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Abstract

Statistical association between a single nucleotide polymorphism (SNP) genotype and a quantitative trait in genome-wide
association studies is usually assessed using a linear regression model, or, in the case of non-normally distributed trait
values, using the Kruskal-Wallis test. While linear regression models assume an additive mode of inheritance via equi-distant
genotype scores, Kruskal-Wallis test merely tests global differences in trait values associated with the three genotype
groups. Both approaches thus exhibit suboptimal power when the underlying inheritance mode is dominant or recessive.
Furthermore, these tests do not perform well in the common situations when only a few trait values are available in a rare
genotype category (disbalance), or when the values associated with the three genotype categories exhibit unequal variance
(variance heterogeneity). We propose a maximum test based on Marcus-type multiple contrast test for relative effect sizes.
This test allows model-specific testing of either dominant, additive or recessive mode of inheritance, and it is robust against
variance heterogeneity. We show how to obtain mode-specific simultaneous confidence intervals for the relative effect sizes
to aid in interpreting the biological relevance of the results. Further, we discuss the use of a related all-pairwise comparisons
contrast test with range preserving confidence intervals as an alternative to Kruskal-Wallis heterogeneity test. We applied
the proposed maximum test to the Bogalusa Heart Study dataset, and gained a remarkable increase in the power to detect
association, particularly for rare genotypes. Our simulation study also demonstrated that the proposed non-parametric tests
control family-wise error rate in the presence of non-normality and variance heterogeneity contrary to the standard
parametric approaches. We provide a publicly available R library nparcomp that can be used to estimate simultaneous
confidence intervals or compatible multiplicity-adjusted p-values associated with the proposed maximum test.
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Introduction

Genome-wide association studies involving large population-

based samples have become a common strategy employed for the

identification of common variants that affect a particular trait or

play a role in disease. A majority of these studies involve

comparing allele frequencies of di-allelic markers (e.g., SNPs) in

cases and controls (see e.g., [1]). Formally, this is often

accomplished via the Cochran-Armitage trend test [2] as

implemented in the publicly available software PLINK [3]. Since

the mode of inheritance at a given locus is often unknown, a

maximum-test based on three mode-specific standardized Coch-

ran Armitage trend tests was proposed [4].

Alternatively, continuous endpoints (i.e., quantitative traits),

such as uromodulin [1] or TNFa protein [5] are commonly

analyzed via a linear regression model using genotype scores

x~(0,1,2) adjusted for covariates [6]. In order to maintain

statistical validity, this approach requires that three important

assumptions be met: 1. additive mode of inheritance; 2. normally

distributed errors, and; 3. homogeneous variances. However, in

reality one or more of these assumptions are often violated. The

underlying mode of inheritance is often unknown. In addition, the

assumption of normality is violated in studies that involve pQTL

data [5], continuous endpoints with outliers (e.g., [6]), ordered

categorical data (e.g., [7]), or phenotypes with values below the

detection limit (e.g., [5]). Although transformation of the endpoints

into an approximate normal distributed variable allows the use of

standard approaches in the generalized linear model, the

transformation is data-dependent, i.e. the choice of log-,

log+constant, Box-Cox-transformation for pQTLs [6] might result

in different conclusions. In particular, the re-transformation on the

original scale is not unique. Nonparametric regression models, e.g.

quantile regression [6], are an interesting option, however, up to

now, only available for an additive mode of inheritance.

Nonparametric approaches do not require normality. However,

the often used nonparametric Kruskal-Wallis test [1],[8],[9]

achieves suboptimal power when the locus is governed by a

specific mode of inheritance. This occurs because it is a global test

of heterogeneity in the endpoint values among the three genotype

groups. It is also not robust against variance heterogeneity.

Jonckheere-Tepstra test [10], an analog of the Kruskal-Wallis test

for near-to-linear ordered restricted alternatives, shares many
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characteristics with the Kruskal-Wallis test, while being particu-

larly sensitive to an additive mode of inheritance. Furthermore,

Kruskal-Wallis and Jonckheere-Tepstra nonparametric proce-

dures are global testing procedures based on global ranks whose

distribution is only available under the global null hypothesis.

Therefore, it is not possible to compute confidence intervals for the

genetic effects of interest using these approaches. In summary,

none of these classic nonparametric approaches i) allow the

identification of the most likely mode of inheritance via estimation

of related simultaneous confidence intervals, ii) are sensitive not

only to an additive mode of inheritance, or iii) are robust against

variance heterogeneity. Our proposed testing procedure, on the

other hand, can be extended to provide this crucial information for

interpreting the biological relevance of the association results.

Recommendations given in the ‘Strengthening the Reporting of

Genetic Association studies’ report [11] include providing

estimators of an adequate effect size and their confidence intervals.

For example, reporting odds ratios for additive, recessive and

dominant models and their marginal confidence limits (as in e.g.,

[12]) provides a percentage measure of clinical relevance (distance

from the lower/upper confidence limit to one, the value associated

with the null hypothesis). While traditional significance testing

usually deals with differences between population means, there is

an increasing focus in medicine on the probability of one

treatment being more successful than another on a per-individual

basis [13]. The relative effect size [14]

p~P(XvY )z0:5P(X~Y ) ð1Þ

represents a measure of how often a randomly chosen subject receiving

treatment X will outperform a randomly chosen subject receiving treatment Y

[13], i.e. the probability that a randomly selected subject in the

control reveals a smaller response value than a randomly selected

subject in the treatment group. In case of ordered categorical data,

p is also called ordinal effect size measure [15].

We describe a Behrens-Fisher version of multiple contrast test

for relative effects [16],[14] based on the maximum test principle

[4]. This is a purely nonparametric testing procedure that is valid

when the three assumptions mentioned in the previous paragraph

are not met. Furthermore, our proposed approach simultaneously

tests association under the assumption of the three basic modes of

inheritance, additive (add), recessive (rec) and dominant (dom) for

both continuous and discontinuous distributions. We generalize

the relative effect p for an adequate formulation of genetic effects,

and provide multiple contrast tests and simultaneous confidence

intervals, which allow the simultaneous testing of the three genetic

models of inheritance.

Methods

Motivating example
A real data example with the right skewed distributed

phenotype total cholesterol was selected from the Bogalusa Heart

Study (BHS) [17]. This longitudinal study included genotype

information on 525 unrelated individuals of European descent at

545,821 SNPs where twelve clinically-relevant quantitative traits

were measured for each study participant. We applied the

nonparametric multiple contrast test to a one-way layout for

SNP rs7738656 in the gene C6orf170/GJA1 and the phenotype

total cholesterol, which was published in Table 1 of the original paper

as significant for an unimputed SNP [18]. The jittered boxplots in

Figure 1 show an unbalanced design, variance heterogeneity and a

rather skewed distribution with some extreme values, particularly

for the homozygote minor allele genotype group. Therefore, the

question arises whether the parametric analysis in the original

publication using a linear regression model assuming an additive

mode of inheritance and normally distributed errors with

homogeneous variances is appropriate.

Nonparametric model and genetic effects
Let aa, aA and AA denote the genotypes, where A is the high

risk allele and a is any of the other alleles. For convenience,

abbreviate the genotypes with aa~1, Aa~2, and AA~3. The

related data are given by Xik, where i~1,2,3, and k denotes the

subject within genotype level i, k~1, . . . ,ni. The data Xik are

assumed to be independent. The total sample size is N~
P3

i~1 ni.

We assume that the phenotypes Xik follow an arbitrary

distribution Fi, i.e.

Xik*Fi, i~1,2,3; k~1, . . . ,ni: ð2Þ

This general model (2) does not contain any parameters that

could be used to describe a difference between the distributions.

Therefore, the distribution functions Fi(x) are used to define

purely nonparametric treatment effects on an individual basis for

each genotype level by

pj~
1

3

X3

i~1

P(Xi1vXj1)z0:5P(Xi1~Xj1)
� �

, j~1,2,3: ð3Þ

These effects are also called unweighted relative effects [19,20]. If

pivpj , then the values from Fi tend to be smaller than those from

Fj . In case of pi~pj , none of the observations tend to be smaller or

larger. Therefore, these effects can be as easily interpreted as the

usual means in parametric models. Let p~(p1,p2,p3)’ denote the

vector of the unweighted relative effects.

For the formulation of nonparametric genetic effects, let

C~

c’dom

c’add

c’rec

0
B@

1
CA~

{1
n2

n2zn3

n3

n2zn3

{1 0 1

{
n1

n1zn2
{

n2

n1zn2
1

0
BBB@

1
CCCA

Table 1. 95-%Simultaneous confidence intervals for pdom,padd and prec for the SNP rs7738656.

Model Effect-Estimator 95%-Simultaneous Intervals Adjusted p-Value

Dominant 20.240 [20.378; 20.082] 0.0058

Additive 20.250 [20.387; 20.092] 0.0043

Recessive 20.053 [20.119; 0.015] 0.13

doi:10.1371/journal.pone.0031242.t001
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denote the so-called Marcus-type contrast matrix [21]. In case of a

balanced design, C reduces to

C~

c’dom

c’add

c’rec

0
B@

1
CA~

{1
1

2

1

2
{1 0 1

{
1

2
{

1

2
1

0
BBB@

1
CCCA:

Each row vector c’‘ of C corresponds to one of the three genetic

models. In case of a dominant mode of inheritance, the

distributions F2 and F3 are identical, therefore a relative genetic

effect for this mode can be expressed by

pdom~c’domp~{p1z
n2

n2zn3
p2z

n3

n2zn3
p3,

which denotes the difference between the pooled effect
n2

n2zn3
p2

z
n3

n2zn3

p3 among the samples 2 and 3 and p1. Thus, in case of

‘‘no dominant effect’’, c’domp~0, or equivalently,
n2

n2zn3
p2z

n3

n2zn3
p3~p1. Analogously, in case of a recessive mode of

inheritance, the distributions F1 and F2 are identical, thus, a

relative recessive effect can be expressed by

prec~c’recp~{
n1

n1zn2
p1{

n2

n1zn2
p2zp3,

which denotes the difference between the pooled effect
n1

n1zn2
p1z

n2

n1zn2
p2 and p3. ‘‘No recessive mode of inheritance’’

means c’recp~0, or, equivalently,
n1

n1zn2

p1z
n2

n1zn2

p2~p3. In

addition, the relative genetic effect for an additive mode of

inheritance can be expressed by

padd~c’add p~{p1zp3:

Thus, the case of no global effect is characterized by

pdom~prec~padd , or, equivalently, Cp~0.

A multiple contrast test approach for the three genetic
models

To test the individual hypothesis H0 : c’‘p~p‘~0, where

‘[fdom,rec,addg, define a test statistic T‘, which denotes, as

usual, a studentized estimator p̂p‘ of p‘ with its estimated standard

error (details see Technical details). The three test statistics

Tdom,Trec and Tadd are collected in the vector

T~(Tdom,Trec,Tadd )’:

The multiple contrast test and the simultaneous confidence intervals

for p‘ are based on the asymptotic multivariate normality of T, i.e.

the correlation among the three test statistics T‘ is accounted for.

Instead of using critical values coming from a standard normal

distribution (or t-distribution), we use critical values from the

multivariate normal distribution N(0,R̂R), where R̂R denotes the

estimated correlation matrix. This means, the individual hypothesis

H0 : c’‘p~0 is rejected at multiple level a of significance, if

jT‘j§z(1{a,R̂R), ð4Þ

where z(1{a,R̂R) denotes the (1{a)-equicoordinate quantile from

N(0,R̂R). Simultaneous confidence intervals for the three genetic

effects pdom,prec and padd are given by

p̂p‘+z(1{a,R̂R):SE(p̂p‘), ð5Þ

Figure 1. Boxplot: Total cholesterol vs. genotype rs7738656.
doi:10.1371/journal.pone.0031242.g001
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i.e. point estimator + quantile | estimated standard error. Note that

the individual test decisions and the simultaneous confidence intervals

are compatible, i.e. it can not occur that an individual hypothesis has

been rejected, but the corresponding simultaneous confidence

interval includes the value from the null hypothesis. These confidence

intervals, however, may not be range preserving, i.e. the lower

bounds may be smaller than {1 and the upper bounds can be larger

than 1. Range preserving confidence intervals can be easily

constructed by using the delta method [16,22], with the Fisher

transformation. The global hypothesis H0 : Cp~0 will be rejected, if

maxfjTdomj,jTrecj,jTadd jg§z(1{a,R̂R), ð6Þ

i.e. if any of the three individual hypotheses have been rejected. For

small sample sizes, the quantiles from the multivariate normal

distribution are replaced by quantiles coming from a multivariate t-

distribution (details see Technical details).

Evaluation of score phenotypes. Particularly in psychiatric

epidemiology, different mental scores are often used as phenotypes,

see e.g. [7]. Some mental scores are based on only few categories,

e.g. 0,1,2, others represent sums of sub-scores with a wider range of

count values. The definition of the unweighted relative effect pj

defined in (3) includes ordered categorical data. For an arbitrary

monotone transformation w of the data, it can be seen that

p
w
j ~

1

3

X3

i~1

P(w(Xi1)vw(Xj1))z0:5P(w(Xi1)~w(Xj1))
� �

~
1

3

X3

i~1

P(Xi1vXj1)z0:5P(Xi1~Xj1)
� �

~pj :

Thus, the effect measure is invariant under monotone

transformations of the data. On the other hand, if the data are

transformed by a monotonic decreasing function y

p
y
j ~

1

3

X3

i~1

P(y(Xi1)vy(Xj1))z0:5P(y(Xi1)~y(Xj1))
� �

~1{
1

3

X3

i~1

P(Xi1vXj1)z0:5P(Xi1~Xj1)
� �

~1{pj :

This means that the effect measure pj is reflected at 0:5 in case of a

monotonic decreasing transformation of the data. Therefore, pj is

an adequate measure for ordered categorical data, because the

information is independent from the chosen scale of the scores.

Evaluation of phenotypes with values below a detection

limit. Sometimes phenotypes with values below a detection limit

occur, see e.g. [5]. Since the ordinal effect size is appropriate for

tied values, all data below the detection limit should be fixed on a

particular value. Note that this approach is only exact when a

unique detection limit exists, i.e. the problem is more complex

when different centers in a meta-analysis framework have different

detection limits. However, due to the ranking of the groups, the

problem of choosing the ‘‘best value’’ will not occur.

Results

Evaluation of the example
The new nonparametric multiple contrast test T was used for

the statistical analysis of the motivating example above. Rank

estimators for the three unweighted relative effects are given by

p̂pAA~0:66, p̂pAG~0:44 and p̂pGG~0:41, respectively. Assuming AA

is the risk allele, a decrease to AG and GG occur. Table 1

summarizes the results of simultaneous Marcus-type comparisons.

The upper confidence limit of the additive model is most distant

to H0, or, compatible to that, reveals the smallest p-value of

p~0:0043. The 95%-simultaneous confidence intervals indicate a

positive association with the high risk allele A for the phenotype

total cholesterol. The related parametric approach results a much

smaller p-value of p~8:1{6 for the additive mode of inheritance

(p~2:1{7 in the original publication [17] with an adjustment

against covariates). This example illustrates the impact of the

underlying assumptions being violated, in particular the assump-

tion of normally distributed errors with homogeneous variances.

The global rank Kruskal-Wallis test on heterogeneity reveals a p-

value of only p~0:0062.

In summary, using the multiple contrast tests yields specific

information regarding the genetic mode of inheritance as well as

simultaneous confidence intervals.

Simulations
We evaluated the empirical type-I error rates and the powers of

nonparametric multiple contrast tests via extensive simulation

studies. All simulations were performed using the publicly

available software R (version 2.12.1; www.r-project.org). Every

simulation step was repeated 10,000 times.

The trait genotypes for N~500,1000 subjects were randomly

drawn from a multinomial distribution with cell probabilities given

by allele frequencies at trait locus p~0:5, allele frequencies at trait

marker pm~0:05,0:1,0:2,0:3,0:5 and linkage disequilibrium delta

d~0,0:01,0:02,0:03,0:04. Phenotypic values for the quantitative

traits were generated from normal and log-normal distributions,

choosing 1 for the residual variance, and varying the percentage of

variance explained by the quantitative trait w~0,0:2,0:4 for an

additive, dominant, or recessive mode of inheritance. Log-normal

phenotypes were generated by first drawing normal phenotypic

values Xik and then by applying the transformation method

Y{1(W(Xik)), where Y{1(y) denotes the quantile function of the

log-normal distribution, and W(x) denotes the standard normal

distribution function. If w~0, no variance is explained by the

quantitative trait, thus, Cp~0 for all parameter settings. Low

values of allele frequencies at trait marker (pm) result in strongly

unbalanced designs. In addition, different values of pm, d, and w
form specific multimodal distributions under the alternative.

Figure 2 displays examples of simulated normal and log-normal

data for different values of w, d~0:04, p~0:5 and pm~0:5.

Since the expectation of a multimodal distribution is the

weighted sum of the single expectations, the parameter settings on

p,pm and d are an important issue in the investigation of power

analyses.

Results. We simulated the nonparametric multiple contrast

tests T as defined in (6) as well as its transformed approach by

using the Fisher-transformation (Fisher). Two different types of

contrasts will be examined throughout the simulation studies: (i)

all-pairwise comparisons by using the contrast matrix

A~

{1 1 0

{1 0 1

0 {1 1

0
B@

1
CA

to be sensitive against any heterogeneity (All-Pairs) and (ii) the

Marcus-type contrast matrix C to be sensitive against exactly the

three basic genetic modes of inheritance (Marcus). For each kind of

Nonparametric Evaluation of Association Studies
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contrast, the nonparametric multiple contrast tests are compared

with the parametric multiple contrast tests for homoscedastic

normal samples proposed by [23] as well as for heteroscedastic

normal samples by [24] (denoted by Bretz and Hasler). For all-pairs

comparisons, these four multiple contrast test procedures are

compared with the nonparametric multiple test procedures by

Steel [25] (Steel), the permutative Nemenyi-test [26] for all-pairs

comparisons (Nemenyi), the Kruskal-Wallis test (KW) and the usual

ANOVA-F-test (ANOVA). For Marcus-type comparisons, the four

multiple contrast tests are compared with the nonparametric

permutative Nemenyi-test for Marcus-type comparisons and the

usual linear regression analysis (Reg). Figure 3 displays the type-I

error simulation results (i.e. w~0; a~5%) for different values of

pm, an additive, dominant, and recessive mode of inheritance, and

linkage disequilibrium delta d~0,0:01,0:02,0:03,0:04 for both

normal and log-normal distributed phenotypes (N~500).

It follows from Figure 3, that, under normality, all considered

procedures control the type-I error at level a~5% for both all-pairs

and Marcus-type comparisons. In the case of extremely unbalanced

designs (pm~0:05), however, the new multiple contrast tests T
and Fisher tend to be quite liberal. This is due to the fact that these

procedures do not use a pooled variance estimator. We observed

this for both normally and log-normally distributed data. In the

case of larger sample sizes (N~1000), this effect disappears. The

parametric multiple contrast test by Hasler tends to be very liberal

when the normality assumption is violated.

To investigate the power of the different procedures mentioned

above, different parameter settings on the variance explained by

the quantitative trait (w~0:2,0:4) and different values on pm and

d were examined. Figure 4 displays the simulation results for

w~0:2.

Figure 4 shows that the power of all investigated procedures

depends on the parameter settings of pm and d. The combination of

these parameters leads to specific values of weights in the

multimodal distributions of the phenotypes as displayed in

Figure 2. We observe that for a given w and d, the power of the

tests is smaller for larger pm, although the data are almost balanced

in such settings. This occurs, because the weighting parameters of

the multimodal distributions are likely in case of smaller allele

frequencies at trait marker. In case of pm~0:5, the bimodal

distributions consist of a dominated and a dominating part, which

results in a smaller expectation of the phenotypic values in all

considered cases. In case of extremely unbalanced designs

(pm~0:05), the power of the new procedures is quite low; in

general, their power is not estimable due to their liberality in such

settings. For normal distributions, the powers of all the parametric

and nonparametric procedures are nearly identical in case of

pm§0:2. When the normality assumption is violated, the

nonparametric procedures have a considerably higher power than

the parametric procedures. The power of the new multiple contrast

tests are likely to be identical to the power of the Kruskal-Wallis test.

The Kruskal-Wallis test, however, can only be used for testing the

global null hypothesis, and cannot provide any information

regarding genetic association. Further, comparing the results of

the all-pairs and Marcus-type comparisons, we observe that all the

four multiple contrast tests exhibit higher power when using the

Marcus-type contrast matrix compared to using the Tukey-type

contrast matrix A. Simple linear regression analysis should not be

used, because (i) the genotypic values are not metric numbers and

thus the results depend on the chosen numbers for the three

genotype scores and (ii), in all simulations the regression does not

provide a considerably higher power than the multiple contrast test

procedures. The same conclusions can be drawn for the simulation

results obtained by w~0:4, which are displayed in Figure 5.

Software
For a convenient application of the developed procedures, the

R-software package nparcomp was developed and is available from

CRAN. It contains various functions for the analysis of two

independent samples (npar.t.test), as well as functions for the

computation of nonparametric multiple contrast tests and

simultaneous confidence intervals based on global ranks and

Figure 2. Simulated normal (left) and log-normal (right) data for different values of variance explained by the quantitative trait
w~0,0:4,0:6, p~0:5, pm~0:5, d~0:04 and an additive, dominant and recessive mode of inheritance.
doi:10.1371/journal.pone.0031242.g002
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pairwise ranks. For example, the function nparcomp computes

simultaneous confidence intervals and adjusted p-values for

relative effects in arbitrary contrast settings based on pairwise

ranks. Moreover, one-sided and two-sided confidence intervals

and adjusted p-values are computed using multivariate normal-

approximation, multivariate tn-approximation, Logit-approxima-

tion and Probit-approximation described in [16].

Discussion

A nonparametric approach to evaluate the association between

a di-allelic marker and a non-normal distributed quantitative trait

is proposed for simple population-based studies. Using a Marcus-

type multiple contrast test for relative effects allows model-specific

testing of either dominant, additive or recessive mode of

inheritance. Furthermore, an all-pairwise comparisons contrast

test is proposed as an alternative to the Kruskal-Wallis

heterogeneity test. Procedures for obtaining related simultaneous

confidence intervals or multiplicity-adjusted p-values are provided.

The advantage of obtaining confidence intervals is their

interpretability in terms of stochastic order for studies with

individuals according to [13]. Although related software is freely

available using the R library nparcomp, the routine analysis of

hundreds of thousands of SNPs can not be recommended. The

Figure 3. Type-I error (a~5%) simulation results for all-pairs (left) and Marcus-type (right) comparisons using normal (upper row)
and log-normal (lower row) distributions (N~500).
doi:10.1371/journal.pone.0031242.g003

Nonparametric Evaluation of Association Studies
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computing time would be excessive and the amount of detailed

information difficult to manage. For some selected candidate SNPs

this approach can be easily performed for a number of

phenotypes. If still an analysis on a genome-wide level is intended,

an appropriate multiplicity adjustment of the simultaneous

confidence is recommended, such as the false coverage statement

rate [27].

Adjustment against multiple covariates is an important issue in

unbiased testing association. The adjustment against population

stratification, e.g. by principle components [28], or subject-specific

baseline values, e.g. age, are relevant. For example [6] adjusted the

relationship between an eQTL and the genotype scores against the

covariates age, kind of tissue (kidney cortex or medulla), ancestry

(CEU or not) and gender (males or females). Nonparametric

analysis of covariance is challenging [29], particularly to adjust

against covariates due to possible population stratification. This is

a topic of future work.

Technical details
To estimate the unknown relative effect pj defined in (3), let

F̂Fi(x)~
1

ni

X3

i~1

c(x{Xik), i~1,2,3,

Figure 4. Power-simulation results (a~5%) for all-pairs (left) and Marcus-type (right) comparisons using normal (upper row) and
log-normal (lower row) distributions (N~500). The variance explained by the quantitative trait was set to w~0:2.
doi:10.1371/journal.pone.0031242.g004

Nonparametric Evaluation of Association Studies
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denote the empirical distribution function, where c(x)~0,0:5,1
according to xv0,x~0,xw0, respectively. An unbiased estimator

of pij~
Ð

FidFj~P(Xi1vXj1)z0:5P(Xi1~Xj1) as used in (3) is

obtained by replacing the unknown distributions Fi and Fj by their

empirical counterparts F̂Fi and F̂Fj . The estimators

p̂pij~

ð
F̂FidF̂Fj~

1

ni

R
(ij)

j: {
njz1

2

� �
, R

(ij)

j: ~
1

nj

Xnj

k~1

R
(ij)
jk , ð7Þ

can be easily computed with the ranks R
(ij)
jk of the observations Xj1, . . . ,

Xjnj
. Here, R

(ij)
jk denotes the rank of Xjk among all niznj observations

in the combined sample (i,j). Thus, an estimator of pj is given by

p̂pj~
1

3

X3

i~1

p̂pij :

The ranks used for the estimation of pj are also called pseudo-ranks in the

literature [20]. In case of a balanced design (n1~n2~n3), the pseudo-

ranks are identical to the usual global ranks. Let p̂p~(p̂p1,p̂p2,p̂p3)’ denote

the vector of the three estimators. Thus, rank estimators of the three

Figure 5. Power-simulation results (a~5%) for all-pairs (left) and Marcus-type (right) comparisons using normal (upper row) and
log-normal (lower row) distributions (N~500). The variance explained by the quantitative trait was set to w~0:4.
doi:10.1371/journal.pone.0031242.g005
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relative genetic effects pdom, prec, and padd are given by p̂pdom~c’domp̂p,

p̂prec~c’recp̂p, and p̂padd~c’add p̂p, respectively.

It was shown that
ffiffiffiffiffi
N
p

(p̂p{p) is asymptotically multivariate

normal with mean 0 and covariance matrix V [16,22]. Due to the

quite involved structure of V, let the estimator of V be denoted by

V̂V [16,22]. To test each individual hypothesis H0 : c’‘p~0 on no

genetic association, where ‘[fdom,rec,addg, let ‘~c’‘V̂Vc‘ denote

the variance estimator of
ffiffiffiffiffi
N
p

c’‘p̂p and define the test statistic

T‘~
ffiffiffiffiffi
N
p c’‘(p̂p{p)ffiffiffiffi

v̂v‘
p :

The three test statistics T‘ are collected in the vector

T~(Tdom,Trec,Tadd )’:

The distribution of T can be approximated by a multivariate

T(n,0,R̂R) distribution, where n denotes a Welch-Satterthwaite

degree of freedom, non-centrality vector 0, and estimated

correlation matrix R̂R [16]. The individual hypothesis H0 : c’‘p
~0 will be rejected at multiple level a, if

jT‘j§t(1{a,n,R̂R),

where t(1{a,n,R̂R) denotes the (1{a) equicoordinate quantile of

T(n,0,R̂R). Approximate (1{a) simultaneous confidence intervals

for the three genetic effects pdom, prec, and padd are obtained from

c’‘p̂p{t(1{a,n,R̂R)
ffiffiffiffiffiffiffiffiffiffiffi
v̂v‘=N

p
; c’‘p̂p{t(1{a,n,R̂R)

ffiffiffiffiffiffiffiffiffiffiffi
v̂v‘=N

ph i
: ð8Þ

The global hypothesis H0 : Cp~0 will be rejected, if

maxfjTdomj,jTrecj,jTadd jg§t(1{a,n,R̂R):

Range preserving confidence intervals are given by

p‘,L~
exp(2p�‘,L){1

exp(2p�‘,L)z1
p‘,U~

exp(2p�‘,U ){1

exp(2p�‘,U )z1
, ð9Þ

where

p�‘,L,p�‘,U~
1

2
log

1z p̂p‘
1{ p̂p‘

� �
+z(1{a,R̂R)

1

1{�̂p�p2
‘

SE( p̂p‘): ð10Þ

Alternatively, a pairwise rankings version is available which can

be easily derived from two-sample tests. They behave similarly to

the global rankings approach, but they can lead to paradoxical

results.

Pairwise rankings version
As mentioned in the previous section, the three genetic effects

p‘~c’‘p, ‘[fdom,rec,addg, denote generalized two-sample rela-

tive effects, which were estimated with global ranks of the data Xik.

Thus, the effects can be modified such that pairwise ranks are used

for estimation. Let

pij~P Xi1vXj1

� �
z0:5P Xi1~Xj1

� �
,i=j, ð11Þ

denote the two-sample relative effect between the genotype levels i

and j. If pijv0:5, then the values from Fi tend to be larger than

those from Fi. In case of pij~0:5, none of the observations tend to

be smaller or larger. Thus, the case of no association can be

expressed by pij~0:5. The relative dominant genetic effect on

association describes the difference between the distribution F1

and the combined sample Fdom~
n2

n2zn3
F2z

n3

n2zn3
F3. Thus, a

two-sample relative dominant effect can be described by

qdom~
n2

n2zn3
p12z

n3

n2zn3
p13,

and denotes a linear combination of p1j . The relative recessive

effect describes the difference between the combined sample

Frec~
n1

n1zn2
F1z

n2

n1zn2
F2 and F3. Thus, a relative effect on a

recessive mode of inheritance is given by

qrec~
n1

n1zn2
p13z

n2

n1zn2
p23:

Finally, the relative two-sample effect on an additive mode of

inheritance can be expressed by

qadd~p13:

The effects q‘ can be estimated by using the pairwise rank

estimators ij defined in (7) by

q̂qdom~
n2

n2zn3
p̂p12z

n3

n2zn3
p̂p13

q̂qrec~
n1

n1zn2
p̂p13z

n2

n1zn2
p̂p23

q̂qadd~p̂p13:

Multiple contrast tests for the hypotheses H0 : q‘~0:5 and

simultaneous confidence intervals for the effects q‘, where

‘[fdom,rec,addg, can be derived in the same way as described

in the previous section. We note that the effects pij may be

intransitive, i.e. it may occur that p12ƒp23ƒp31 resulting in

paradoxical results [30,31]. Therefore, we recommend using the

global ranking version.
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