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 Cardiovascular disease (CVD) is the leading cause of 
morbidity and mortality in patients with chronic kidney 
disease (CKD) ( 1 ). While the precise mechanisms for in-
creased CVD risk are unknown, both traditional and novel 
CVD risk factors have been implicated ( 1, 2 ). Dyslipidemia, 
a well-established risk factor for CVD in the general popu-
lation, is highly prevalent in CKD ( 3, 4 ). The most fre-
quent dyslipoproteinemic phenotype patterns are elevated 
plasma concentrations of triglycerides and increased num-
bers of atherogenic triglyceride-rich lipoprotein (TRL) 
particles, particularly VLDL and intermediate-density lipo-
protein (IDL) ( 3, 4 ). The regulation of TRL metabolism 
in CKD, however, is poorly understood. 

 Apolipoprotein C-III (apoC-III) is an 8.8 kDa glycopro-
tein synthesized by the liver and intestines ( 5 ). ApoC-III is 
highly associated with hypertriglyceridemia and is a power-
ful independent predictor of CVD risk in subjects without 
renal disease ( 5 ). In the circulation, apoC-III is associated 
with TRL and HDL exchanging rapidly between these lipo-
proteins ( 6 ). In vitro studies demonstrate that apoC-III 

       Abstract   Moderate chronic kidney disease (CKD) (defi ned 
by an estimated glomerular fi ltration rate of 30–60 ml/min) 
is associated with mild hypertriglyceridemia related to de-
layed catabolism of triglyceride-rich lipoprotein particles. 
Altered apolipoprotein C-III (apoC-III) metabolism may 
contribute to dyslipidemia in CKD. To further characterize 
the dyslipidemia of CKD, we   investigated the kinetics of 
plasma apoC-III in 7 nonobese, nondiabetic, non-nephrotic 
CKD subjects and 7 age- and sex-matched healthy controls, 
using deuterated leucine ([5, 5, 5,  2 H 3 ]leucine), gas chroma-
tography-mass spectrometry, and multicompartmental mod-
eling. Compared with controls, CKD subjects had higher 
concentrations of plasma and VLDL triglycerides and plasma 
and VLDL apoC-III ( P  < 0.05). The increased plasma apoC-
III concentration was associated with a decreased apoC-III 
fractional catabolic rate (FCR) (1.21 ± 0.15 vs. 0.74 ± 0.12 
pools/day,  P  = 0.03). There were no differences between 
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jects. In CKD subjects, plasma apoC-III concentration was 
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( r  =  � 0.749,  P  = 0.05) but not with apoC-III production rate. 
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feature of dyslipidemia in moderate CKD.   Modifi cation 
of apoC-III catabolism may be an important therapeutic tar-
get for reducing cardiovascular disease risk in moderate 
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subject, the cause of renal dysfunction was unknown. All subjects 
were consuming ad libitum, weight maintenance diets. All sub-
jects provided informed written consent, and the study was ap-
proved by the Ethics Committee of Royal Perth Hospital. 

 Study design and clinical protocols 
 All subjects were admitted to the metabolic ward in the morn-

ing after a minimum of 12 h fast. They were studied in a semire-
cumbent position and were allowed only water for the initial 10 h 
of the study. Venous blood was collected for biochemical mea-
surements. Body weight and height were measured, and arterial 
blood pressure was recorded using a Dinamap1846 SX/P moni-
tor (Critikon, Tampa, FL). Subjects were advised to continue iso-
caloric diets and maintain a physical activity constant during the 
study. Dietary intake was assessed by using 24 h dietary diary re-
cords and DIET 4 nutrient calculation software (Xyris Software, 
Qld, Australia). 

 A single bolus (5 mg/kg body weight) of deuterated leucine 
([5, 5, 5,  2 H 3 ]leucine) was administered intravenously into an an-
tecubital vein via a Tefl on cannula. Blood samples were collected 
at baseline and at 5, 10, 20, 30, and 40 min and at 1, 1.5, 2, 2.5, 3, 
4, 5, 6, 8, and 10 h after isotope injection. Additional blood sam-
ples were collected in the mornings on the four following days 
(24, 48, 72, and 96 h) after a minimum 12 h fast. 

 Biochemical analyses 
 Laboratory methods for measurements of lipids, lipoproteins, 

and other biochemical analytes have been previously detailed 
( 10 ). Insulin resistance was calculated using a homeostasis model 
assessment (HOMA) score. Plasma apoC-III was determined by 
using a turbidimetric immunoassay kit (Wako Pure Chemicals 
Industries, Osaka, Japan); interassay coeffi cients of variations 
(CVs) were <4.3%. Plasma VLDL and HDL apoC-III were deter-
mined by electroimmunodiffusion using a Hydragel LP CIII elec-
troimmunodiffusion kit (Sebia, Moulineaux, France); interassay 
CVs were <5.0% ( 12 ). Plasma total apoA-I and apoA-II concentra-
tions were determined by immunonephelometry (Dade Behring, 
IL). Plasma apoA-V concentration was determined using a dual-
antibody sandwich ELISA (Linco Diagnostic Services, MO). 

 Isolation and measurement of isotopic enrichment of 
apoC-III 

 Early kinetic studies using radiolabeled apoC-III demonstrated 
exchange and equilibration of apoC-III between TRL and HDL 
particles in both normal and hyperlipidemic subjects ( 6, 13, 14 ). 
Furthermore, in vitro studies have demonstrated that the transfer 
of apoC-III between VLDL and HDL particles is bidirectional and 
that all of the apoC-III appears to be available for exchange such 
that equilibrium is acquired ( 15 ). Other radioisotope studies have 
suggested nonequilibrating pools of apoC-III that do not exchange 
between VLDL and HDL ( 16, 17 ). These studies, however, used 
exogenously labeled VLDL and HDL, which may not uniformly 
label all of the apoC-III present on the lipoprotein particles. Fur-
thermore, the differences between the VLDL and HDL specifi c 
activity–time curves were small and may represent limitations in 
the measurement of apoC-III mass or in apoC-III isolation. 

 We have recently demonstrated that VLDL and HDL apoC-III 
have similar tracer enrichment curves and fractional catabolic 
rates (FCR) in both normolipidemic and overweight–obese sub-
jects ( 12 ). Consistent with our earlier studies, we found that the 
VLDL and HDL apoC-III enrichment curves in CKD subjects 
were superimposable (  Fig. 1  )  and that the FCRs of apoC-III in 
VLDL and HDL fractions were not signifi cantly different in CKD 
subjects (VLDL vs. HDL, 0.74 ± 0.12 vs. 0.73 ± 0.11, pools/day, 
respectively,  P  = 0.574, n = 7 CKD subjects). Our tracer kinetic 
fi ndings in these three different subject populations do not pro-

inhibits LPL and HL activities and the uptake of TRL and 
their remnants by hepatic lipoprotein receptors ( 5 ). ApoC-
III may also stimulate apoB and triglyceride synthesis and, 
hence, drive hepatic overproduction of VLDL particles ( 7, 
8 ). Elevated plasma apoC-III concentration, specifi cally its ac-
cumulation in TRL and their remnants, is a consistent fea-
ture of dyslipidemia in CKD ( 9 ). Of note, we recently reported 
that moderate CKD is associated with hypertriglyceridemia 
related to delayed catabolism of triglyceride-rich VLDL and 
IDL particles ( 10 ). In CKD subjects, plasma apoC-III concen-
tration was signifi cantly elevated and was an independent 
predictor of impaired VLDL catabolism ( 10 ). The underly-
ing mechanism for the increased plasma apoC-III concentra-
tion in these CKD subjects, however, has not been examined. 
A better understanding of the metabolism of apoC-III may 
clarify the association between dyslipidemia and CVD, with 
implications for better therapeutic management in the CKD 
population. 

 In the present study, we investigated the kinetics of plasma 
apoC-III in predialysis, moderate CKD subjects (defi ned as 
those with an estimated glomerular fi ltration rate [eGFR] of 
30 – 60 ml/min). We hypothesized that subjects with moder-
ate CKD would exhibit catabolic defects in apoC-III metabo-
lism. We also explored associations between the kinetics of 
plasma apoC-III and VLDL apoB and other markers of TRL 
metabolism, including apoA-V. 

 METHODS AND MATERIALS 

 Subjects 
 Seven CKD subjects (having an eGFR of 30 – 60 ml/min, ac-

cording to modifi ed Modifi cation of Diet in Renal Disease Study 
equation) and 7 healthy controls were recruited from the depart-
ment of nephrology (Royal Perth Hospital, Western Australia) 
and the community, respectively. Healthy controls were recruited 
to match the CKD subjects based on age, sex, and waist circum-
ference. All subjects were nondiabetic, nonobese (body mass in-
dex [BMI] of <30 kg/m 2 ) and did not have central adiposity 
(waist circumference of <102 cm for men and <88 cm for women, 
as defi ned by National Cholesterol Education Program Adult 
Treatment Panel III criteria) ( 11 ). All subjects underwent com-
plete physical examinations and laboratory investigations. 
Healthy control subjects had no clinical or laboratory evidence of 
renal disease or any chronic disorder that required the use of 
regular medication. Patients with CKD who were smokers were 
included, as well as those using aspirin, angiotensin-converting 
enzyme inhibitors, and/or other antihypertensive agents. Pa-
tients with CKD receiving lipid-modifying therapy underwent a 6 
week washout period, and those receiving antioxidant vitamin or 
fi sh oil therapy underwent a 2 week washout period before study 
participation. CKD subjects were excluded if they had nephrotic 
syndrome (or proteinuria >3 g/day), signifi cant CVD, hypothy-
roidism, abnormal liver function test results, alcohol consump-
tion of >30 g/day, and the presence of apolipoprotein E2/E2 
genotype. ApoE genotyping was not performed in the control 
subjects, but none of these subjects exhibited a dyslipidemic phe-
notype. Secondary causes of dyslipidemia were excluded in CKD 
subjects. None of the subjects had a family history of premature 
CVD. Causes of renal disease included glomerulonephritis, inter-
stitial nephritis, previous nephrectomy, adult polycystic kidney 
disease, vasculitis, and systemic lupus erythematosus. In one CKD 



796 Journal of Lipid Research Volume 52, 2011

of a four compartment subsystem (compartments 1 – 4) that de-
scribes plasma leucine kinetics. This subsystem is connected to 
an intrahepatic delay compartment (compartment 5) that ac-
counts for the time required for the assembly, synthesis, and se-
cretion of apoC-III into plasma. The kinetics of apoC-III are 
described by a plasma compartment (compartment 6). The FCR 
of plasma apoC-III, equivalent to the irreversible loss from com-
partment 6, was estimated after fi tting the model to the apoC-III 
tracer data. The production rate (PR) of apoC-III was calculated 
as the product of the FCR and the pool size, which equals the 
plasma concentration multiplied by plasma volume; plasma vol-
ume was estimated as 4.5% of body weight. 

 Statistical analyses 
 Skewed variables were logarithmically transformed where ap-

propriate. Statistical analyses were performed using PASW Statis-
tics version 17 software (SPSS Software, Chicago IL). Data are 
presented as means ± standard errors of the mean (SEM), unless 
stated otherwise. Group comparisons were performed using in-
dependent  t -tests. Statistical associations were examined using 
simple and multiple linear regression methods.  P  values are re-
ported, with statistical signifi cance set at the 5% level. 

 RESULTS 

 Clinical and biochemical characteristics of CKD subjects and 
healthy controls are shown in   Table 1  .  The two groups were 
matched for age, body weight, BMI, and waist circumference. 
Blood pressure, plasma glucose, and insulin values and HOMA 
scores did not differ signifi cantly between groups ( Table 1 ). CKD 
subjects had signifi cantly higher serum creatinine levels and 
lower eGFRs ( P  < 0.01,  Table 1 ). None of the subjects had the 
apoE2/E2 genotype. The average daily energy intake amounts 
and the proportions of energy from protein, fat, carbohydrate, 
and alcohol were not different between groups (CKD mean total 
energy ± SEM values were 6,958 ± 617 kJ; protein, 20% ± 2.3%; 
fat, 39% ± 3.6% [saturated fat, 44% ± 1.8%; polyunsaturated fat, 
15% ± 1.9%; monounsaturated fat, 41% ± 0.8%]; carbohydrates, 
37% ± 1.9%; and alcohol, 4.5% ± 2.7%; whereas control values 
were total energy, 8,190 ± 936 kJ; protein, 21% ± 2.6%; fat, 32% ± 
3.9% [saturated fat, 38% ± 3.5%; polyunsaturated fat, 17% ± 
2.4%; monounsaturated fat, 41% ± 1.1%]; carbohydrates, 43% ± 
4.9%; and alcohol, 3.6% ± 2.1%). 

   Table 2    compares the lipid, lipoprotein, and apolipoprotein 
concentrations in CKD and control subjects. Compared with con-
trols, CKD subjects had signifi cantly higher plasma triglycerides, 
VLDL triglycerides, VLDL cholesterol, and apoB-48 and apoA-V 

vide evidence of nonexchangeable pools of apoC-III. Therefore, 
our data support the rapid exchangeability of apoC-III between 
VLDL and HDL particles. We acknowledge, however, that there 
may be different pools of apoC-III on VLDL and/or HDL parti-
cles ( 15 ). Nonetheless, based upon the apoC-III tracer enrich-
ment data that we have generated, the kinetics of apoC-III are 
not different in VLDL and HDL fractions. We have, therefore, 
used the VLDL apoC-III enrichment curve, in part because of its 
ease of isolation compared with plasma and HDL apoC-III, as a 
measure of leucine enrichment to represent plasma apoC-III. 

 Briefl y, 3 ml of plasma was used for isolation of 1 ml of VLDL 
(<1.006 kg/l) fractions by sequential ultracentrifugation at 
40,000 rpm in a Ti 50.4 rotor (Optima LE-80K; Beckman Coulter, 
Australia). The VLDL samples were then prepared for isoelectric 
focusing (IEF) gel electrophoresis, as described previously ( 17 ). 
VLDL (200  m l) from each time point was then delipidated and 
reconstituted in 50 ml of IEF sample buffer (8 M urea; 0.001% 
w/v bromphenol blue). ApoC-III was isolated by preparative 
IEF gel electrophoresis (8 M urea; 7.5% acrylamide; 1.5% am-
pholytes [pH 4 – 6]; run for 16 h at 200 V at 4°C). Gels were elec-
troblotted onto polyvinylidene fl uoride (PVDF) membranes 
(Immobilon; Millipore) at 700 mA for 1 h using a Hoefer TE 42 
transfer unit (Amersham Biosciences, Australia) and stained with 
Coomassie Brilliant Blue R 250 ( 12 ). 

 IEF resolves apoC-III into three isoforms, apoC-III 0 , apoC-III 1 , 
and apoC-III 2 . ApoC-III 1  was investigated in this study because of 
its greater concentration in plasma, and observations from previ-
ous studies showed that the kinetics of apoC-III isoforms were 
similar ( 6 ). All references to apoC-III kinetics will correspond to 
the kinetics of apoC-III 1 . The apoCIII 1  protein bands were excised 
from the PVDF membrane and hydrolyzed in 200  m l of 6 M HCl 
overnight at 110°C in pyrolysis-cleaned half-dram vials. Samples 
were dried at 110°C and derivatized using a modifi ed oxazolinone 
method. The oxazolinone derivatives were analyzed by negative 
ion chemical ionization gas chromatography-mass spectrometry. 
The isotopic enrichment was determined as the tracer-to-tracee 
ratio of monitored selected ions at  m/z  ratios of 212 and 209. The 
average CV of apoC-III tracer measurement, including processes 
associated with isolation of apoC-III from plasma through to the 
measurement of isotopic enrichment, was 5.4% ( 12 ). 

 Kinetic analyses 
 A model of plasma apoC-III metabolism (  Fig. 2  )  was developed 

using Simulation, Analysis, and Modeling II software (SAAM; 
University of Washington, Seattle, WA) ( 18 ). The model consists 

  Fig.   1.  Isotope enrichment of apoC-III of VLDL (squares) and 
HDL (diamonds), expressed as tracer-to-tracee ratios, is shown for 
up to 96 h after a single bolus injection of  3 D-leucine in a represen-
tative CKD subject.   

  Fig.   2.  Compartment model describes apoC-III tracer kinetics. 
Leucine tracer is injected into plasma (compartment 2) and dis-
tributes to extravascular compartments (compartments 1, 3, and 
4). Compartments 1 – 4 are required to describe leucine tracer ki-
netics observed in plasma. Compartment 1 is connected to an in-
tracellular delay compartment (compartment 5) that account for 
the synthesis, assembly, and secretion of apoC-III. Compartment 6 
describes the kinetics of plasma apoC-III.   
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 P  = 0.04, respectively) and VLDL cholesterol ( r  = 0.833,  P  < 0.01). 
The plasma apoC-III FCR was signifi cantly and negatively corre-
lated with plasma and VLDL triglycerides ( r  =  2 0.782,  P  = 0.04, 
and  r  =  2 0.777,  P  = 0.04, respectively) and VLDL cholesterol ( r  = 
 2 0.802,  P  = 0.03). 

 Given the role of apoC-III in regulating TRL metabolism, 
associations between plasma apoC-III and VLDL apoB kinetic 
parameters in CKD subjects were explored. The kinetics of apoB-
containing lipoproteins in the same CKD subjects were reported 
previously ( 10 ).   Table 3    shows the associations between apoC-III 
concentration and FCR and PR and VLDL (total and subpopula-
tions VLDL 1  and VLDL 2 ) apoB concentrations and kinetic param-
eters. Plasma apoC-III concentration was positively correlated with 
concentrations of total VLDL apoB, VLDL 1  apoB, and VLDL 2  
apoB and negatively correlated with their respective FCRs. Plasma 
apoC-III FCR was negatively correlated with the concentrations of 
total VLDL apoB, VLDL 1 -apoB, and VLDL 2  apoB and positively 
correlated with their respective FCRs. There was no association 
between plasma apoC-III concentration and FCR with VLDL apoB 
PR. No signifi cant associations were observed between plasma 
apoC-III PR with VLDL apoB kinetic parameters. 

 Additional analyses showed that in CKD subjects, plasma 
apoA-V was signifi cantly and positively correlated with plasma and 
VLDL triglycerides ( r  = 0.861,  P  = 0.03; and  r  = 0.820,  P  = 0.05, 
respectively). 

concentrations ( P  < 0.05). Total cholesterol, LDL cholesterol, 
HDL cholesterol, non-HDL cholesterol, apoB, apoA-I, and 
apoA-II concentrations and LPL mass were not signifi cantly dif-
ferent between CKD and control subjects. 

   Figure 3    shows plasma concentration and kinetics of plasma 
apoC-III in CKD and control subjects. Compared with controls, 
CKD subjects had signifi cantly higher plasma apoC-III concentra-
tions (+106%,  P  = 0.02) and signifi cantly lower plasma apoC-III 
FCRs ( 2 39%,  P  = 0.03). There was no signifi cant difference in 
plasma apoC-III PR. Compared with control subjects, CKD sub-
jects had signifi cantly higher VLDL apoC-III concentrations 
(CKD, 137 ± 40 mg/l, vs. control, 34 ± 9 mg/l,  P  = 0.04). No dif-
ference in HDL apoC-III concentration was observed (CKD, 88 ± 
12 mg/l, vs. control, 76 ± 13 mg/l,  P  = 0.48). 

 The isotopic tracer curves for plasma VLDL apoC-III after the 
administration of  3 D-leucine in a representative CKD subject and 
a healthy control are shown in   Fig. 4   . In the CKD subject, the 
slower rate of appearance of tracer within the VLDL apoC-III 
fraction is consistent with the expansion of the apoC-III pool and 
the slower rate of catabolism. 

 In CKD subjects, plasma apoC-III concentration was negatively 
correlated with the plasma apoC-III FCR ( r  =  2 0.749,  P  = 0.05) 
but not the apoC-III PR ( r  =  2 0.491,  P  = 0.26). Plasma apoC-III 
concentration was signifi cant and positively correlated with 
plasma and VLDL triglycerides ( r  = 0.842,  P  = 0.02 and  r  = 0.786, 

 TABLE 1. Clinical and biochemical characteristics of CKD and control subjects 

Characteristic

CKD (n = 7) Control (n = 7)

 P  valueMean SEM Mean SEM

Age (years) 58.6 5.1 63.6 2.3 0.39
Gender (M/F) 5/2 5/2 5/2 5/2
Weight (kg) 69.7 6.2 69.4 4.7 0.98
Waist (cm) 90.9 3.2 89.0 3.1 0.67
BMI (kg/m 2 ) 23.4 1.0 23.4 1.5 0.99
Systolic blood pressure (mmHg) 127.4 4.0 129.1 5.7 0.81
Diastolic blood pressure (mmHg) 72.6 0.8 73.3 1.5 0.68
Serum creatinine ( m mol/l) 150.1 16.8 75.9 6.2 <0.01
Estimated glomerular fi ltration rate (ml/min) 43.8 4.0 91.1 5.7 <0.01
Fasting glucose(mmol/l) 4.9 0.1 5.1 0.2 0.31
Fasting Insulin ( m U/ml) 6.5 0.7 5.7 1.1 0.56
HOMA score 1.4 0.1 1.3 0.3 0.78

Data are presented as means ± SEM. To convert eGFR from ml/min to ml/s, multiply by 0.0167; for conversion 
of glucose in mmol/l to mg/dl, divide by 0.0555; for conversion of insulin in  m U/ml to pmol/l, multiply by 7.175.

 TABLE 2. Plasma lipid, lipoprotein, and apolipoprotein concentrations in CKD and control subjects 

Lipid

CKD (n = 7) Control (n = 7)

  P  valueMean SEM Mean SEM

Total cholesterol (mmol/l) 5.59 0.46 5.06 0.30 0.35
LDL cholesterol (mmol/l) 2.99 0.34 2.93 0.20 0.89
HDL cholesterol (mmol/l) 1.43 0.16 1.74 0.19 0.25
Non-HDL cholesterol (mmol/l) 4.15 0.58 3.32 0.24 0.22
Plasma triglycerides (mmol/l) 2.49 0.73 0.83 0.10 0.01
VLDL triglycerides (mmol/l) 1.62 0.53 0.37 0.08 <0.01
VLDL cholesterol (mmol/l) 1.14 0.46 0.18 0.04 0.01
Non esterifi ed free fatty acids (NEFA) 0.29 0.05 0.33 0.03 0.58
Plasma apoB (g/l) 1.06 0.11 0.96 0.05 0.39
Plasma apoB-48 (mg/l) 5.11 0.53 2.86 0.28 <0.01
Plasma apoA-I (g/l) 1.64 0.12 1.86 0.13 0.24
Plasma apoA-II (g/l) 0.30 0.02 0.34 0.02 0.19
Plasma apoA-V ( m g/l) 105.82 49.31 13.36 1.23 0.04
Lipoprotein lipase mass (ng/ml) 48.76 8.04 58.45 13.88 0.56

Data are presented as means ± SEM. To convert cholesterol, HDL cholesterol, LDL cholesterol, and non-HDL 
cholesterol from mmol/l to mg/dl, divide by 0.0259; to convert triglycerides from mmol/l to mg/dl, divide by 
0.0113.
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despite normal plasma lipid concentrations ( 4 ). Of note, 
Kimak and Solski ( 19 ) reported that elevated plasma apoC-
III concentrations, particularly the accumulation of apoC-
III in VLDL particles, occur in moderate C KD ( 19 ). 
Compositional changes in apoB-containing lipoprotein 
may render these particles less suitable as substrates for 
hepatic receptor-mediated uptake ( 20 ). Consistent with 
this notion, cellular studies report that apoC-III can abol-
ish apoB- and apoE-mediated binding of lipoproteins to 
the LDL receptor, either by masking or altering the con-
formation of apoB and apoE ( 21, 22 ). The binding of chy-
lomicrons and VLDL particles to the lipolysis-stimulated 
receptor is also signifi cantly inhibited by apoC-III ( 23 ). We 
recently reported that a higher apoC-III concentration was 
associated with slower VLDL, VLDL 1 , and VLDL 2  apoB ca-
tabolism in moderate CKD ( 10 ). Therefore, elevated 
apoC-III concentrations may explain the delayed catabo-
lism and accumulation of TRL particles in CKD. 

 Elevated apoC-III concentration in moderate CKD was 
primarily a function of impaired apoC-III fractional catabo-
lism. Holdsworth et al. ( 24 ) showed that renal impairment 
was associated with excess sialylation of apoC-III, which 
may render apoC-III-containing TRL particles less suitable 
as substrates for lipolytic degradation. Furthermore, the 
kidney is partly involved in the removal of apoC-III from 
plasma ( 24 ). Hence, the reduction in apoC-III fractional 
catabolism could partly be a consequence of moderate 
CKD. Pooled analysis of controls and CKD subjects showed 
a strong positive association between apoC-III catabolism 
and eGFR ( r  = 0.569, P < 0.01). Similar associations were 
observed in CKD subjects but failed to reach statistical sig-
nifi cance. In addition, protein carbamoylation ( 25 ) and ac-
cumulation of advanced glycation end products ( 26 ) in the 
setting of CKD have been shown to alter protein structure, 
enzymatic activities, and binding to cell surface receptors. 
Hence, modifi cation of apoC-III structure and binding 
could contribute to altered apoC-III catabolism in CKD. 

 Decreased apoC-III fractional catabolism was associated 
with decreased VLDL particle catabolism in moderate 
CKD. The potential coupling of apoC-III and VLDL apoB 
metabolism is consistent with the role of apoC-III as a key 
regulator of apoB transport, as shown by recent studies 
using anti-apoC-III immunoaffi nity chromatography that 

 DISCUSSION 

 We demonstrate for the fi rst time that elevated plasma 
apoC-III concentration in subjects with moderate CKD is 
chiefl y a consequence of impaired catabolism of apoC-III. 
Moderate CKD was not associated with changes in apoC-
III synthesis. We also demonstrate that elevated apoC-III 
concentration is associated with elevated VLDL choles-
terol and VLDL triglyceride concentrations. These results 
add further to our work on the impact of CKD on apoB-
containing lipoprotein metabolism ( 10 ). 

 Dysregulation of lipoprotein metabolism may develop 
early in CKD with altered apolipoprotein concentrations 

  Fig.   3.  Concentrations (A), fractional catabolic rates (B), and 
production rates (C) for plasma apoC-III in CKD and control 
subjects   

  Fig.   4.  VLDL apoC-III tracer enrichment curves for CKD (�) 
and control (�) subjects.   
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 Our studies have several limitations. Observational de-
sign limits the inference of causal relationships. Measure-
ment of LPL activity in post-heparin plasma may better 
clarify the changes in apoC-III metabolism and in vivo LPL 
activity in CKD. Although methodological differences, in-
cluding the method used for tracer administration, may 
have an impact on kinetic parameter estimation, the apoC-
III kinetic parameters determined in our study are concor-
dant with those of previous studies ( 34, 40 ). Furthermore, 
we studied subjects in the postabsorptive state, and further 
studies are required to examine the impact of CKD on 
apoC-III metabolism in the fed state. A key strength of our 
study, however, is the exclusion of overweight–obese sub-
jects with insulin resistance/diabetes and proteinuria. This 
provided the opportunity to analyze the contributions of 
CKD alone to the regulation of apoC-III metabolism. 

 Elevated apoC-III concentration is a common feature of 
dyslipidemia in CKD subjects. In addition, it is increasingly 
recognized as an important risk factor for CVD in the gen-
eral population and may be an important target in CKD 
subjects. Moderate CKD subjects have elevated plasma 
apoC-III concentrations, a consequence of delayed apoC-
III catabolism. Altered apoC-III catabolism in moderate 
CKD may also impair apoB metabolism, resulting in de-
creased catabolism and accumulation of TRL and their 
remnants in vivo. Modifi cation of apoC-III catabolism may 
be a new therapeutic target for reducing CVD risk in mod-
erate CKD. Future studies to assess the effects of statins 
and/or fi brates on apoC-III metabolism will provide better 
understanding of the cardiovascular benefi ts of such inter-
ventions in moderate CKD ( 41 ). 
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