pone.0031908.g012

Recombinant M. smegmatis against MTB in Mice
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(P,0.05), but the bacteria loads were not significantly different

between two groups after 6 and 8 weeks of infection (P.0.05),

which may be due to M. smegmatis providing protection at the

initial phase of infection, or different immunization strategies.

Immunotherapy that modulates or enhances the host immune

response to M. tuberculosis has proven to be an effective method for

treatment of TB [37]. It has been a long-held contention that

specific resistance to M. tuberculosis infection generated by a live

vector is better than that of non-living vaccines [38]. DNA

vaccines that were being investigated in mice for prophylactic use

against TB were soon found also to be surprisingly effective in

treatment against established infection [39]. Our past study

demonstrated that the HSP65-IL-2-DNA vaccine enhances the

immunogenicity and protective as well as therapeutic effects of the

HSP65-DNA vaccine against TB in mice by improving the Th1-

type response [25]. However, immunity against M. tuberculosis is

more efficiently generated by viable, metabolizing mycobacteria

than by DNA vectors. Although BCG can activate specific

immune responses against tuberculosis and is the most successful

immunotherapeutic reagent for solid malignancy currently, it

cannot be directly used as a therapeutic vaccine for tuberculosis

patients, especially those in an immune deficiency state because of

its significant toxicity. In contrast, M. smegmatis is a fast growing,

low virulence strain that has been tested experimentally as a

vaccine candidate for M. tuberculosis [40], as well as an alternative

gene expression system for BCG or M. tuberculosis [41]. The

recombinant M. smegmatis carrying IL-12 and GLS can induce an

efficient Th1 protective immunity response, including a high level

of IFN-c and IL-12 similar to the BCG strain [16].

Therefore, we investigated whether the rMS could be effective

as a treatment against established infection. After administration of

the rMS in TB infected mice, lung bacterial load and lymphocytic

infiltration decreased significantly, although not to the levels

achieved by the chemotherapy drugs, compared to the saline

controls. Long-term treatment with anti-tuberculosis drugs

INH+RFP has been shown to result in a significant reduction in

lung inflammation and accelerated resolution of lung pathology.

However, a long treatment course, along with the side effects,

often results in treatment failure due to drug resistance and

financial problems. Of great concern, there are now extensively

drug-resistant (XDR) strains emerging, which are resistant to

essentially all of the currently available drugs. Thus, obtaining

novel, shorter treatment regimens is an important objective of

anti-tuberculosis drug development. Many studies have indicated

that a DNA vaccine combined with chemotherapy improves

bacillary clearance and results in smaller granulomas and less lung

pathological damage, compared to treatment with chemotherapy

alone [37,42,43,44,45]. In the next work, we will evaluate the

effectiveness of combination treatment with the rMS and

chemotherapeutic drugs.

Materials and Methods

Ethics statement
All animal protocols have been reviewed and approved by the

Institutional Animal Care and Use Committee of the Fourth

Military Medical University (ID11013).

Bacterial strains and in vitro growth conditions
The M. tuberculosis H37Rv strain was obtained from the Institute

of Drug and Biological Products Checking (Beijing, China). The

BCG vaccine strain (Denmark strain) was obtained from the

Lanzhou Bioethical Production Institute (Lanzhou, China). The

human peripheral blood was obtained from the Department of

Immunology of the Fourth Military Medical University (Xi’an,

China) [46]. Mycobacterial cultures were grown in Middlebrook

7H9 broth (Difco Laboratories, Detroit, MI) supplemented with

0.5% glycerol and 10% BBL Middlebrook ADC enrichment

(Beckton Dickinson Biosciences, Oxford, UK). For determining

the colony forming units (CFU), bacilli were grown on

Middlebrook 7H10 agar (Difco) supplemented with 0.5% glycerol

and 10% BBL Middlebrook OADC enrichment (Beckton

Dickinson).

Plasmid and strain construction
The HBHA gene was cloned from the M. tuberculosis genomic

DNA (NC_000962.2) via PCR using the primer pair: p1 (59-

GCGGATCCATGGCTGAAAACTCGAACATTG-39) and p2

(59-ATGTCGACCTTCTGGGTGACCTTCTTG-39). Total

RNA generated from human peripheral blood was extracted

using ISOGEN-LS according to manufacturer9s protocol (Nippon

Gene Co, Tokyo, Japan). First-strand complementary DNA

(cDNA) was synthesized by reverse transcriptase using the RNA

as template. hIL12 P40 (AF180563.1) was cloned from the cDNA

using the primer pair: p3 (59-GCGTCGACGGTGGCTCAG-

GTGGCTCCGGTGGAGGCGGAAGCGGCGGTGGAGGA-

TCAATGTGTCACCAGCAGTTG-39) and p4 (59-ATGCATG-

CACTGCAGGGCACAGATGC-39). The 542 base pairs up-

stream of hIL12 P35 (AF180562.1) was extracted using the primer

pair p5 (59-ATGCATGCGTTCCTGGAGTAGGGGTACCT-

GGGGTGGGCATGTGGCCCCCTGGGTCAG-39) and p6

(59-GGGTCCATCAGAAGTTTTGCATTC-39); and the 220

base pairs downstream sequence was amplified with P7(59-

CAAAACTTCTGATGGACCCTAAGAGGC-39) and p8 (59-

GACAAGCTTTTAGGAAGCATTCAGATAGC-39). The two

PCR products were then used to amplify the full hIL12 P35 gene

using the primer pair: p5 and p8. After confirming by sequencing

(AuGCT Biotechnology, Beijing, China), the PCR product was

cloned into the pMD18-T vector and analyzed by 1% (w/v)

agarose gel electrophoresis for 60 min at 100 V in TAE 16
electrophoresis buffer, visualized using 0.06 mg ml21 of ethidium

bromide (BioRad, Madrid, Spain) and photographed under UV

light. Using the cloned HBHA and hIL12 genes, the HBHA-

hIL12 fusion expression cassette was generated by the gap repair

method as above with a linker designed to maintain the correct

biological activity of both HBHA and hIL-12. A verified clone

with the correct sequence (AuGCT Biotechnology) was transferred

into a cloning vector pEGM-3zf(+), then cut with the appropriate

restriction endonucleases and inserted in the Escherichia coli-BCG

shuttle plasmid pSMT3 construct. The resulting plasmid was

electroporated into M. smegmatis using standard techniques [47] to

generate the recombinant M. smegmatis strain expressing the

HBHA-hIL12 fusion protein.

Determination of antigen expression
The rMS strain was grown in 7H9/ADC (7H9 containing 10%

ADC) until mid-log phase and blocked with 10% bovine serum

albumin. Glass slides were coated with rMS and probed with a

1:500 dilution of anti-hIL12 monoclonal antibody (Santa Cruz

Biotechnology, Santa Cruz, CA, USA) for 1 h at 37uC. The slides

were washed several times with PBS and then incubated with a

fluorescein isothiocyanate (FITC)-labeled goat anti-mouse IgG

secondary antibody (Kirkegaard & Perry Laboratories, Inc.,

Gaithersburg, MD) in 1% Evans Blue (as a general protein

counterstain). After repeated washes, the slides were observed at

10006 magnification under a fluorescence microscope. The

expression of the HBHA protein in rMS was verified using the

same method. The fusion protein expression was also identified by
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western-blot using anti-HBHA mAb (BEI Resources, VA, USA)

and anti-hIL12 mAb respectively.

Determination of growth rates of M. smegmatis and rMS
M. smegmatis and rMS were grown in Middlebrook 7H9 medium

supplemented with 0.5% glycerol and 10% ADC. Two hundred

microliters of the cultures were added to conical tubes containing

100 ml culture medium and incubated with shaking at 200 rpm at

37uC. Each culture was sampled (2 ml) at 0, 24, 36, 42, 48, 59, 65,

72, 83, 90, 96 and 107 h of incubation for OD measurement at

600 nm. All tests were repeated 4 times.

Experimental animals
Six- to eight-week-old male BALB/c mice, provided by the

laboratory animal center of the Fourth Military Medical

University, were randomly divided into four groups (15 per

group). Fifteen mice per group were immunized subcutaneously by

inoculating 0.2 ml of a suspension containing approximately

16105 CFU of M. smegmatis, rMS or BCG, and an equal volume of

normal saline was used in the negative control group. The

immunization was repeated 2 weeks later. Two weeks after the

second immunization, 6 mice in each group were used for analysis

of lymphocyte proliferation and production of IFN-c, IL-2 and IL-

12. The other 9 mice in each group were retained for the infection

experiment with M. tuberculosis virulent strain H37Rv. All animal

protocols have been reviewed and approved by the Institutional

Animal Care and Use Committee of the Fourth Military Medical

University (ID11013).

IFN-c ELISPOT assays of splenocytes
Two weeks after the second vaccination, mice were sacrificed

and their spleens removed aseptically in RPMI-1640 medium

containing 10% fetal calf serum (FCS). Spleens were gently ground

through a 70-mm cell strainer, and then single-cell suspensions

were prepared by density gradient centrifugation using Lympho-

lyte-M (Cedarlane Labs, Burlington, NC, USA). Cells were

counted and plated at 56105 cells per well in the same medium

as described above. Following the manufacturer’s instructions, the

mouse interferon IFN-c ELISPOT kit (Mabtech, Nacka, Sweden)

was used to determine microscopically the relative number of IFN-

c-secreting splenocytes, each represesented by individual spots on

the developed membrane. Spleen cells from all groups were plated

in triplicate at cells per well in 100 ml medium and then stimulated

with the purified protein derivative (PPD) for 48 h at 37uC. PPD

(10 mg/ml) was also used to stimulate the cells acquired from each

group. The cells were removed and plates were subsequently

washed and incubated for 2 h at 37uC with a biotin-conjugated

anti-mouse IFN-c secondary antibody. The filters were developed

with prepared Streptavidin-HRP solution at 100 ml per well and

incubated for 1 h at room temperature. Spots were counted using

an automated ELISPOT reader (Champ II ELISPOT reader

system [Sage Creation]).

Serum cytokine measurements
Serum was obtained from immunized mice at 2 and 6 weeks

after the second immunization and evaluated for their IFN-c, IL-2

and IL-12 content. The assays were performed according to the

manufacturer’s guidelines of the mouse IFN-c, IL-2 and IL-12

ELISA kits obtained from Jingmei Company (Shenzhen, China).

Analysis of peripheral blood CD4 and CD8 T cell subsets
Two and six weeks after the second immunization procedure,

antigen-reactive T cells with CD4 and CD8 phenotypes were

purified from peripheral blood mononuclear cells (PBMCs) in the

mice using FITC-labeled rat anti-mouse CD4 and RPE-labeled

rat anti-mouse CD8 antibodies, respectively. Double-color flow

cytometry was used to determine the changes in lymphocyte

subsets. Ten thousand cells were analyzed from each sample, and

data from three different samples from individual mice were used

in the statistical analysis. All reagents for cell isolation and

antibodies employed in FACS analysis were obtained from BD

Pharmingen.

M. tuberculosis infection test
Two weeks after the second immunization, 9 mice from each

group were used for challenged with M. tuberculosis. The mice were

injected with the H37Rv strain via the tail vein at a dose of 105

CFU/mouse, and the lungs of 3 mice per time point were removed

aseptically for analysis at 4, 6 and 8 weeks post-challenge.

Treatment of M. tuberculosis infected mice
Six- to eight-week-old male BALB/c mice were infected with

the H37Rv strain via the tail vein at a dose of 105 CFU/mouse.

Four weeks after infection, the mice were randomly divided into

four groups (6 per group). Two groups were treated with 0.2 ml of

a suspension containing approximately 16105 CFU of M.

smegmatis or rMS. The drug treated group were co-administered

isoniazid (INH, 54.25 mg/L) with rifampicin (RFP, 52.5 mg/L)

delivered in drinking water for 4 weeks. The fourth group received

only saline (negative control). Determination of bacterial burden

and histopathology were performed at 8 and 10 weeks post-

infection.

Determination of bacterial burden and histopathology
Lungs of 3 mice per time point were aseptically removed and

transferred to a 15 ml screw cap tube and homogenized using a

Biospec Mini Bead Beater (Bio Spec Products) in a total volume of

1 mL of RPMI-1640 medium. In order to measure the bacterial

burden of the challenge strain in immunized animals, diluted

organ homogenates were plated onto Middlebrook 7H10 Media

Agar Plates. Total CFU counts were determined following 3–4

weeks of incubation at 37uC. For histopathological studies, lung

tissue samples were obtained from mice at 4, 6, 8 and 10 weeks

post-challenge, fixed in formalin, paraffin imbedded, sectioned

and stained with hematoxylin and eosin (H&E) for histological

observation.

Statistical analysis
The statistical significance of the differences among the means

was assessed by the least significant difference (LSD)-t test. P

values,0.05 indicated significant differences.
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