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The process of evolutionary diversification unfolds in a vast genotypic space of potential out-
comes. During the past century, there have been remarkable advances in the development of
theory for this diversification, and the theory’s success rests, in part, on the scope of its appli-
cability. A great deal of this theory focuses on a relatively small subset of the space of
potential genotypes, chosen largely based on historical or contemporary patterns, and then
predicts the evolutionary dynamics within this pre-defined set. To what extent can such an
approach be pushed to a broader perspective that accounts for the potential open-endedness
of evolutionary diversification? There have been a number of significant theoretical develop-
ments along these lines but the question of how far such theory can be pushed has not been
addressed. Here a theorem is proven demonstrating that, because of the digital nature of
inheritance, there are inherent limits on the kinds of questions that can be answered using
such an approach. In particular, even in extremely simple evolutionary systems, a complete
theory accounting for the potential open-endedness of evolution is unattainable unless
evolution is progressive. The theorem is closely related to Gödel’s incompleteness theorem,
and to the halting problem from computability theory.
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1. INTRODUCTION

Much of evolutionary theory is, in an important sense,
fundamentally historical. The process of evolutionary
diversification unfolds in a vast genotypic space of
potential outcomes, and explores some parts of this
space and not others. Nevertheless, a great deal of cur-
rent theory restricts attention to a relatively small
subset of this space, chosen largely based on historical
or contemporary patterns, and then predicts evolution-
ary dynamics. Although this can work well for making
short-term predictions, ultimately it must fail once evol-
ution gives rise to genuinely novel genotypes lying
outside this predefined set [1].

This potential limitation on the predictive ability of
many models of evolution has been noted on various
occasions throughout the development of evolutionary
theory [1–4], perhaps most famously by the Dutch
biologist Hugo DeVries when he remarked that ‘Natural
selection may explain the survival of the fittest, but it
cannot explain the arrival of the fittest’ [5]. Such state-
ments hint at the notion that many models of evolution
are what we might call ‘local’, or ‘closed’, in the sense
that they focus attention on a very small (local)
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region of the evolutionary tree and do not account for
the possibility that evolution is an open-ended process.

The distinction between ‘closed’ and ‘open-ended’
models of evolution will be discussed in more detail
below, but in recent years there have been several inter-
esting studies published that are beginning to push the
boundaries of analyses towards what we might naturally
call open-ended models. These studies include models of
abstract replicator populations [3,6–9], models exploring
the space of evolutionary possibilities [10–12], analyses
of evolutionary transitions [13,14], models for predicting
the distribution of allelic effects during evolution [15–18]
and studies of evolvability [4]. Similarly, there have also
been many in silico and artificial life experiments that
explore generic, emergent, properties of evolution
[3,19–27]. In general, these analyses have demonstrated
that, once we allow for more open-ended evolution, a
much richer suite of evolutionary possibilities arises.

The above studies collectively suggest that accounting
for open-ended evolution in theory can yield interesting
new insights, and it can also yield new testable predic-
tions [15–18]. Nevertheless, there is still a relative
paucity of theoretical studies that allow for open-ended
evolution, and so we might expect that much is yet to
be learned by broadening evolutionary theory further
in this way. My purpose with this article is therefore
This journal is q 2011 The Royal Society
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twofold. First, I simply wish to highlight the fact that
there is an important distinction to be made between
open-ended and closed models of evolution (defined
more precisely below), and to suggest that open-ended
models might more faithfully represent the evolutionary
process. Second, and more significantly, I wish to con-
sider whether a push towards a predictive theory that
embraces the potential open-endedness of evolution is
likely to face additional obstacles, over and above those
faced by closed models of evolution. Put another way, I
ask the question: to what extent is the development of a
predictive, open-ended evolutionary theory possible?

Although a complete answer to the above question is
not possible, in what follows I will provide at least a par-
tial answer. Furthermore, I demonstrate that this
answer has interesting connections to the halting pro-
blem from computability theory and to Gödel’s
incompleteness theorem from mathematical logic. In
particular, I will use results from these areas to prove
a theorem that formally links the concept of progressive
evolution to the possibility of developing such a predic-
tive open-ended theory. There remains debate over if,
and when, evolution might be progressive [28–30] and
part of this debate stems from the lack of a precise yet
general definition of progression. Thus, another way
to view the results presented here is as providing such
a definition. I will return to this point more fully in §4.
2. A MOTIVATING EXAMPLE

To sharpen the focus on these somewhat abstract ideas,
it is worth beginning with a concrete motivating
example involving evolutionary prediction. This section
does so, focusing primarily on the broad conceptual
issues involved. The section that follows then addresses
these issues more precisely.

Consider trying to use evolutionary theory to predict
the dynamics of human influenza. Specifically, consider
trying to answer the following question: is it likely that
a pandemic with the 1918 Spanish influenza strain will
ever occur again? This is obviously a difficult, and still
somewhat loosely defined, question so let us narrow
things down further. One reason we might be sceptical
about our ability to make such predictions is because of
uncertainty in initial conditions and parameter values,
as well as uncertainty about the evolutionary processes
involved. In other words, perhaps we lack all of the
information required to make such predictions. Further-
more, unexpected contingencies might thwart what
would otherwise be accurate predictions. For example,
an unanticipated volcanic eruption might temporarily
alter commercial air travel patterns, and this might
thereby alter the epidemiological and evolutionary
dynamics of influenza.

These practical limitations are clearly important, but
are they the only obstacle in making accurate evolution-
ary predictions or are there other, ‘inherent’, limitations
as well. Does the difficulty in making evolutionary pre-
dictions stem simply from our lack of knowledge of the
evolutionary processes involved or are there reasons
why, even in principle, such evolutionary predictions
are not possible?
J. R. Soc. Interface (2012)
It is the last question that is the focus of this article,
and therefore I will, at least temporarily, put the above
practical concerns aside. Specifically, let us assume that
we can build a model that adequately captures all of
the relevant evolutionary processes, and that we can
obtain all parameter estimates necessary to use such a
model. Without getting too much into the specifics, one
of the first things we would need to decide is the relevant
strain space for the model. The simplest scenario would
consider only two strains (e.g. the 1918 strain and the cur-
rent, predominant, strain). More sophisticated scenarios
might instead include several strains that are thought
to be important in the dynamics. In either case, both
such resulting models would be ‘closed’ in the sense
described in §1 because they focus only on a finite (and
relatively small) number of strains. Furthermore, given
that there is a discrete and finite number of people who
can be infected at any given time, there is then also a
finite (and relatively small) number of possible evolu-
tionary outcomes. As will be detailed more precisely
later, this then implies that the process either will
reach a steady state or will display periodic behaviour
(see appendix E). Hence, if a closed model is an accu-
rate description of the evolutionary process, then, in
principle, we can answer the above question by simply
running the model until one of these two outcomes
occurs. At that point, we need only observe whether
or not a 1918 Spanish flu pandemic ever occurred
during the run of the model (or if it occurred with
significant probability).

But what if the evolutionary process is, instead, open-
ended? To explore this possibility we need to be more
specific about what is meant by open-ended. Consider
again the example of influenza. Influenza A has a
genome size of more that 12 000 nucleotides, and there-
fore the number of possible genotypes is enormous. To
gain some perspective on just how many genotypes are
possible, let us restrict attention to only the smallest of
the eight genomic segments of influenza. In this case,
there are then only approximately 800 nucleotides and
therefore approximately 4800 different possible genotypes.
To put this number in perspective, it is approximately
10400 times larger than the estimated number of atoms
in the universe. For a model to be open-ended, it would
have to allow for such a vast set of possible evolutionary
outcomes so that, as in reality, evolutionary change
could continue unabated, producing potentially novel
outcomes essentially indefinitely. The simplest way we
might try to capture this theoretically is to assume that
the space of possible genotypes is infinite.

Given these considerations, if evolutionary theory is to
capture an open-ended evolutionary process, then its
state space must be effectively infinite. This is necessary
but it is not a sufficient condition for open-ended evol-
ution. For example, many stochastic Markovian models
in population genetics have an infinite state space (e.g.
the infinite alleles model [31]) but, nevertheless, do not
display open-ended evolution. Rather, further assump-
tions are often made, such as the assumption that the
Markov chain is irreducible and positively recurrent.
These assumptions are usually made primarily for math-
ematical convenience but they rule out the possibility
of open-ended evolution as they then guarantee the
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existence of a single unique equilibrium or stationary dis-
tribution. As a result, such models cannot capture the
possibility that evolutionary change might continue
indefinitely.

What if we relax these assumptions and allow for
truly open-ended evolution in the theory that we
develop? Are there then even further problems associ-
ated with making evolutionary predictions? For
example, does this make answering the question about
influenza evolution laid out at the start of this section
more difficult? You might suspect that the answer is
‘yes’; at least, the approach suggested above for closed
models will no longer suffice because the evolutionary
process is no longer guaranteed to settle down to an
equilibrium or stationary distribution. Thus, the best
we can possibly hope for is that there is some way to
prove, using the structure of the model, whether or
not such an outcome will occur. Thus, all practical diffi-
culties of predicting evolution aside, it is not obvious
whether we can answer the above sort of question
about influenza evolution, even in principle.

These issues are now starting to tread heavily into
the fields of computability and mathematical logic
and, roughly speaking, a theory that can answer the
above kind of question about influenza evolution is
referred to as a negation-complete theory. This termi-
nology reflects the idea that the theory is complete in
the sense of one being able to determine whether a
given statement is true, or whether its formal negation
is true instead. For example, in the context of influenza,
a negation-complete theory would be able to predict
whether the statement ‘the Spanish flu will happen
again’ is true or whether its formal negation ‘it is not
true that the Spanish flu will happen again’ is true
instead. More generally, a negation-complete evolution-
ary theory would be one from which we could determine
those parts of genotypic space that will be explored by
evolution and those that will not.

Is such a negation-complete theory possible once we
allow for open-ended evolution? In the remainder of this
article, I show that the answer to this question is closely
related to the idea of progressive evolution. In particu-
lar, even if the system of evolution was simple enough
for us to understand everything about how its genetic
composition changes from one generation to the next,
the following is proven:
J. R. S
A negation-complete evolutionary theory is poss-
ible if, and only if, the evolutionary process is
progressive.
The above statement will be made more precise shortly,
but, as already alluded to above, it stems from the fact
that DNA affords evolution a mechanism of digital
inheritance. As Maynard Smith & Szathmáry [13] have
noted the combinatorial complexity that arises thereby
allows evolution to be effectively open-ended. Indeed, as
will be argued below, digital inheritance allows one to
characterize evolution (i.e. the change in genetic compo-
sition of a population) as a dynamical system on the
natural numbers, and therefore the theorem proved
below holds for any such dynamical system, not just
those meant to model evolution. As a result, the theorem
oc. Interface (2012)
is closely related to other results from mathematics
and computer science; namely Gödel’s incompleteness
theorem [32–35] and to the halting problem from
computability theory [36,37].
3. STATEMENT AND PROOF OF THEOREM

In order to give precision to the above statement, we
must specify what is meant by ‘the evolutionary process’,
as well as what it means for evolutionary theory to be
negation-complete. The goal is to determine whether,
even in extremely simple evolutionary processes, there
is some inherent limitation on evolutionary theory.

To this end, consider a simplified evolutionary pro-
cess in which there is a well-mixed population of
replicators with some maximal population size, and in
which each replicator contains a single piece of DNA.
This genetic code can mutate in both composition
and length, with no pre-imposed bounds. Suppose
that each replicator survives and reproduces in a way
that depends only on the current genetic composition
of the population. For additional simplicity, suppose
that generations are discrete. All conclusions hold if
events occur in continuous time instead (appendix E).
Finally, for simplicity of exposition, I will usually
assume that the evolutionary dynamics are determinis-
tic in the main text. Again, all results generalize to the
case of stochastic evolutionary dynamics, albeit with a
few additional assumptions (appendix E).

With the above evolutionary dynamics, the genetic
composition of the system will evolve over time, and
we can characterize the state of the system at any
time by the number of each type of replicator (e.g.
the number of infections with each possible genotype
of influenza). The goal then is to determine if it is pos-
sible to construct an evolutionary theory that can
predict which parts of the space of potential evolution-
ary outcomes will be explored during evolutionary
diversification, and which will not. Formally, the results
presented below are valid for any theory whose derived
statements are recursively enumerable. Axiomatic the-
ories are one such example but (roughly speaking)
any theoretical approach that can, in principle, be
implemented by a computer falls into this category
(appendix A). Indeed, the statement and proof of the
theorem rely on several ideas from computability
theory (appendix B).

The digital nature of inheritance provided by DNA
means that, in principle, the number of distinct kinds
of replicators that are possible is discrete and
unbounded, a property Maynard Smith & Szathmáry
[13] refer to as ‘indefinite’ heredity. It is indefinite her-
edity that allows for open-ended evolution. As a result,
in principle, the set of possible population states during
evolution is isomorphic to the positive integers, i.e.
there exists a one-to-one correspondence between the
set of possible population states and the positive inte-
gers. Such sets are called denumerable, and in fact the
set of population states is effectively denumerable in
a computability sense (appendix C). Thus, we can
effectively assign a unique integer-valued ‘code’ to
every possible population state.
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Figure 1. A schematic of the coding of population states, and
the theorem. The middle irregular shape represents the space
of population states, S, with four states depicted (the ovals).
Roman numerals indicate the time when each state is visited
during evolution (the silver-shaded state, s ¼ fT,T,Tg, is
never visited). Vertical ovals on the right and left represent
two different codings by the positive integers, along with
their respective evolutionary mappings, fE(n) and fÊðnÞ,
over the first three time steps. If evolution is progressive,
then coding 2 is possible, and the theorem then says that we
can ‘decide’ any population state, s [ S. For example, we
can decide state ‘T,T,T ’ by finding its code (i.e. ‘1’), and
then iterating the map, fÊðnÞ, until we obtain an output
greater than ‘1’ (this occurs at time step 1 because
fEð1Þ ¼ 2). If ‘1’ has not yet been visited by this time, it
never will be. Conversely, if all population states are decid-
able, then, under coding 1, we can apply the algorithm
provided in part 2 of the theorem’s proof to obtain coding 2,
thereby demonstrating that evolution is progressive.
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In practice, of course, there are limits on the number
of kinds of replicators possible, if only because of a finite
pool of the required chemical building blocks. Neverthe-
less, as mentioned earlier, the combinatorial nature of
indefinite heredity means that the actual number of
possible population states is so large as to be effectively
infinite. For simplicity of exposition, it is assumed in
the main text that the set of possible population
states is truly infinite; however, appendix F makes the
notion of ‘effectively infinite’ precise and provides the
analogous results for this case.

With the above coding, we can formalize evolution
mathematically as a mapping of the positive integers
to themselves. For example, in the deterministic case,
we might start with a model (e.g. a mapping F) that
tells us the number of individuals of each genotype in
the next time step, as a function of the current numbers.
Then, under the above coding, if E(n) denotes the
population state (formally, its integer code number)
at time n, the model can be recast as a single-variable,
integer, mapping E(n þ 1) ¼ G(E(n)) for some function
G, along with some initial condition. Similarly, in the
stochastic case, if we start with a probabilistic mapping
F, then it can be recast as a mapping E(n þ 1) ¼
H(E(n)), where H gives the probability distribution
over the set of code numbers in the next time step as
a function of its current distribution (and E is then a
vector of probabilities over the integers). Therefore, in
general, we can view the evolutionary trajectory as
being simply an integer-valued function with an inte-
ger-valued argument. Of course, different ways of
coding the population states will correspond to different
maps, G or H, and thus different functions E(n). Also
note that the domain of G or H need not be all of the
positive integers, and in fact different initial conditions
might give rise to different domains as well. This would
correspond to there being different basins of attraction
in the evolutionary process.

It is also worth noting that, although we have
assumed the evolutionary mapping (i.e. G or H ) is a
function of the current genetic composition of the popu-
lation only, we can relax this assumption and allow
evolutionary change to depend on other aspects of the
environment as well. In particular, we might expand
our definition of ‘population state’ to include both the
genetic state and the state of other variables associated
with the environment in which the genes exist. Again,
as long as such generalized processes can be recast as
dynamical systems on the natural numbers, all of the
results presented here continue to hold.

The above arguments illustrate how we can view
evolution as a dynamical system on the natural num-
bers, and they also now allow us to formalize the
notion of open-ended evolution. In the deterministic
setting, evolution is open-ended if the mapping G
never revisits a previously visited state. Likewise, in
the stochastic setting, evolution is open-ended if the
mapping H always admits at least one new state in
each generation with positive probability.

Because we can view evolution as a dynamical
system on the natural numbers, evolutionary theory
can be viewed as a set of specific rules for manipulating
and deducing statements about such numbers.
J. R. Soc. Interface (2012)
Computability theory deals with functions that map
positive integers to themselves, and thus provides a
natural set of tools to analyse the problem. A function
is called ‘computable’ if there exists some algorithmic
procedure that can be followed to evaluate the function
in a finite number of steps (appendix B).

Again, focusing on the deterministic case, given
the assumption that we are able to predict the state
of the population from one time step to the next,
the function E(n) is computable (see appendix B).
Furthermore, the set of all computable functions is
denumerable [37]. Therefore, denoting the kth such
function by fk(n), it is clear that the evolutionary pro-
cess, E(n), must correspond to a member of this set.
Denote this specific member by fE(n), and again note
that, if we change the integer coding used to identify
specific population states, we will obtain a different
function ÊðnÞ, and thus a different member of the set,
fÊðnÞ (figure 1).

During evolution, a set of population states will
be visited over time (in the stochastic case, we consider
a state as being visited if the probability of it occurring at
some point is larger than a threshold value; appendix E).
These will be referred to as ‘evolutionarily attainable’
states. In terms of our formalism, this corresponds to
the function fE(n) taking on various values of its
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range, RE, as n increases (figure 1). A negation-complete
evolutionary theory would be one that can determine
whether a code, x, satisfies x [ RE or whether it satisfies
x � RE instead. In the language of computability theory,
this corresponds to asking whether the predicate ‘x [ RE’
is decidable (appendix B; [37]). In terms of the influenza
example presented earlier, if x is the population state
corresponding to a pandemic with the 1918 strain,
then the statement ‘the Spanish flu will happen
again’ corresponds to the number-theoretic statement x
[ RE. Likewise, the statement ‘it is not true that the
Spanish flu will happen again’ corresponds to the
number-theoretic statement x � RE.

Finally, we can give a precise definition of progressive
evolution. Intuitively, evolution is progressive if there is
some quantifiable characteristic of the population that
increases through evolutionary time. In terms of the
above formalization, this means that there is a way to
recode the population states such that the code
number increases during evolution. Formally, evolution
is progressive if there exists a computable, one-to-one,
coding of the population states by positive integers, Ĉ ,
such that the corresponding description of the evolution-
ary process, fÊðnÞ, satisfies fÊðn þ 1Þ . fÊðnÞ for all n.
Again, in terms of the influenza example presented ear-
lier, if evolution were progressive, then there would be
some way to a priori code the population states such
that, as influenza evolution occurs, the code number of
the population increases (I will return to this definition
of progression in more detail in §4).

We can now state a theorem in terms of precise,
technical language:

Theorem 3.1. ‘x [ RE’ is decidable if, and only if,
there exists a computable, one-to-one, coding of the
population states by positive integers, Ĉ ; such that the
corresponding description of the evolutionary process,
fÊðnÞ; satisfies fÊðn þ 1Þ . fÊðnÞ for all n.

Proof (figure 1; see appendices B and D for
additional details).

Part 1: if there exists a coding Ĉ such that
fÊðn þ 1Þ . fÊðnÞ for all n, then the predicate ‘x [ RE’
is decidable.

By hypothesis, there exists a computable bijection Ĉ
such that, for the corresponding description of the evol-
utionary process, fÊðn þ 1Þ . fÊðnÞ for all n. For any
population state, x, in the original coding, let x̂ be
the corresponding code under the bijectionĈ , and define
z ð̂xÞ ¼ miðfÊðiÞ � x̂Þ, where mi(H(i)) denotes the
minimum value of i for which the argument H(i) is
true (appendix B). Further, define Rk(n) ¼ fx:fk(i) ¼
x,i � ng (i.e. the range of fk(n) visited by step n;
appendix B). Clearly, ‘̂x [ RÊðz ð̂xÞÞ’ is decidable since
RÊðz ð̂xÞÞ is finite and can be enumerated, and,
furthermore, x̂ [ RÊðz ð̂xÞÞ , x̂ [ RÊ owing to the pro-
gressive nature of evolution. Therefore, ‘̂x [ RÊ ’ is
decidable as well. Finally, using S to denote the set of
population states that are evolutionarily attainable;

we have that x̂ [ RÊ , Ĉ
�1

x̂ [ S , CĈ
�1

x̂ [ RE .

Noting that, by definition, x ¼ CĈ
�1

x̂, we obtain
x̂ [ RÊ , x [ RE . Thus, ‘x [ RE’ is decidable as well.

Part 2: if the predicate ‘x [ RE’ is decidable then there
exists a coding Ĉ such that fÊðn þ 1Þ . fÊðnÞ for all n.
J. R. Soc. Interface (2012)
We can construct the required computable bijection
between population states and an appropriate coding as
follows. First, take any effective coding of population
states. By hypothesis ‘x [ RE’ is decidable and there-
fore we can proceed through the population states, x,
in increasing order, applying the following algorithm:

(i) if x � RE and it is the kth such state up to that
point, use the kth odd number as its new code;

(ii) if x [ RE, calculate mi(fE(i) ¼ x), and use the
ith even number as its new code.

Thus,RÊ is the set of evennumbers, and theyare visited
in increasing order as evolution proceeds. In particular,
using ĈC�1 to denote the above mapping described in
points (i) and (ii), where C21 is the inverse mapping
of the coding that generated x (i.e. it takes code x
and returns the corresponding population state, s),
we have fÊðn þ 1Þ ¼ ĈC�1fEðn þ 1Þ ¼ 2ðn þ 1Þ. The
last equality follows from the fact that ĈC�1fEðn þ 1Þ
determines the time at which state fE(n þ 1) occurs
(which is n þ 1), and assigns it a new code equal
to twice this value (point (ii) above). Therefore,
fÊðn þ 1Þ . fÊðnÞ 8n. B
4. DISCUSSION

This article has two main goals. The first goal is to high-
light the distinction between open-ended and closed
models of evolution, and to suggest that open-ended
models might better capture real evolutionary pro-
cesses. The second goal is to explore the extent to
which the development of a predictive, open-ended
theory of evolution is possible. The above theorem illus-
trates that there is an interesting connection between
this question and analyses from computability theory
and mathematical logic. It also draws a formal connec-
tion between the extent to which such a theory is
possible and the notion of progressive evolution.

Because the theorem states an equivalence rela-
tionship between the possibility of developing a
negation-complete theory and progressive evolution, it
can be read in two distinct ways. First, it states that
if evolution is progressive, then a negation-complete
theory is possible. This is, perhaps, not too surprising.
If evolution is progressive, then there would be a good
deal of regularity to the process that one ought to be
able to exploit in constructing theory. The second way
to read the theorem is from the perspective of the
reverse implication. This is somewhat more surprising;
it states that if evolution is not progressive then a
negation-complete theory will not be possible.

These results rest on the fact that digital inheritance
allows evolution to be open-ended [13]. If, instead, the
hereditary system allowed for only a finite number of
discrete possible types, then evolution would either dis-
play periodic behaviour or would reach an equilibrium
(possibly with stochastic fluctuations; appendix E).
A negation-complete theory of evolution would then
be trivially possible in such cases because, in principle,
we could simply develop a finite list of all evolutionary
outcomes that can occur (as described in the influenza
example earlier).
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Of course, despite the existence of digital inheritance,
there is nevertheless presumably a bound on the number
of population states possible for a variety of reasons. Even
so, however, the combinatorial nature of digital inheri-
tance means that the number of possible population
states might be considered effectively infinite. An analo-
gous theorem can be proven in such cases by replacing the
notion of infinite with a precise notion of effectively infi-
nite instead (appendix F). Likewise, although the main
results of the text assume that evolution is deterministic,
an analogous theorem holds that accounts for the in-
herently stochastic nature of the evolutionary process
(appendix E).

The notion of progressive evolution is somewhat
slippery, and there does not exist a general yet precise
definition of progression that is universally agreed
upon. As a result, this has led to disagreement over the
extent to which progressive evolution occurs [28,29]. A
complete discussion of the idea of progressive evolution
is beyond the scope of this article but a few points are
worth making here.

Most discussions of progressive evolution involve
quantities such as mean fitness, body size, complexity
or other relatively conspicuous biological measurements.
Many such discussions are also retrospective in the sense
that they look at historical patterns when attempting to
find patterns of progression. But both of these aspects of
discussions of progression are problematic. First,
although it would be nice to readily identify some
obvious, and biologically meaningful, characteristic of a
population that changes in a directional way, there is
no reason to expect that we have currently thought of
all the possibilities. Thus, when defining progression,
it would seem desirable to do so in a very general way,
leaving open the possibility that some biologically inter-
esting, but as yet undiscovered, quantity increases over
time. Second, looking towards historical patterns for defi-
nitions of progression is essentially looking at data and
then designing an hypothesis to fit. Progression ought
to be defined prospectively rather than retrospectively,
meaning that it ought to have predictive value; if evol-
ution is progressive, then we ought to be able to define,
a priori, a quantity that will increase.

The definition of progression used here was pur-
posefully chosen to deal with the abovementioned
difficulties. Thus, as it stands, it is necessarily not
linked to any specific biological measurement. By the
definition used here, the quantity that might increase
over time need not have any obvious biological interpret-
ation outside of the role that it plays in progressive
evolution. This level of generality seems desirable if we
are asking questions about the existence of such a quan-
tity without necessarily knowing anything specific
about what it might be. Such generality does mean, how-
ever, that if evolution is progressive in this sense, then the
progressive trait might well be some highly complicated
characteristic of the population that does not necessarily
correspond to any biological attribute of an organism
that is a priori natural. In this way, some readers might
prefer to view the theorem presented here as a definition
of progressive evolution rather than as a statement
about the limitation of theory. In other words, we
might define progressive evolution as an evolutionary
J. R. Soc. Interface (2012)
process for which we could, in principle, construct a
negation-complete evolutionary theory. The theorem
then says that this definition is equivalent to there exist-
ing some quantity that increases over evolutionary time.

Decidability results, such as those presented here, are
often prone to misinterpretation [38]. Therefore, it is
important to be clear about what the above theorem
says as well as what it does not say. First, the theorem
does not imply that developing a predictive theory of
evolution is impossible. A very large portion of current
research in evolutionary biology is directed towards
developing such predictive capacity and therefore the
theorem takes the existence of such a theory as a starting
point. The rationale is to determine whether there might
still be other, inherent, limits on the kinds of questions
that can be answered even if we are successful in pushing
the development of current research in this direction.
The theorem demonstrates that there are such inherent
limits, and, in essence, the problem arises from a diffi-
culty in predicting the places that evolution does not
go. In other words, although a predictive theory can
always be used to map out the course of evolution, inter-
estingly, it cannot always be used to map out the courses
that evolution does not take. The theorem presented
here, in effect, demonstrates that doing the latter is not
possible unless evolution is progressive.

How are these considerations to be interpreted in the
context of examples like that of influenza evolution
discussed earlier? First, as already mentioned in that
example, the analysis would begin by taking what is
essentially a best case scenario, and supposing that we
have enough knowledge of the system to develop an
open-ended model that perfectly predicts (possibly in
a probabilistic way) the genetic composition of the
influenza population in the next time step, as a function
of its current composition. Then we ask, is there a sig-
nificant probability that another flu pandemic with
the 1918 strain will ever occur? The above theorem
states that, even if we had such a perfect model, this
kind of question is unanswerable unless influenza evol-
ution is progressive. In other words, unless some
characteristic of the influenza population changes direc-
tionally during evolution (e.g. some aspect of the
antigenicity profile changes directionally), such a pre-
diction will not be possible. Moreover, this limitation
arises because, even though we can use our perfect
model to map out the course of influenza evolution
over time, this need not be enough to map out the
parts of genotype space that influenza will not explore.

The above limitations apply to predictions about the
genetic evolution of the population, but what if we are
interested only in phenotypic predictions? For example,
could we predict whether or not an influenza pandemic
similar in severity to that of 1918 will ever occur again,
regardless of which strain(s) causes the pandemic? Like-
wise, could we predict whether or not resistance to
antiviral medication will ever evolve, regardless of its gen-
etic underpinnings? If the genotype–phenotype map is
one-to-one, then predicting phenotypic evolution will
be no different from predicting genotypic evolution.
Even if many different genotypes can produce the same
phenotype, however, predicting phenotypic evolution
still involves predicting whether or not certain subsets
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of genotype space are visited during evolution. As a
result, all of the aforementioned limitations should still
apply to such cases. The only exception is if the geno-
type–phenotype map resulted in the dimension of
phenotype space being finite even though the dimension
of the genotype space was effectively infinite. Even in this
case, however, the above limitations to prediction would
still apply unless phenotypic knowledge alone was suffi-
cient to predict the state of the population from one
time step to the next (i.e. if we need not consider genetic
state to understand evolution). While this might be poss-
ible for some phenotypes of interest, it seems unlikely
that it would be possible for all phenotypes.

One might argue, however, that some patterns of
phenotypic evolution are very predictable. For example,
the application of drug pressure to populations seems
inevitable to lead to the evolution of resistance to the
drug. How are these sorts of findings reconciled with
the results presented here? First, although the evolution
of resistance does appear to be somewhat predictable,
we must distinguish between inductive and deductive
predictions. One reason we feel confident about predict-
ing the evolution of drug resistance is that we have seen
it occur repeatedly. Therefore, by an inductive argu-
ment, we expect it to occur again. Such inductive
predictions are conceptually similar to extrapolating
predictions from a statistical model beyond the range
of data available. On the other hand, deductive predic-
tions are made by deducing a prediction from an
underlying set of principles or mechanistic processes.
In a sense, inductive predictions require no understand-
ing of the phenomenon in question, whereas deductive
predictions are based on some underlying model of
how things work. The results presented here apply
solely to deductive predictions.

A second possibility with respect to the evolution of
things like drug resistance, however, is that evolution is
progressive (at least at this ‘local’ scale). For example, it
might well be that if we formulated an accurate under-
lying model for how influenza evolution proceeds in the
presence of antiviral drug pressure, there would be some
population-level quantity that changes in a directional
way during evolution. Indeed, it seems plausible that
it is precisely this kind of directionality that makes us
somewhat confident that we can predict evolution in
such cases. It should be noted, however, that, even if
evolution if not progressive, the theorem presented
here does not rule out the possibility that some predic-
tions can be made. For example, it is entirely possible
that a theory could still be developed to make
negation-complete predictions about the evolution of
drug resistance. The theorem simply says that it will
not be possible to make negation-complete predictions
about any arbitrary aspect of evolution unless the
evolutionary process is progressive.

As already mentioned, all of the results presented here
begin with the assumption that we can develop a theory
to predict evolution from one time step to the next.
Whether or not current theoretical approaches can be
pushed to the point where this is true remains a separate,
and open, question. There are certainly considerable
obstacles to doing so unless the evolutionary system of
interest is very simple [39]. In addition to the problem
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that historical contingencies raise, the role of uncertainty
in initial conditions, much like those in weather forecast-
ing, might preclude long-term predictions (although
probabilistic statements might still be possible). This
remains an important and active area of research on
which the theorem presented here offers no perspective.
Rather, it simply reveals that, in the event that theory
is eventually developed to do so, it will still face inherent
limitations on the kinds of questions it can answer unless
evolution is progressive.

Although a negation-complete theory for the entire
evolutionary process of interest is not possible unless
evolution is progressive, this also does not preclude the
possibility that a perfectly acceptable negation-
complete theory might be developed for short-term
and/or local predictions. Indeed, just as similar inherent
limitations in computability theory and mathematical
logic have not prevented people from making astonishing
progress in these areas of research, so too is the case for
evolutionary biology. As mentioned in §1, many theoreti-
cal advances have already been made by focusing on
subsets of the space of potential evolutionary outcomes.
Continuing to push theoretical development in this direc-
tion by broadening the space considered will be possible
regardless of the nature of the evolutionary process.
The theorem does imply, however, that, unless evolution
is progressive, it will not be possible to encompass all such
developments within a single unified set of principles
from which all negation-complete evolutionary predic-
tions can be drawn.

There are some previous theoretical results in the
literature that consider the extent to which evolution
exhibits a directional tendency and it is useful to con-
sider how the present results relate to these previous
works. For example, it has been shown previously
with quite general stochastic models of evolution that
a quantity termed ‘free fitness’ is always non-decreasing
during evolutionary change [40]. The analysis, however,
did not allow for open-ended evolution because the state
space was assumed to be finite, and the Markov model
used was (implicitly) assumed to be positively recur-
rent. As a result, a unique stationary distribution
existed and thus continual evolution was precluded.

It might be reasonably argued however that, although
such analyses [40] do not allow for truly open-ended
evolution, if the state space is large enough, and if the
transient dynamics are long enough, then it is effectively
an open-ended model. As such, should not the results
with respect to free fitness still apply? In other words,
does this not then suggest that there is some quantity
(free fitness) that increases during evolution, and thus
that a negation-complete theory is possible? The
answer is no, and the reason is subtle but important.
The definition of free fitness in the study of Iwasa [40],
like other quantities that have been suggested to
change directionally during evolution [30], is based on
measures closely related to entropy. Importantly, the
mapping between these measures of entropy and popu-
lation states is not one-to-one because there are many
(indeed, potentially infinitely many) biologically distinct
population states that have the same value of entropy (or
the same value of ‘free fitness’). As a result, even though
measures such as free fitness might not decrease during
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Figure 2. A schematic of the relationship between the biological process of evolution and theory. The example given illustrates
classical population-genetic theory. A formal system is created to represent elements of evolution (e.g. p(t) represents the number
of the blue genotype at time t). A set of premises is specified (e.g. initial genotype numbers, how genotypic fitnesses are deter-
mined, etc.—this is embodied by the mapping F). Rules of deduction are then followed (e.g. repeated application of the mapping
F) to obtain new statements about elements of the formal theory (e.g. p(1); p(2); p(3), etc.). These new elements are then
interpreted in terms of evolution (e.g. as predictions about genotype numbers at future times).
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evolution, an indefinite amount of biologically interesting
and significant evolutionary change can still occur with-
out any change in free fitness. Roughly speaking,
although measures related to things like entropy provide
an interesting physical quantity that might change direc-
tionally, the relationship between entropy and quantities
that are of biological interest need not be simple.

In a similar vein one might argue that, because bio-
logical evolution takes place within a physical system
that is subject to the second law of thermodynamics,
ultimately a general measure entropy must provide a
directionality to the system. Again, while this is true
in terms of the system as a whole, the mapping between
entropy and the population states of biological interest
is not one-to-one. Thus, even though the total entropy
of the entire physical system must always increase, the
entropy of any component part (e.g. the biological
part of interest) need not change in this way.

What do all these considerations have to say about
how the process of evolution is studied, or how
current theoretical research is done? Should evolution-
ary biologists care about such results? For instance,
do the results point to new ideas that might help
us do theory better? Although there is no single answer
to this question, there are two points worth making in
this regard. First, the distinction between open and
closed models seems like a useful, and currently some-
what under-appreciated, way to categorize models of
evolution. As such, it does suggest some new directions
in which evolutionary theory might be taken, particu-
larly given that open-ended models are sometimes
amenable to asking novel, and potentially very impor-
tant, evolutionary questions that cannot be addressed
with closed models [3,10,11,19–24]. Second, to the
extent that one cares about developing theory for
open-ended evolutionary processes, the theorem pre-
sented here then reveals that there is an inherent
‘upper bound’ on how far we can push the predictive
capability of such theory. In particular, although such
theory opens the door to asking new evolutionary ques-
tions, unless evolution is progressive, there will remain
some such questions that are unanswerable. Further-
more, although it will probably be difficult to use the
theorem as a means of proving that evolution is progress-
ive (i.e. by developing a negation-complete theory) or to
use the theorem to prove that a complete evolutionary
J. R. Soc. Interface (2012)
theory is possible (i.e. by determining that evolution is
progressive), the result does nevertheless reveal that
these two important, and somewhat distinct, biological
ideas are fundamentally one and the same thing.

The theorem presented here has close ties to Gödel’s
incompleteness theorem for axiomatic theories of the
natural numbers [32–35,41]. An axiomatic theory con-
sists of a set of symbols, a logical apparatus (e.g. the
predicate calculus), a set of axioms involving the sym-
bols and a set of rules of deduction through which
new statements involving the symbols can be derived
(termed ‘theorems’ [41]). Given such a system, theorems
can be derived through the repeated algorithmic
application of the rules of deduction.

In the early 1900s there was a concerted attempt to
produce such an axiomatic theory that was meant to
represent the natural numbers, with the proviso that
it yields all true statements about the natural numbers,
and no false ones [41,42]. Gödel’s incompleteness
theorem [32–35,41], however, revealed that this is
impossible for any axiomatic system sufficiently rich
that it can make simple number-theoretic statements.
For example, it shows that if the axiomatic system is
rich enough that it can express the number-theoretic
statement corresponding to the predicate ‘x [ RE’,
then it cannot produce all true number-theoretic state-
ments and no false ones [41]. For if it could, then it
could always produce the number-theoretic statement
corresponding to either ‘x [ RE’ or ‘x � RE’ as a theo-
rem, because one of the two must be true. But if it
can do this, then it provides an algorithmic procedure
for deciding the predicate ‘x [ RE’, and we know that
this is not always possible as the results presented
here illustrate.

The halting problem from computability theory
[36,37] is also intimately related to the results presented
here. As already detailed, the question of whether a
population state is evolutionarily attainable is equival-
ent to the question of whether a given positive integer
is in the range of a particular computable function.
Moreover, this last question is directly connected to
the analogous question of whether a given integer is
in the domain of a computable function (i.e. whether,
given a particular integer input, the function returns
a value in finite time). The last problem is precisely
the halting problem, and it is known that there is no
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general algorithmic procedure for solving the halting
problem for arbitrary computable functions [36,37].

As mentioned earlier, in a very general sense, the
results presented here are applicable to any system
that can be faithfully described by a Markov dynamical
system over an infinite set of discrete possibilities (i.e.
an open-ended dynamical system). Therefore, one
might ask whether there is anything in the results pre-
sented that is particular to evolution per se? In one
sense, the answer is ‘no’, but therein lies the power of
such mathematical abstraction; it reveals the under-
lying key structure of the process. Evolution will be
an open-ended dynamical system whenever heredity
is indefinite, and it therefore shares a fundamental
similarity with all other processes that are also such
open-ended dynamical systems.

At the same time, however, the results do have
special significance for evolution. There are, perhaps,
relatively few other kinds of processes of interest that
share the property of being such an open-ended dyna-
mical system in a meaningful way. For example, a
great many processes of interest have a relatively
small space of potential outcomes, and are thus clearly
not open-ended. Furthermore, for those processes that
are potentially open-ended, it is sometimes of little
theoretical interest to distinguish among all possible
outcomes, and therefore the space of relevant outcomes
can still be relatively small. Moreover, even when the
space of potential outcomes of interest truly is open-
ended, some processes (e.g. some physical processes)
obey simple enough dynamics that such negation-
complete predictions can readily be made (i.e. the
system is ‘progressive’ in the sense considered here).
Thus, the limitations detailed by the theorem are of
interest, primarily for those processes that are both
open-ended and complex enough that the question of
progression is unresolved (appendix D). Evolution
under indefinite heredity might be a somewhat unique
process in satisfying both of these criteria.

There are, however, other processes of interest for
which such decidability results might be of interest.
After all, in an important sense, biological evolution is
nothing more than the emergent properties of physics
and chemistry. In fact, such limitations on theory
have been discussed previously, particularly as they
relate to the so-called theory of everything in physics
[43]. It is probably safe to say that no general concensus
on this issue has yet been reached [38]; however, the the-
orem presented here has implications for any physical or
chemical theory that aims to explain evolutionary
phenomena. It demonstrates that a rational, deductive,
approach to such theory will necessarily face some
inherent limitations on the answers that it can provide.
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APPENDIX A. THEORY

The term ‘theory’ is used in a technical sense. A theory
consists of a set of symbols that constitute the language
of the theory, a set of premises which are taken as
given, and a set of rules of inference [41]. The symbols rep-
resent certain components of reality, and the premises
constitute statements about reality through the
interpretation of the symbols. The rules of inference
then constitute valid ways of deducing new statements
about the symbols of the language, and thus, through
interpretation, new statements about reality. Thus,
within such a theory, statements are derived by taking
some premise(s), and applying the rules of inference.

Statements derived through a series of deductive
arguments using the rules of inference are referred to
as theorems of the theory. The result of the main text
is valid for any evolutionary theory whose theorems
are recursively enumerable (appendix B), i.e. any
theory whose theorems can be derived through the
use of a finite (but possibly large) number of mechan-
ical, or algorithmic, steps (e.g. as laid out in the rules
of inference; appendix B). This is clearly true for any
such theory based on computation, as computers do
nothing more than mechanically follow rules [37]. It is
also true for any axiomatic theory, as the theorems of
any such theory can be derived simply by applying
the mechanical rules of inference to the axioms [41].

A great deal of current quantitative theory in evol-
utionary biology fits the above template. For example,
current theory often abstracts reality mathematically
by assigning formal symbols to things like allele fre-
quencies and population sizes. A set of premises is
then taken, for example, by formalizing a hypothesis
about how genotypic fitnesses are determined. Next, a
finite number of applications of ‘rules of inference’ are
used (e.g. the application of certain mathematical oper-
ations) in order to derive statements about the formal
symbols of this theory. Finally, these symbolic state-
ments are then interpreted again in terms of their
biological meaning, and hence predictions about
evolution are made (figure 2).

APPENDIX B. SOME RESULTS FROM
COMPUTABILITY THEORY

A function is computable if it can be evaluated by an
unlimited register machine (URM) in a finite numbers
of steps [37]. The Church–Turing thesis states that
any function we might view as being evaluated through
a mechanical procedure can be evaluated by a URM
[37]. Thus, given the Church–Turing thesis, the easiest
way to ascertain whether something is computable is to
consider whether a computer could be programmed to
do it in such a way that an output is guaranteed, in a
finite (but possibly very large) number of steps.

Definition B.1. A function is total if it is
computable over all natural numbers.

DefinitionB.2.A function is partial if it is computable
onlyover some (non-empty) subset of the natural numbers.

Definition B.3. A set is denumerable if there exists
a bijection between it and the natural numbers.

Definition B.4. A set is effectively denumerable if
this bijection, and its inverse, are computable.
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Definition B.5. The characteristic function of a set
of natural numbers, A, is

cAðnÞ ¼
1 if n [ A
0 if n � A:

�
ðB 1Þ

Definition B.6. The predicate ‘n [ A’ is decidable
if its characteristic function is computable.

Definition B.7. The set A is recursive if the predi-
cate ‘n [ A’ is decidable.

Definition B.8. The partial characteristic function
of a set of natural numbers, A, is

�cAðnÞ ¼
1 if n [ A

undefined if n � A:

�
ðB 2Þ

Definition B.9. The predicate ‘n [ A’ is partially
decidable if its partial characteristic function is comput-
able for n [ A.

Definition B.10. The set A is recursively enumer-
able (denoted as r.e.) if the predicate ‘n [ A’ is
partially decidable.

Note that every recursive set is r.e. but not vice
versa. Furthermore, a set A is recursive if, and only if,
both A and its complement Ac are r.e. Finally, note
that any finite set of numbers is recursive [37].

The following concepts and notation will also prove
useful.

First, because any computable function can be eval-
uated through a series of steps, we can define cA

o (n) as
the value of cA(n) after the oth step in its evaluation.
In particular, cA

o (n) evaluates to ‘null’ if it has not
returned a value by the oth step.

Second, a standard result from computability theory
demonstrates that there exists a computable bijection
between Nþ and Nþ � Nþ [37]. We will denote this
mapping by B : n 7! (T1(n), T2(n)).

Third, the notion of an ‘unbounded search’ is central
in computability theory. In particular, it is standard to
use the notation my( f(y) ¼ k) to denote ‘the smallest
value of y such that f(y) ¼ k’.

Fourth, a fundamental theorem of computability
theory demonstrates that the set of all computable
functions is denumerable [37]. Thus, we can use fk(n)
to denote the kth computable function, and Rk and
Dk as its range and domain, respectively. We will also
make use of the notation Rk(n) ¼ fx : fk(i) ¼ x,i � ng.
In other words, if fk(n) is evaluated for increasing
values of n, then Rk(n) is the subset of the range of
fk(n) that has been visited by step n. This is clearly
computable for any n if fk(n) is total.

Finally, notice that it was implicitly assumed that the
mapping, G, corresponding to the evolutionary process is
computable, and thus E(n) is a computable function.
Thus, the evolutionary process is, in an important way,
nothing other than computation. Although it is not prac-
tically feasible to verify or refute this assumption for most
evolutionary systems, there are very good reasons to
expect that this assumption is reasonable. First, if we
are willing to view the processes occurring in our biologi-
cal system as being purely ‘mechanical’, then we can
appeal to the Church–Turing thesis to argue that G
must thereby be computable. Second, the use of the
term ‘evolution’, as a process, should not be restricted
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to a particular instantiation of this process, as for
example occurs in carbon-based life. For example, there
are very good reasons to think that the processes occur-
ring in in silico evolution are fundamentally the same
as those occurring in biological evolution. As such,
these would clearly be computable. Finally, even if bio-
logical evolution is not formally computable (i.e. it is
not mechanical), we nevertheless usually proceed by
assuming that it can be modelled using computation.

APPENDIX C. THE SET OF POPULATION
STATES IS EFFECTIVELY DENUMERABLE

Here, we prove that the set of possible population states
is effectively denumerable, i.e. that there exists a com-
putable bijection between the population states and
the positive integers with a computable inverse. Such
sets are also called effectively denumerable.

Proof. We simply need to demonstrate an effective
procedure (i.e. a computable procedure) for both encod-
ing and decoding the population states into positive
integers. Let M be the maximum possible population
size (a positive integer). Each of the M ‘slots’ is either
vacant or filled by an individual that is completely
characterized by its DNA sequence. Furthermore, we
can set A ¼ 0, C ¼ 1, G ¼ 2, T ¼ 3, and then read the
DNA sequence from its 50 to 30 end, thereby establishing
a unique characterization of each slot in the population.

(A) Encoding: for each of the M slots, calculate a
numeric code as follows. Reading the DNA from its
50 to 30 end, for the nth base, take the nth prime
number and raise it to the power corresponding to
this base as listed above. Multiply all these numbers
together. This gives a unique number for each distinct
DNA sequence, and thus the mapping is injective. Fur-
thermore, as all positive integers greater than or equal
to 2 have a unique prime factorization, all such integers
correspond to a DNA sequence. Thus, if we code the
state ‘vacant’ with the number 1, the mapping is surjec-
tive as well. Furthermore, this procedure is computable
for any piece of DNA. This shows that there is a com-
putable encoding for each slot, and, as the population
is simply the union of a finite number of such slots,
the population state has a computable encoding as
well. In particular, the coding of each slot locates a
point in Nþ � . . .� Nþ (where Nþ appears M times)
that can be uniquely identified by its indices. One can
then cycle through all possible indices as follows: start
with all indices that sum to 1, then those that sum to
2, etc. This is computable, and for each instance we
simply assign a code number in increasing order.

(B) Decoding: for any given code number, cycle
through the sets of indices as above, stopping once
the code number is reached, and determine those indi-
ces. Once these indices have been obtained, one can
determine their corresponding DNA through their
prime factorization. B

APPENDIX D. SOME ADDITIONAL
TECHNICAL INFORMATION ABOUT
THE THEOREM

The theorem of the text would be of little interest if it
were never possible for ‘x [ RE’ to be undecidable. It
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is well known in computability theory that there exist
computable functions for which such predicates are
undecidable ([37]; appendix D), but the evolutionary
process considered represents a special kind of comput-
able function. In particular, it must satisfy the mapping
fk(n þ 1) ¼ G(fk(n)) for all n, where G() is a comput-
able function with appropriate domain. The subset of
computable functions satisfying this relation will be
referred to as Markov, total, computable functions.

This section presents a series of three lemmas which,
together, demonstrate that there do in fact exist
Markov-computable functions for which ‘x [ RE’ is
undecidable (see also [37,41]). In such cases, the set of
evolutionarily attainable states, RE, will be called ‘recur-
sively enumerable’ (r.e.; because ‘x [ RE’ is always at
least partially decidable for Markov-computable func-
tions). On the other hand, if ‘x [ RE’ is decidable,
then RE is said to be ‘recursive’ (appendices B and D).

Lemma D.1. A set of numbers is recursively enu-
merable if, and only if, it is the range of some total,
computable, function. Note: we could relax the ‘total’
requirement without much change.

Proof. (i) A r.e. ) ‘A is the range of a total comput-
able function’.

Given that A is r.e., the partial characteristic func-
tion of A is computable, i.e.

�cAðnÞ ¼
1 if n [ A

undefined if n � A

�
ðD 1Þ

is computable. Now first choose an a [ A. This is a
computable operation as we can simply use the bijec-
tion B : n 7! (T1(n), T2(n)) to evaluate �cT2ðnÞ

A ðT1ðnÞÞ
for increasing n until it returns a value of 1, and then
identify the corresponding value T1(n). Next, we can
define the computable function

gðx; oÞ ¼ x if �co
AðxÞ ¼ 1

a otherwise:

�
ðD 2Þ

Then, again we can use the computable bijection
B : n 7! (T1(n), T2(n)) to define f(n) ¼ g(T1(n),
T2(n)). This is a total computable function with range
equal to A.

(ii) ‘Rk is the range of a total computable function’
) Rk r.e.

Consider the total function fk(n). We can then con-
struct the computable partial characteristic function for
Rk as follows: for any input value, x, output the value 1
after evaluating mi(fk(i) ¼ x). B

Given lemma D.1, we can then prove the following,
second, lemma.

Lemma D.2. There exists total computable func-
tions whose ranges are r.e. but not recursive.

Using lemma D.1, we can prove lemma D.2 by prov-
ing that there exist sets that are r.e. but whose
complements are not r.e.

Proof sketch (by construction; see Smith [41]). We
will demonstrate that K ¼ fn : n [ Rng is one such
set. It is clear, therefore, that other such sets can be
constructed as well.

First it can be proven that Kc is not r.e. using Can-
tor’s diagonal argument (e.g. [41]). In particular, since
all r.e. sets are the range of some computable function,
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and as the computable functions are denumerable, the
set of all r.e. sets is denumerable. So, we simply need
to construct a set that is not in this list. Choosing num-
bers n such that n � Rn satisfies this property, and this
is exactly Kc.

All that remains then is to show that K is r.e. As with
characteristic functions, all computable functions are
evaluated through a series of operations for each
input, and therefore we can consider the oth operation
of any computable function. Therefore, define

gðx; o; nÞ ¼
fnðxÞ if fnðxÞhalted by

operation o in its evaluation
n þ 1 otherwise:

8<
:

ðD 3Þ

This is a computable function. Now we can use the
bijection B : n 7! (T1(n), T2(n)) to define f(z,n) ¼
g(T1(z), T2(z),n). This is also computable, and, for
any given n and z, it outputs either n þ 1 or else an
element of Rn. We can then construct the computable
partial characteristic function for K as follows: for any
input value, n, output the value 1 after evaluating
mz( f(z,n) ¼ n). B

These results show that there exist computable func-
tions whose ranges are r.e. but not recursive. Note that
some such functions might have the same output values
for more than one value in their domain, but these
cannot be Markov-computable functions. The reason
is simply that the mapping G ensures that, if RE is
infinite, fE(n) can never repeat itself as n increases
(see lemma D.1 and appendix E). Therefore, we still
need to demonstrate that, even if we restrict attention
to Markov-computable functions, some such functions
have r.e. ranges that are not recursive. This is done in
the third lemma.

Lemma D.3. For every total computable function
having a range that is r.e. but not recursive, there
exists a total computable Markov function with the
same range.

Proof. Suppose thatfk(n) is total and has an r.e. range
that is not recursive (and thus Rk is infinite). Define the
computable function fk̂ðnÞ ¼ fkðzðnÞÞ, where z(n) ¼
mi(fk(i) � Rk(n 2 1)). It is clear that fk̂ðnÞ is a total,
computable function with range Rk. Now we simply
need to show that fk̂ðn þ 1Þ ¼ Gðfk̂ðnÞÞ for all n for
some computable G(). By construction, we can see that
the computable function GðyÞ ¼ fk̂ðmzðfk̂ðzÞ ¼ yÞ þ 1Þ
works, where its domain is Rk. This function takes a
state y, finds the unique time at which this state occurs
(i.e. mzðfk̂ðzÞ ¼ yÞ—this is computable), and then
adds 1. The resulting value is then used in the function
fk̂ðnÞ to compute the state in the next time step. In
particular, we can see that Gðfk̂ðnÞÞ ¼ fk̂ðn þ 1Þ. B
APPENDIX E. CONTINUOUS TIME AND
STOCHASTICITY

For simplicity of exposition, all results of the main text
have assumed that the evolutionary process is determi-
nistic and that generations are discrete. Here, we show
that an analogous theorem holds if we relax these
restrictions.
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To begin, it is easy to see that the assumption of dis-
crete generations is immaterial. In particular, if we take
generations to be continuous, then we can suppose that,
at any instant in time, only a single event is possible
(e.g. individual birth or death). Thus, because the
state space is discrete, we can simply view the continu-
ous-time process as one in which discrete events occur
at points in time that need not be uniformly spaced.

Allowing for stochasticity requires more work. If the
evolutionary process is deterministic, then there is a
single population state possible for each point in time,
n. In the analysis of this case, we supposed that we
had complete knowledge, not only of the evolutionary
mapping G and its initial condition but of the solu-
tion to this mapping, fE(n), as well (and it is a total,
computable, function).

Now there will be uncertainty in what the population
state will be at time n, and in fact there will potentially
be several different states that the population might
attain at n. Some of these might be more likely than
others in that, if we replayed the evolutionary process
multiple times, certain states might arise more often
than others. Thus, we might imagine a probability dis-
tribution over the set of positive integers at each time
step, n. By analogy with the deterministic case, we
make a Markov assumption, meaning that the prob-
ability distribution on the population states at any
given time, n, depends only on the population state in
the previous time, n 2 1. In other words, there is some
mapping, H, from the current population state to the
probability distribution over the population states in
the next time period. The solution of this mapping
(given an initial condition) then gives the probability dis-
tribution over the states at each point in time.

Just as with the deterministic case, we suppose that
we have complete knowledge of the solution of this evol-
utionary process in the following sense: at any time n,
we have a total, computable function that tells us
simply the set of states, at that time, that have positive
support. Thus, we have a total, computable, set-valued
function ~fEðnÞ that gives the set of ‘feasible’ states at
time n. The ‘tilde’ signals that this function is now a
set-valued function, rather than an integer-valued
one. And again the goal of a negation-complete theory
would then be to decide whether any given state lies
within the set of feasible states or not.

One objection to this formulation is that we might
expect that all states have some non-zero probability,
even if it is vanishingly small. As such, under this defi-
nition, all states would then be trivially feasible. There
are at least two potential responses to this objection.
First, while it is true that many models of evolution
assume that all states have non-zero probability (e.g.
many stochastic models of mutation–selection balance,
including those with an infinite number of different
alleles [31]), this is usually because they are ‘closed’
models in the sense described earlier. In particular, they
often assume, for mathematical convenience, that the
stochastic process is irreducible and positively recurrent.
This then implies that a unique stationary distribution
exists [44] and thereby rules out the possibility of open-
ended evolution. Although it is possible to develop a
model for open-ended evolution that still has non-zero
J. R. Soc. Interface (2012)
probability for all states, it is not obvious that this need
be true of real open-ended evolution. For example, out
of the effectively infinite number of different nucleotide
combinations that could make up a genotype, we might
expect at least some of these to be truly lethal. On a
more practical level, given the analysis presented here,
it seems reasonable to expect that a similar theorem
could be proved if we instead defined a state as being feas-
ible if it occured with some probability greater than a
small threshold value, 1 . 0. At this point, however,
such a theorem remains conjecture.

Given that all of our considerations with respect to
computability have been restricted to integer-valued func-
tions, we now need to make the notion of computability of
~fEðnÞ more precise. The set-valued function ~fEðnÞ can
be thought of as consisting of two separate computable
functions, each of which is an integer-valued function
and so fits within the notions of computabilityalreadydis-
cussed. The first function is simply a computable function
fE(i) as before, whose range is now thought of as the set of
feasible population states. The argument i here is now no
longer meant to be evolutionary time, however, but rather
is simply an index whose meaning is described below. The
second computable function we denote by fE

* (n), and it
specifies the number of feasible population states in
generation n in the following way: the set of all feasible
population states at time 1, i.e. ~fEð1Þ is given by
ffE (1),fE (2), . . . ,ffE (k1)g, where fE*(1) ¼ k1. Like-
wise, ~fEð2Þ ¼ ffEðk1 þ 1Þ; . . . ;fEðk1 þ k2Þg, where
fE

* (2) ¼ k2, and so on. In this way, we can apply the
same notions of computability to the set-valued function
~fE ðnÞ by applying them to its component, integer-
valued, functions fE (i) and fE

* (n). We will assume that
the set ~fEðnÞ is finite for all n, which guarantees that it
be computable. Nevertheless, it seems reasonable to
expect that some formulations in which this set is infinite
would still be computable, and thus would still fit within
the results that follow.

As in the deterministic case, we must also specify
the initial conditions, in addition to the mapping, H.
Then, in terms of the mapping, H, if x [ ~fEðnÞ is a feas-
ible population state at time n, the set of
feasible population states at time nþ1 is given by
~fEðn þ 1Þ ¼

S
x[ ~fE ðnÞ support HðxÞ, where support

H(x) denotes the set of states for which H(x) has positive
support. The range of ~fEðnÞ is the set of all states that are
feasible at some time (i.e. it is the range of fE(i)). Like-
wise, a state is evolutionarily attainable if there is some
time for which it is feasible. A complete evolutionary
theory is one for which the predicate ‘x [ RE’ is decidable,
i.e. if, given any population state, we can decide whether it
is feasible at some time.

The same definition of progressive evolution can be
used in both the deterministic and stochastic cases.
To specify this precisely, we need the following lemmas.

Lemma E.1. In the deterministic case, a new state
is visited every time step if, and only if, evolution is
unbounded (i.e. RE is infinite).

Lemma E.2. In the stochastic case, at least one new
state is feasible every time step if, and only if, evolution
is unbounded (i.e. RE is infinite).

Proof is given of lemma E.2 only (lemma E.1 can be
proven in an analogous fashion). We note that, in the
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remainder of this section, we use the notation RE(n) to
denote the set of population states that have been vis-
ited (i.e. feasible) by step n of the set-valued function,
~fEðnÞ (i.e. not step n of fE(n)). Equivalently, it denotes
the range of fE(i) visited by step i ¼ k1 þ k2 þ . . .þ kn.

Proof. ‘At least one new state is feasible each time
step’ ) ‘Evolution unbounded’.

This direction of the implication is obvious since, if
at least one new state is feasible each time step, then
the fact that ~fEðnÞ is total implies that RE is infinite.

‘Evolution unbounded’ ) ‘At least one new state is
feasible each time step’.

Contrary to the assertion, suppose instead that RE

is infinite but that there is some time, n*, at which no
new state is feasible. In other words, for some time
n*, the set ~fEðn�Þ satisfies ~fEðn�Þ # REðn� � 1Þ.
The set of feasible states in the next time step
is then given by ~fEðn� þ 1Þ ¼

S
x[ ~fE ðn�Þ support HðxÞ:

Furthermore, for each element, x [ ~fEðn�Þ, 9nx , n*
such that x [ ~fEðnxÞ (from the hypothesis that
~fEðn�Þ # REðn� � 1Þ). Therefore, for each element,
x [ ~fEðn�Þ, we have that support H ðxÞ # ~fEðnx þ 1Þ,
where nx , n*. Thus, we have

~fEðn� þ 1Þ ¼
[

x[~fE ðn�Þ

support H ðxÞ ðE 1Þ

#
[

x[~fE ðn�Þ

~fEðnx þ 1Þ ðE 2Þ

# REðn� � 1Þ: ðE 3Þ

Hence, by induction, RE ; RE(n*21), which is finite,
yielding a contradiction. B

Notice that, in the deterministic case, when evol-
ution is unbounded, the computable function fE(i)
never repeats a previously attained value as i
increases (lemma E.1 above). In the stochastic case,
however, even when evolution is unbounded, fE(i)
can repeat previously attained values as i increases.
The key connection between the two cases is that,
in the stochastic case, fE

* (n) is such that, when the
outputs of fE(i) are grouped into their corresponding
evolutionary generations, each such grouping always
contains at least one new feasible state (lemma E.2
above).

Now, returning to the proof of the theorem, in the
deterministic case, lemma E.1 shows that a new popu-
lation state is visited at every time step. And if
evolution is progressive, then there is some way to
recode the population states such that the code
number of these new states that are visited over time
increases. Likewise, lemma E.2 shows that at least one
new population state becomes feasible at every time
step, although some visited population states might
have been visited previously as well. Nevertheless, we
still say that evolution is progressive if there is some
way to recode the population states such that the
code number(s) of the new states that become feasible
each time step increases with time. Formally, if we
define sÊðnÞ ¼ RÊðnÞnRÊðn � 1Þ as the set of newly
feasible states in generation n, and min sÊðnÞ as
the smallest of these, then evolution is progressive if
J. R. Soc. Interface (2012)
there exists a computable bijection,Ĉ , between the posi-
tive integers and the population states, such that
min sÊðn þ 1Þ . min sÊðnÞ for all n. Since the set
RÊðnÞ is finite and computable for all n, min sÊðnÞ is
a total computable function.

The proof of the theorem then goes through as
follows.

Theorem E.6. ‘x [ RE’ is decidable (i.e. RE is
recursive) if, and only if, there exists a compu-
table one-to-one coding of the population states by
positive integers, Ĉ ; such that, for the correspond-
ing description of the evolutionary process, ~fÊðnÞ,
min sÊðn þ 1Þ . min sÊðnÞ for all n.

Proof. Part 1: 9Ĉ s:t:min sÊðn þ 1Þ . min sÊðnÞ
8n ) RE recursive.

By hypothesis, there exists a computable bijection Ĉ
such that min sÊðn þ 1Þ . min sÊðnÞ for all n. Now for
any population state, x, in the original coding, let x̂ be
the corresponding code under bijection Ĉ . Define
z ð̂xÞ ¼ miðmin sÊðiÞ � x̂Þ. Clearly, ‘̂x [ RÊðz ð̂xÞÞ’ is
decidable as RÊðz ð̂xÞÞ is finite and enumerable.
Furthermore, x̂ [ RÊðz ð̂xÞÞ , x̂ [ RÊ owing to the pro-
gressive nature of evolution. Therefore, ‘̂x [ RÊ ’ is
decidable as well. Finally, using S, denote the set of
population states that are evolutionarily attainable;
we have that x̂ [ RÊ , Ĉ

�1
x̂ [ S , CĈ

�1
x̂ [ RE .

Noting that, by definition, x ¼ CĈ
�1

x̂, we obtain
x̂ [ RÊ , x [ RE . Thus, ‘x [ RE’ is decidable as well.

Part 2: RE recursive ) 9Ĉ s:t: min sÊðn þ 1Þ . min
sÊðnÞ8n.

We can construct the required computable bijection
to show that evolution is progressive as follows.

Since RE is recursive, we know that ‘x [ RE’ is decid-
able. So take the population states, x, in order and go
down the list using the following algorithm:

(i) if x � RE and it is the kth such state up to that
point, return the kth odd number;

(ii) if x [ RE, and if it has not yet been assigned a
new code number, do the following:

— calculate miðx [ ~fEðiÞÞ (i.e. the first time
that x becomes feasible),

— calculate sE (i), the entire set of newly feasible
states at i,

— using the notation jAj to denote the cardinal-
ity of A, assign codes to all of the jsE(i)j
elements in sE(i), by starting with the
jRE(i 2 1)j þ 1 even number, up to the
jRE(i)j even number, in any order,

— move on to the next state in the list.

Thus, RÊ is again the set of even numbers, and the
new states that are feasible each time step always
have larger code values as time increases. In particular,
using ĈC�1 to denote the algorithm described above in
points (i) and (ii), where C21 is the inverse mapping of
the coding that generated x (i.e. it takes code x
and returns the corresponding population state, s),
we have min sÊðn þ 1Þ ¼ minĈC�1sEðn þ 1Þ ¼ 2j
REðnÞ þ 1j. The last equality follows from the fact that
ĈC�1sEðn þ 1Þ determines the first time that each
element of sE(n þ 1) occurs (which is n þ 1 for all
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such elements by definition), and then assigns the codes
2jRE(n) þ 1j up to 2jRE(n þ 1)j for these elements.
The minimum of these codes is, of course, 2jRE(n) þ 1j
giving min sÊðn þ 1Þ ¼ 2jREðnÞ þ 1j. As a result,
min sÊðn þ 1Þ . min sÊðnÞ because jRE (n)j is strictly
increasing with n (from lemma E.2). B
APPENDIX F. EFFECTIVELY INFINITE
SYSTEMS

The simplified system of evolution considered in the
main text assumes that the space of potential population
states is infinite, and focuses on unbounded evolution
(i.e. jREj ¼1). One might argue, however, that any
real system of evolution is necessarily finite, if only
because of a potential limit to the constituent elements
of the genetic material. There are two potential responses
to this objection. First, on a philosophical level, although
any particular evolutionary system might be finite, one
might nevertheless want evolutionary theory to stand
abstractly, independent of any particular instantiation
of an evolutionary dynamic. This is very much analogous
to the fact that, in the context of number theory,
although one necessarily only ever has to deal with a
finite number of things that require counting, we never-
theless desire an abstract theory of numbers that does
not presuppose any finite limitations. And just as such
a negation-complete theory of numbers is not possible
[32–35,41], neither is one for evolutionary biology
unless evolution is progressive.

Second, on a more practical level, it is clear that the
digital nature of heredity offered by DNA/RNA makes
such systems effectively infinite in that the number of
possible population states is enormous. The remainder
of this section makes the notion of effectively infinite
precise. For simplicity, the focus below is on the
deterministic system.

Recall that, in the jREj ¼1 case, a function is com-
putable (and total) if it can be evaluated in a finite
number of steps, for any input [37] (appendix B).
Thus, the predicate ‘x [ RE’ is decidable if its charac-
teristic function can be evaluated, for any input value
x, in a finite number of steps. Likewise, the mapping
Ĉ of the theorem is computable if, for any input, it
returns a code number in a finite number of steps.

When jREj, 1, however, the predicate ‘x [ RE’ is
always decidable because we can always carry out a
complete cataloguing of RE in a finite number of
steps. We simply need to successively evaluate fE(n)
for increasing values of n. According to lemma E.1 of
appendix E, because RE is finite, we will eventually
obtain a value that has previously been visited, and
from that point onwards the system will then simply
revisit previously visited states.

Although these observations are formally correct,
they nevertheless fail to capture the important conse-
quences of digital inheritance in finite systems. In
particular, the natural analogue of computability for
such finite systems in the context of indefinite heredity
is not the requirement that an output be obtained in a
finite number of steps. Rather, it is that an output be
obtained in a finite number of steps, and that this
J. R. Soc. Interface (2012)
number of steps does not exceed some finite bound
that is independent of the size of the state space, jREj.
For example, with this definition for finite state
spaces, the predicate ‘x [ RE’ would be decidable if
its characteristic function can be evaluated in a finite
number of steps, and if this number never exceeds
some finite bound that is independent of jREj. Thus,
regardless of the size of jREj, we are guaranteed to
never need more than a fixed number of computational
steps.

To formalize these ideas, we need to be precise about
what it means to consider state spaces of different sizes,
jREj. We do this as follows. First, consider the infinite
state space situation used in the main text, where fE(n)
denotes the computable function corresponding to the
evolutionary process. Next, define the finite state space
process by a computable function, FE

h(n), where n ¼
hþ 1 is the first time at which a previously visited popu-
lation state is re-visited, and where FE

h(n)¼ fE(n) for all
n� h. Note that we have h¼ jREj, and thus h is the state
space size. In this way, any given finite state space process
is identical to the reference infinite state space process,
fE(n), over time until the point h þ 1 at which the
finite process begins to revisit previously visited states.
Thus we can consider state spaces of different sizes, h,
with the limiting case of h! 1 corresponding to the infi-
nite state space of the main text. We have the following
revised definitions for the finite case.

Definition F.1. The predicate ‘x [ RE’ is *decid-
able if, for any input x, there exists a T , 1 such that
the characteristic function cRE ðxÞ can be evaluated in
no more than T steps, where T is independent of h

(i.e. independent of system size).
Definition F.2. A one-to-one mapping of the

population states by the positive integers, Ĉ , is *com-
putable if, for any input, there exists a T , 1 such
that the mapping can be evaluated in no more than T
steps, where T is independent of h.

The main theorem of the text can again be seen to
hold when jREj , 1 if we use the above definitions. In
particular,

Theorem F.3. ‘x [ RE’ is *decidable if, and only if,
there exists an *computable one-to-one coding of the
population states by a subset of the positive integers,
Ĉ ; such that the corresponding description of the evol-
utionary process, Fh

Ê
ðnÞ, satisfies Fh

Ê
ðn þ 1Þ . Fh

Ê
ðnÞ

for all n � h.
Notice that there is one difference from the main the-

orem of the text; namely, the altered characterization of
progressive evolution. Now, because RE is finite, we say
that evolution is progressive if there is some quantity
that increases over time before the process begins to
repeat. Also note that, in addition to the altered defi-
nition of ‘computable’ and ‘decidable’ in the
statement of the theorem, all other instances of comput-
ability use this altered definition as well.

Only a sketch of a formal proof is given for this modi-
fied theorem because it is similar to that of the main text.
Recall that FE

h(n) denotes the computable function corre-
sponding to the finite evolutionary system of interest.

Proof (sketch). Part 1: 9 �Ĉ s:t: Fh

Ê
ðn þ 1Þ .

Fh

Ê
ðnÞ 8n � h ) ‘x [ RE’ *decidable.
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As before, take any input x and find its new code, x̂.
By hypothesis, the number of steps required is bounded
by a constant that is independent of the system size.
Next, we can begin to successively evaluate FE

h(n) for
increasing values of n. We suppose that the number of
steps required in this computation for any n � h is inde-
pendent of h. This is a reasonable assumption because
the outputs are identical to those of fE(n) when n �
h, and the number of steps required to evaluate fE(n)
is independent of h for any n. To each output of
Fh

Ê
ðnÞ we can apply the above mapping, Ĉ , to obtain

Fh

Ê
ðnÞ, which, by hypothesis, increases with n � h. By

hypothesis, the number of steps required is
independent of h for each such application.

As we proceed, either we reach (i) n ¼ h prior to
reaching an n for which x̂ , Fh

Ê
ðnÞ, or we reach (ii) a

value of n whereby x̂ , Fh

Ê
ðnÞ before n ¼ h. In either

case, ‘x [ RÊ ’ is then decidable because, if x̂ has not
been reached by this point, it never will be. Thus, ‘x [
RE’ is decidable as well. Moreover, if (i) pertains, then
the number of steps required before deciding is no more
than miðfÊðiÞ � x̂Þ; if (ii) pertains, then this number of
steps is exactly equal to miðfÊðiÞ � x̂Þ. And because
miðfÊðiÞ � x̂Þ is finite and independent of h, we can see
that ‘x [ RE’ is *decidable as well.

Part 2: ‘x [ RE’ *decidable ) 9*Ĉ s:t: Fh

Ê
ðn þ 1Þ .

Fh

Ê
ðnÞ 8n � h:
We can construct the required *computable bijection

between population states and an appropriate coding as
follows. First, take any effective coding of population
states. By hypothesis, the number of steps required to
decide ‘x [ RE’ for any x is finite and independent of h.
Thus, we can proceed through the population states, x,
in increasing order, by applying the following algorithm:

— if x � RE and it is the kth such state up to that
point, use the kth odd number as its new code;

— if x [ RE, calculate m i(FE
h (i) ¼ x), and use the ith

even number as its new code.

As we proceed through the states, x, the number of steps
required for each, regardless of whether (i) or (ii) per-
tains, is independent of h. Therefore, the entire coding
procedure for any given state is independent of h as
well, i.e. the coding is *computable as required. B
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