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A computational model of the glucagon/insulin-driven liver glucohomeostasis function, focus-
ing on the buffering of glucose into glycogen, has been developed. The model exemplifies an
‘engineering’ approach to modelling in systems biology, and was produced by linking together
seven component models of separate aspects of the physiology. The component models use a
variety of modelling paradigms and degrees of simplification. Model parameters were deter-
mined by an iterative hybrid of fitting to high-scale physiological data, and determination
from small-scale in vitro experiments or molecular biological techniques. The component
models were not originally designed for inclusion within such a composite model, but were
integrated, with modification, using our published modelling software and computational frame-
works. This approach facilitates the development of large and complex composite models,
although, inevitably, some compromises must be made when composing the individual
models. Composite models of this form have not previously been demonstrated.
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1. INTRODUCTION

The construction of predictive models of complete
biological systems that can be used to develop the under-
standing of integrated biological function is a key aim of
systems biology. Biological modelling efforts have fol-
lowed two general approaches. The first is simulation,
where a usually restricted set of processes is modelled
with fidelity and detail. This places heavy demands on
biological data, in both quality and quantity [1]. Alter-
natively, physiological behaviours are modelled with
the aim of capturing the underlying control principles
governing the behaviour of interest, with only key biologi-
cal mechanisms characterized and parametrized in detail
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[2]. The most comprehensive modelling effort to date—
the Hunter/Noble model of the heart [3,4]—provides a
hybrid between these two approaches.

Mathematical modelling of biological systems has been
conspicuously successful in two particular circumstan-
ces: small models of specific, well-characterized system
elements, e.g. in electrophysiology [5]; or larger models
based on high-throughput data and extensive, thoroughly
understood simplification methods, e.g. in metabolic flow
analysis [6]. Models that are both comprehensive and
detailed, system-level models, covering a variety of inter-
acting phenomena crossing many scales, are few [4], and
those that exist have been extremely time-consuming
and expensive in effort.

This paper presents the development of a model of
glucose homeostasis, based principally on liver function,
employing a novel ‘engineering’ approach for generating
composite, multi-scale models. The approach allows for
the construction of a flexible, large-scale system model
by combining component sub-models that may be indi-
vidually modified, and their number and/or complexity
increased or decreased as appropriate. This allows some
components to be characterized in greater detail than
others, and has the flexibility to enable component sub-
stitution to refine characterizations when focus on the
role of particular biological mechanisms is required.

Glucose homeostasis is an example of rein control [7].
Insulin and glucagon, both generated in the pancreas,
instruct the liver to, respectively, store and release
glucose, thereby achieving glucose homeostasis. Insulin
This journal is q 2011 The Royal Society
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activates the storage of glucose in hepatocytes as a poly-
mer, glycogen [8]. Glucagon triggers the release of glucose
from glycogen, which is broken down and built up by two
enzymes, glycogen phosphorylase and glycogen synthase,
with active and inactive forms differentiated by phos-
phorylation. The degree of activation of these enzymes
is determined by the equilibrium between other enzymes,
which also have inactive and active forms, in a series of
phosphorylative epicycles [9]. Insulin and glucagon
affect these enzyme equilibria via intracellular second
messengers including cyclic adenosine monophosphate
(cAMP), calcium, inositol trisphosphate (IP3), protein
kinase A (PKA) and others [10–13]. Insulin secretion
by the pancreas is triggered at about 4 mM blood glucose,
while glucagon secretion is inhibited at about 7 mM [14].
In addition, liver glycogen storage is controlled directly
by glucose and its phosphorylated forms [15], by the glu-
cose-sensitive use of glucose in other organs of the body
[16], and by non-pancreatic hormones (not modelled in
this paper).

The principal pathology of glucose homeostasis is
diabetes. A key test of models of the liver–pancreas
interaction in achieving glucose homeostasis is type 2
diabetes, where the liver has reduced sensitivity to insu-
lin. Models can be tested by reference to continuously
measured blood glucose trajectories [17]. One feature
of such measurements is the presence of blood glucose
oscillations with periods ranging from half an hour to
2 h, termed ultradian insulin oscillations (e.g. [18,19]).
Much of the focus in trying to understand the genesis
of these oscillations has been on pancreatic (insulin pro-
duction) dynamics [20]. However, the role of the liver
has been of increasing interest in recent years [21] and
modelling liver–pancreas feedback has a relatively
long history [22].

Liu & Tang [23] and Liu et al. [24] have modelled glu-
cose homeostasis focusing specifically on the dynamics of
the insulin signalling pathway along with the action and
kinetics of key enzymes involved in the process of glucose
mobilization by glycogen phosphorylase and glycogen
synthase in the liver. These authors construct a
‘flat’ model consisting of approximately 30 differential
equations with 70 parameters. Their model is parame-
trized from the literature and from fitting to high-level
data (also obtained from the literature). These authors’
model performed well in some circumstances in qualitat-
ively matching experimental insulin production data.
The model could also produce stable oscillations known
to occur in both blood glucose and insulin concentrations,
although these did not qualitatively match some features
of the empirically observed oscillations.

This paper shows how an engineering approach,
which exploits modularity in a fundamental way, can
be employed successfully to construct a detailed,
multi-scale model of a major physiological system: the
glucose homeostasis system. The model can be tuned
and validated against existing data, and is capable of
generating interesting and novel outputs, which poten-
tially are of clinical interest. Our model is constructed
to be amenable to further elaboration through refine-
ment of existing components and the addition of new
components, without requiring major reorganizations
at each step. Problems in physiology usually involve
J. R. Soc. Interface (2012)
many parts of the organism. Measurements taken
either in vivo at the level of the organism or in vitro
at the level of the cell inevitably are affected by con-
nected systems and any potential treatments would
also affect the whole organism. This integrated aspect
of physiology makes it important to be able to model
many interconnected systems.

Modularity has significant advantages for the con-
struction of complex system models. (i) Modularity aids
understanding by presenting a system in distinct func-
tional units. (ii) Different researchers can work on each
module separately, distributing effort and expertise. (iii)
Modifications can be made to one module without affect-
ing others. If desired, a module can be replaced entirely.
(iv) Modules may be re-used as part of other projects
and a library of models may be gradually accumulated.
(v) Algorithms based on division of a system into elements
based on differing spatial or temporal scales can be used
to integrate modular components [25]. (vi) Different
components can be encoded in different computational
environments, languages and tools depending on develo-
per preferences. (vii) Modules may be independently
validated or tested.

The incremental development of a single, gradually
expanding model, with each refinement being made
only when the existing elements have been well validated,
is necessarily slow. The present approach allows models
to be added together to create a complex composite
model for tuning, validation and generation of results
for analysis. The strategy deliberately makes use of
models of individual elements that are already available
in the literature. This has been made possible by a
software framework [26–28] which allows models to be
tied together in a model management system. The
models are linked together after being wrapped using a
composite model description language (CMDL), an
XML-based language that can be used to specify compo-
site models [26]. The language supports specification of
structure and implementation details for composite
models, along with the interfaces provided by each sub-
model. At the level of computational implementation,
where it is inconvenient or costly to link distinct com-
ponents into a single large ‘flat’ model, problems such
as inconsistencies in structure or time scales between
components can be managed by an adaptation of the
numerical technique known as ‘waveform relaxation’,
originally developed for parallel computation [25]. This
is a numerical technique for computing solutions to a
system of ordinary differential equations (ODEs) that
enables the integration of independent sub-systems (or
modules) by using the outputs of sub-systems as inputs
to others and vice versa. The algorithm makes it possible
to integrate models of different mathematical forms inde-
pendently of the solution technique that might be
employed for individual components.
2. BUILDING A COMPOSITE MODEL FOR
GLUCOSE HOMEOSTASIS

The composite model brings together a series of sub-
models, some taken from or based on established
models and others developed ab initio, of aspects of
the physiology of glucose homeostasis. The current



external glucose
consumption rate

blood glucose

cell glucose

cell glucose

blood glucose

blood glucose

blood glucose

blood glucose model

glycogenolysis model

cAMP

cAMP

active GSK

active GSK

blood glucose

insulin

insulin

insulin model

glucagon

calcium

IP3

PLC

calcium

calcium

calcium

calcium model

glucagon receptor bg
sub-unit model

glucagon receptor 
a sub-unit and
cAMP model

glucagon

glucagon

pancreas model

Figure 1. Schematic showing the interactions between the seven component models that make up the composite glucose homeo-
stasis model. A model’s required input is represented by a circle symbol; a model’s output by a claw symbol. The input to the
composite model is the rate of external glucose supply (positive values) or demand (negative values) and the output is the con-
centration of blood glucose.
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choice of component models is determined by the mini-
mal physiology that needs to be represented to describe
the basic features of the glucose homeostasis system and
key elements of its control. Some sub-models represent
the physiology at a greater level of detail than others.

Seven component models describe the major
elements of glucose homeostasis, with multiple feedback
relationships between sub-models, and an overarching
feedback cycle: liver! blood! pancreas! liver. This
cycle is moderated via the blood by dietary intake of
glucose and active consumption of glucose in organism
activity. The model aims to mimic quantitatively the
behaviour of glucose regulation following external
stimuli to the liver both in a healthy state and with dia-
betes. The interchange between glucose and glycogen is
influenced by four factors: glucagon via calcium, gluca-
gon via cAMP, insulin and directly by cellular glucose
levels. These factors impinge upon a central model
that represents the computation carried out by compet-
ing enzyme phosphorylation equilibria. These nested
feedback structures, and the inputs and outputs of
each component model, are represented in figure 1.

Five of the seven models represent aspects of hepato-
cyte physiology. The models treat the whole body of
J. R. Soc. Interface (2012)
hepatocytes across the liver as a single cellular component,
and the parameters reflect this. Complexities introduced
by metabolic zonation [29] and inter-hepatocyte com-
munication through direct cell–cell communication
channels will be considered in future models. The two
remaining components are a simple model of the pan-
creas and a model mediating between pancreas and liver
representing blood transport.

Each component model is first described indepen-
dently, together with, for the more complex models,
some example results obtained when the model is con-
sidered separately. This allows independent verification
of the component’s behaviour in a context which does
not depend on its embedding within the larger system.
The mathematical descriptions of each sub-model and
its parameters are given in the electronic supplementary
material (appendix A) and all models are available at
http://www.compbio.org./models.html. A summary of
the models is given in table 1.
2.1. Glucagon receptor model (A)

This module represents the activation of a G-protein-
coupled receptor by a hormone stimulus. The

http://www.compbio.org./models.html
http://www.compbio.org./models.html
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Figure 2. Behaviour of the glucagon receptor model. The main
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G-protein-coupled receptor is an important element of
many signalling pathways, and this module can, there-
fore, be used as a component of several signalling
systems. Receptor activation of the G-protein causes
GDP for GTP exchange, which results in conformational
changes in the G-protein and separation of the Ga

sub-unit from Gbg sub-units. Both GTP-bound Ga

and Gbg are able to regulate effectors [30,31].
Activation of the a sub-unit is considered under the

cAMP model. The glucagon receptor model describes
activation of the bg sub-units of the G-protein and is
based on Nauroschat & an der Heiden [32] and Riccobene
et al. [33]. We have added the known effect that calcium
increases receptor inactivation [34]. The processes mod-
elled are: ligand–receptor binding and dissociation,
receptor sequestration and desequestration and its
dependence on receptor phosphorylation state, receptor
phosphorylation and its dependence on active G-protein
and ligand-binding, G-protein activation and inactivation
and its dependence on calcium and phospholipase C
(PLC), and the production of PLC by active G-protein.

Model results in figure 2 show the characteristic
initial rise then fall seen in G-protein responses to gluca-
gon stimulation (inset), which compares well with the
results in Bridgette et al. [35]. A sustained stimulus pro-
duces a transient response. A second glucagon stimulus
reveals desensitization of the G-protein receptor [33].

2.2. Calcium model (B)

This describes the calcium signalling pathway activated
by IP3, taken from Höfer [36]. It is a simplification of
Höfer’s model in which all switch-like response curves
are unified as a Hill function with a common coefficient,
as discussed in Hetherington et al. [37]. The model
includes IP3-dependent calcium entry through the cell
membrane, calcium- and IP3- dependent release of cal-
cium by the endoplasmic reticulum (ER), and the ER
and membrane calcium pumps. The parameters were
obtained from Höfer [36] as explained in Hetherington
et al. [37].

Höfer’s model was developed to describe the calcium
oscillations induced by vasopressin and epinephrine.
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However, glucagon generates only a single calcium tran-
sient [38]. Figure 3a shows a single calcium transient
recorded experimentally, while figure 3b shows results
generated by linking the glucagon receptor model to
the calcium model and illustrates the transient IP3
response generated by 5 nM glucagon together with
the consequent single calcium transient.

The G-protein and calcium models are coupled by
PLC/IP3 and calcium. The G-protein model produces
an output of PLC that generates IP3, the input to the cal-
cium model. The scaling between PLC and IP3 is
assumed to be linear and is determined by the scaling par-
ameter GSPLC, a component of the composite model (see
electronic supplementary material, appendix B). This
was set as 1 mm active PLC generates 100 mm IP3, so
that, given the range of values of PLC produced by the
receptor model, the range of values of the IP3 variable
is as expected in calcium oscillation modelling [34,36].
The calcium output generated by the calcium model is
fed back as an input into the G-protein model.
2.3. Cyclic adenosine monophosphate model (C)

This model, developed ab initio, represents activation of
the G-protein a sub-unit of the glucagon receptor model
(A), which has different dynamics from the bg sub-unit
associated with the calcium pathway described above.
Key modelled processes are the activation of the recep-
tor, the production of cAMP by the active receptor
complex, the elevated rate of cAMP production by acti-
vated receptor, the activation of PKA and the potential
nuclear localization of PKA, which will become impor-
tant when the current composite model is extended to
cover the transcriptional changes that result from hor-
monal stimulation of hepatocytes. Like the calcium
component, the cAMP model is based largely on Hill
function response dynamics. Receptor–ligand binding
dynamics are assumed fast, so that the ligand-bound
receptor is not a separate quantity, but rather obtained
from the total receptor population by multiplication by
an appropriate function, L(t) (electronic supplementary
material, equation A 3.3). Parameter values were based
on inspection of our experimental data: an example of
J. R. Soc. Interface (2012)
experimental measurements of cAMP production in
hepatocytes in response to glucagon is shown in
figure 4. Details of the methods used in our experiments
are given in the electronic supplementary material
(appendix D).

2.4. Insulin model (D)

The current composite model uses a very simple, ab
initio model for the insulin receptor and associated
pathway. This model declares that the controlling
species that tends to increase the amount of active
(a-form) glycogen synthase kinase (GSK) has a
threshold response to insulin with a relaxation time
delay. The representative variable for this pathway’s
effects on glycogen is the proportion of inactivated
GSK-3. The inactive b-form is the phosphorylated
form, so that an increase in the GSK variable results
in increased glycogen synthesis activity.

2.5. Blood model (E)

The blood model was developed ab initio to describe the
movements of glucose between the blood, the liver and
the pancreas. Blood glucose is transported into the
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hepatocyte, where it is converted into glucose-6-phos-
phate. The membrane glucose transporter (GLUT) is
passive, but selective, transporting only glucose, and
not glucose-6-phosphate. As a result, the transport
appears to be active, with glucose apparently pumped
into the cell with a slower transport time constant than
might be expected for a strictly passive GLUT. In this
and the glycogenolysis models (F—see §2.6), a single
intracellular glucose pseudo-concentration variable rep-
resents the effective total glucose and glucose-6-
phosphate. This illusory-pump model fits the data for a
perfusive radiolabelling experiment in pigs in Munk
et al. [39], where it was found necessary to consider separ-
ately a forward clearance rate into cells (the effective
pumping) and a reverse rate out of the cells. The appar-
ent active pumping of glucose actually represents the
glucose to glucose-6-phosphate equilibrium—the GLUT
pump itself is known to be an effective rapid passive
transporter. The radiolabelling methods of Munk et al.
[39] cannot distinguish between intracellular glucose
and glucose held in the cell as glycogen or in the phos-
phorylated form so that an apparent increase in cellular
glucose pseudo-concentration above the concentration
in the surrounding medium will reflect glucose held in
other forms. The advective effects of blood circulation
are neglected—the blood is treated as a single effec-
tive volume, in contact with liver and pancreas
and mediates communication between the two via the
blood glucose concentration variable gB (see electronic
supplementary material, appendix A).

An important input to this model, which is also an
input to the composite model, represents feeding, exercise
and the basic metabolic drain of the (unmodelled) rest of
the body. This exogenous rate of input/output of blood
glucose is denoted by M. We define M¼ 0 to be zero
net glucose supply/demand, so that M¼ 0 can be con-
sidered to be a situation where a person is given a
glucose drip that exactly matches the constant metabolic
demand of the resting state. An increase in M represents
an increase in blood glucose, as, for example, after feeding.
A fall in M represents a fall in blood glucose, as, for
example, during fasting. This device allows us to avoid
representing the rest of the body as a separate component.

The model involves a quantity, denoted vf, that rep-
resents the effective volume ratio of liver cytoplasm to
blood volume, so that a unit concentration fall of cellular
glucose in the liver produces vf units of blood glucose
concentration increase. The transmembrane glucose
transport parameters are based on the values in Munk
et al. [39], where the steady-state ratio of cellular
pseudo-concentration to blood concentration is somewhat
over unity, and the time scale of response (k2 in the study
of Munk et al. [39]) is of the order of 1 min. The selection of
appropriate values for vf is explained below as this choice
is complicated by the process of model composition.
2.6. Glycogenolysis model (F)

Many factors control glycogen breakdown and syn-
thesis. This model incorporates direct control by
cellular glucose and glucose-6-phosphate, based on the
model in Cardenas & Goldbeter [15], control by cal-
cium ions, based on the model in Gall et al. [12],
J. R. Soc. Interface (2012)
control by cAMP via PKA, and by insulin via GSK,
based on the representations in Bollen et al. [8] and
King [9]. The model includes direct control of glucose
by glucose, in addition to pancreatic hormone control.
In order to reconcile these four competing inputs,
one could, in principle, model the full enzyme kinetic
scheme consisting of glycogen phosphorylase and
synthase, their phosphatases and kinases, and the
additional phosphatases and kinases involved. This
phosphorylation cycle cascade is, however, extremely
complicated and not sufficiently well characterized
experimentally for detailed dynamical modelling to be
possible. Instead, a simplified, pragmatic approach has
been chosen. The overall decision system, whereby the
protein cycles that compute the behaviour in terms of
the cell’s second messengers, rather than being mod-
elled in detail, is represented using fuzzy logic [40].
A Boolean logical expression, based on each of the
four inputs, determines whether glycogen build-up
and breakdown are on or off. This Boolean expression
is extended to the domain where the four inputs are
not themselves Boolean variables, but, rather, inter-
mediate degrees of cellular activity in the unit interval
0–1. The model is completed by defining a simple satur-
ating function to represent the saturating kinetics of
the enzymes, and specifying response times for these
activities to the inputs.

In developing the model, the logical expressions were
explored to achieve a model consistent with known be-
haviour. Parameter values for this model were based on
Gall et al. [12] and Cardenas & Goldbeter [15], obtained
from the enzyme kinetics database BRENDA [41].
2.7. Pancreas model (G)

To complete the glucohomeostatic feedback cycle, we
need a pancreas model responsible for the production
of the hormones glucagon and insulin. In order to
retain a focus on hepatic physiology, we developed ab
initio a particularly simple pancreas model, in which
the release of glucagon or insulin follows time-delayed
threshold responses. This is modelled using a logarith-
mic response to the ratio of blood glucose to a fixed
reference level, defined so that there is a zone within
which the rate of glucagon or insulin release is small,
but which rises steeply as the perimeter of this zone is
approached. An additional factor not modelled directly
is the timescale of the circulation between pancreas and
liver, which is represented using only the pancreatic and
liver response times.

Figure 5 shows the consequences of an imposed
activity cycle obtained by coupling this simple pancreas
model to a similarly simple liver model, incorporating
the actions of glycogen phosphorylase, assumed here
to be controlled only by glucagon, and glycogen
synthase, assumed here to be controlled only by insulin.
Positive activity values represent glucose comsump-
tion by the body and negative values glucose intake
from feeding. The example assumes two cycles in a
24 h period.

Oscillations in blood glucose concentration about
the reference level at the system’s natural frequency
are induced by the periodic activity-feeding (glucose
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demand–supply) function M(t). However, additional,
high-frequency oscillations are superimposed on this
cycle. In the full composite model, these will be identified
with the ultradian glucose oscillations [19]. It is
interesting that these oscillations appear even in this
very coarse-grained model as an emergent property of
pancreas–liver feedback dynamics. The frequency of
the oscillations observed here and in early runs of the
composite model is faster than observed experimentally
for ultradian oscillations. This arises from values for
enzyme kinetics taken from the BRENDA database,
which are probably inappropriate (see §4).
3. MODEL TUNING AND VALIDATION

3.1. Tuning the model parameters

The seven models described above must now be com-
posed together, matching each input to the appropriate
output, as indicated in figure 1. The scalings of time
and of the transferred variables must be made consistent,
and, for the most part, follow from the units indicated
above for each component model (table 1). Scaling fac-
tors introduce parameters to the composite model that
are not present in any of the original component
models. For example, one model may use the number of
molecules and another molarity. A volume parameter
must be introduced to produce appropriate scaling
between such component models. Where the additional
parameter occurs only through multiplying combinations
of other parameters it can, if desired, be removedbya repar-
ametrization of the composite model. The choice is either
J. R. Soc. Interface (2012)
to have additional parameters or reduced parameters
that are less easily identified with biological properties.
Details are given in the electronic supplementary material
(appendix B).

Model tuning was done manually: first using the most
appropriate published data and then modifying parame-
ters, while maintaining consistency where parameters
were not independent, to fit with available experimental
data. We began with parameters selected for individual
models. Details of the procedure used for tuning the
composite model are given in the electronic supplementary
material (appendix C).

In initial runs of the model using the preliminary
parameter estimates, the liver was cleared of glucose
extremely rapidly, with ultradian glucose oscillations
displaying an excessively high frequency, but with the
relative amplitude of the first peak to other peaks of the
oscillations, and shape, being broadly correct (figure 6).

As discussed in the electronic supplementary material
(appendix B) competition between components and
mixing of enzyme and substratewill be slowed by diffusion
in the intracellular space. This was accommodated by
slowing down the relevant processes by reducing rate con-
stants or, equivalently, increasing characteristic times
(reciprocals of rate constants). The model was then
shown to fit published data well (figure 7).

The tuning was also checked by comparison of time
scales with direct experiment in which the rate of glu-
cose release from cultured hepatocytes was
determined. Figure 8 shows the release of glucose from
primary, cultured hepatocytes that had been loaded
with glucose by the addition of insulin to glucose-
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containing culture medium overnight. At time zero, the
bathing medium was replaced by medium lacking glu-
cose and the glucose released into the medium
monitored over the next 8 h in the absence and presence
of glucagon. Glucose release was relatively slow and
occurred with a time course consistent with the model
using the adjusted parameter values. The production
of cAMP by glucagon-treated hepatocytes referred to
above and illustrated in figure 4 similarly displayed a
relatively slow time course, consistent with the model
using the adjusted parameter values.
3.2. Model validation

Individual models were fitted from small-scale data and
the degree of fit of the composite model compared with
the behaviour of the overall glucose homeostasis system.
Parameters were chosen for each component model and
the models validated individually against appropriate
experimental observations. Scaling parameters needed
for model composition were identified from the definition
of the models’ units and appropriate data where possible.
Where parameters remained to be determined, thesewere
tuned as part of the validation of the composite model,
based on higher scale observations of the whole system
as described above. The component models’ parameters
were not further tuned to obtain an optimal fit to exper-
imental results for the whole system. We have required
only that the model gives a reasonable description of
the key qualitative features of the whole system and
shows order-of-magnitude quantitative fidelity.

Validation was based on the following criteria:

— existence of a homeostatic response to a range of
glucose challenges;

— existence and correct behaviour of ultradian
oscillations under appropriate conditions; and

— match to observed experimental behaviour in
response to a glucagon challenge [14].

A fundamental validation step is to examine glucose
variation in the presence of a challenge to homeostasis.
This was achieved by either inserting (feeding) or remov-
ing (exercise) excess glucose from the blood (represented
by the activity function M(t) in the blood glucose
model (E)—see electronic supplementary material,
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appendix A). This approximates to an oral glucose toler-
ance test (OGTT), although, for modelling convenience,
a sudden-onset, subsequently sustained glucose input is
used: M(t) ¼M, a constant (mM s21), for t � t0, the
time of onset. This matches the conditions of continuous
enteral nutrition employed by Simon et al. [18] and
figure 7 shows that the tuned model (figure 7b) qualitat-
ively reproduces their observations (figure 7a)
reasonably well.

Since cAMP control of glycogen phosphorylase via
the a sub-unit of the G-protein is probably dominant
in hepatocytes [42,43], in order to restrict the number
of potential parameters and variables to be explored,
we have inactivated the G-protein bg sub-unit (A) and
calcium (B) modules for the results presented below,
removing that entire arm from the model structure
(figure 1)—see electronic supplementary material
(appendix A, equations (A 6.9) and (A 6.10)). The mod-
ular structure of the composite model makes such
adjustment extremely simple.

Figure 9 explores the behaviour of the tuned model
to different challenges. The first is the consequence of
a small glucose input (M ¼ 5) or demand (M ¼ 25),
which produce a raised or decreased steady-state glu-
cose concentration and a steadily rising or falling
glycogen level (figure 9a,b). There is a small shift in
the blood glucose level, because the homeostatic
machinery stimulates glycogen synthesis or breakdown,
just enough to cope with the glucose supply or demand.
For a negative glucose input, reflecting an increase in
demand or reduced glucose supply (figure 9b), glucagon
rises to mobilize glucose from glycogen stores and blood
glucose first falls to a new, lower stable state. This is
maintained until the glycogen store is exhausted and
glucose homeostasis then fails, with blood glucose fall-
ing away to life-threatening levels, mimicking extreme
glucose deficit.

For high levels of glucose input (M ¼10), blood glu-
cose can be maintained at physiological levels provided
that the enzyme GSK retains a normal sensitivity to
insulin. Figure 9c shows that even if GSK resistance
to insulin is increased (from a normal value of tI ¼ 0.5
to tI ¼ 0.8 in model D; electronic supplementary
material, appendix A 4) normal glucose homeostasis
can still be maintained by the direct glucose control
mechanism because a rise in cellular glucose concen-
tration stimulates glycogen synthesis despite the
reduced sensitivity to insulin that prevents a fully hor-
mone-driven response. While this could be another
indication of the robustness of the system, it neverthe-
less suggests that small reductions in insulin
sensitivity, such as might occur early in the diabetic
response, can be accommodated through the direct glu-
cose control mechanism and therefore could be masked,
potentially delaying diagnosis of type 2 diabetes.

Figure 9d shows that if GSK resistance to insulin is
lower than normal, so that insulin sensitivity increases,
then, for M ¼ 10 and an insulin sensitivity of 0.1, all
parameters oscillate. By the time the liver responds
to changes in pancreatic hormones, the blood glucose
level has been driven too far in the opposite direction
and the pancreas response remains out of phase with
the liver response, producing varying glucose levels.
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In extreme cases, large oscillations result in acute tem-
porary hypoglycaemia. Once the glucose concentration
drops to such low values, other physiological factors
not modelled would play an important role, so the sub-
sequent course of the model after the first extreme
oscillation is not valid.

It is of interest to consider other challenges to the glu-
cose homeostasis system, in particular a glucagon
challenge, as proposed in Lockton & Poucher [44]. This
provides a useful test of model reliability, since this vir-
tual experiment was not performed until after the
model content and parameters were settled. Figure 10
compares results from the model with those obtained
by Lockton & Poucher [44], who challenged fasting sub-
jects with a bolus of glucagon and monitored the rise in
blood glucose, taken to be the consequence of glyco-
genolysis. The model produces a transient increase in
blood glucose (figure 10a) that matches their results
(figure 10b). They note also that the initial glucagon
challenge is accompanied by a transient rise in insulin.
The model (figure 10a) also shows a transient rise in insu-
lin after an initial glucagon challenge. Additionally, the
model reproduces the transient hypoglycaemia following
glucagon challenge noted in Lockton & Poucher’s exper-
iments, although the time scale of the model response is
J. R. Soc. Interface (2012)
about twice as fast. The results of Simon & Brandenber-
ger [19] make it clear that there is substantial variation in
time scales from individual to individual. However, the
discrepancy in time scales between model and experiment
is most probably due to the buffering effect of other tis-
sues, not modelled. Detailed additional tuning of model
parameters does not seem warranted given the satisfac-
tory degree of qualitative similarity in the responses of
model and experiment.
4. DISCUSSION

This paper presents an effective approach to building
large-scale system models that allow sub-models to be
composed, using existing models where possible, while
ensuring that model couplings are syntactically correct
as well as physiologically sensible, to create a complex
composite model for tuning, validation and generation
of results for analysis. The composite model of glucose
homeostasis presented here builds on the modelling
efforts of previous workers. The model crosses biological
scales from individual molecules up to whole organism
phenomena. As a result of this work, a number of
issues arise.

Modularization requires the biology to be broken up
into components. The restrictions of experimental
work, imposed by technical limitations, can effectively
split a system into components so that biologists
rarely analyse a complete system. However, precise div-
ision of the biology into non-overlapping components is
not always possible either experimentally or in models.
This means that some modules may generate dupli-
cation in the sense that the same process participates
in more than one component model, and these processes
may need to be instantiated separately in the different
model components. This is most likely when using pre-
viously published models to construct a composite
model. However, for both modelling and physiological
reasons, this may prove justifiable. For example, it
may be reasonable to use a relatively simple model to
obtain inputs for a module that it affects only in some
minor features, and a more detailed model of the
same component to obtain inputs to a different
module that is affected significantly. This strategy
may provide advantages in terms of computational
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time. Apparent duplication also may be necessary when
common molecules are used in different biological path-
ways (modelled separately), but which do not result in
cross talk owing to physical separation, or also
potentially to scaffold proteins which contribute to
the structuring of the intracellular environment. For
example, one model’s input function may be a function
of another model’s state variables. A typical example
J. R. Soc. Interface (2012)
for ODE modelling is where species A exists in two com-
partments, each with its own model, and the rate of flux
depends on the concentration of A in both compart-
ments. One can express the function for flux as a
separate term in each model, and pass the concentration
in each compartment to the model of the other in an
iterative process [25]. However, it is essential to
maintain consistent parameter choices.
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In this study, the assignment of values to model par-
ameters revealed the importance of using data acquired
under experimental conditions appropriate to the model.
Parameter values need to be determined under realistic,
rather than idealized, experimental conditions. It is impor-
tant to use effective rate constants that incorporate delays
owing, for example, to diffusion of molecules through the
cytoplasm and competition for substrates. Values depos-
ited in databases such as BRENDA are usually derived
from measurements made on purified enzymes under
‘ideal’ (supersaturated) conditions, in a stop flow appar-
atus where mixing is virtually instantaneous. These
values are more than likely to be unphysiological.

The primary advantage of an integrative approach
to building complex system models lies in the reuse of
existing modelling work, which speeds the process of
model building and exploits existing intellectual capital.
With such a ‘model-based engineering’ approach, which
scales modelling techniques to the substantial challenges
faced, the full potential of multi-scale modelling in sys-
tems biology can be realized. This approach brings its
own problems, as detailed above. However, the findings
of our model make it clear that composite models
constructed in this way can generate interesting biologi-
cal hypotheses, potential experiments or theoretical
advances at a much better effort-to-benefit ratio than
would be possible with ab initio detailed modelling. The
detailed experimental data that are necessary to under-
pin simulation are usually generated by focusing on
particular elements of a process, according to the exper-
imental techniques available. It is rarely possible to
analyse large numbers of variables and parameters simul-
taneously, and obtain a uniform level of quantitative
detail at all relevant levels. Thus, a pragmatic, modular
integrative approach that allows components to be indi-
vidually brought to a quality suitable for use in larger
constructs is advantageous.

Once insights have been obtained, it may be possible
(and instructive) to design simplified and abstracted
models to obtain these features. However, such models
will then be ‘stand-alone’ and will inevitably lose many
of the subtle interplays between sub-systems that a ‘sys-
tems biology’ approach to physiology seeks to capture.
This latter aspect will almost certainly be of critical
importance when these models are extended and refined
enough to be of use in a diagnostic clinical setting (a key
long-term goal). Simplified and abstracted models will
not have the comprehensiveness and flexibility for this.

The model itself demonstrates direct glucose control of
the system, i.e. apancreatic stabilization of blood glucose,
illustrating the general concept of robustness through
redundancy in evolutionary theory. Functional gluco-
homeostasis has been observed after pancreatectomy
[42,43]. If a suitable experimental model can be found,
investigation of whether this is due to direct glucose con-
trol would be of value.

In the companion paper [45], the behaviour of the
composite model is explored more fully.
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