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Abstract
Islet transplantation could become an ideal treatment 
for severe diabetes to prevent hypoglycemia shock and 
irreversible diabetic complications, once some of the 
major and unresolved obstacles are overcome, includ-
ing limited donor supplies and side effects caused by 
permanent immunosuppressant use. Approximately 
30 years ago, some groups succeeded in improving 
the blood glucose of diabetic animals by transplanting 
encapsulated islets with semi-permeable membranes 
consisting of polymer. A semi-permeable membrane 

protects both the inner islets from mechanical stress 
and the recipient’s immune system (both cellular and 
humoral immunities), while allowing bidirectional dif-
fusion of nutrients, oxygen, glucose, hormones and 
wastes, i.e., immune-isolation. This device, which en-
ables immune-isolation, is called encapsulated islets 
or bio-artificial pancreas. Encapsulation with a semi-
permeable membrane can provide some advantages: 
(1) this device protects transplanted cells from the 
recipient’s immunity even if the xenogeneic islets (from 
large animals such as pig) or insulin-producing cells 
are derived from cells that have the potential for dif-
ferentiation (some kinds of stem cells). In other words, 
the encapsulation technique can resolve the problem of 
limited donor supplies; and (2) encapsulation can re-
duce or prevent chronic administration of immunosup-
pressants and, therefore, important side effects other-
wise induced by immunosuppressants. And now, many 
novel encapsulated islet systems have been developed 
and are being prepared for testing in a clinical setting.
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INTRODUCTION
Islet transplantation is a cell replacement therapy that 
involves transplantation of  isolated islets to recipients 
with severe diabetes mellitus (DM), especially type 1 
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diabetes mellitus (T1DM)[1]. Although the therapeutic 
outcome had been poor for approximately 30 years 
in the late 20th century, islet transplantation has been 
done clinically as one of  the reliable therapeutic options 
since the development of  the islet transplant protocol 
at Alberta University and has improved dramatically; it 
is called the “Edmonton protocol”[1]. Since the success 
of  the Alberta team, islet transplantation has been per-
formed widely for the past 10 years. Approximately 550 
islet transplantations have been performed in more than 
40 institutions[2,3]. According to a recent report, approxi-
mately 70% of  patients did not need daily insulin at 1 
year after transplantation and the graft function was well 
maintained with 82% graft survival at 5 years[4].

One of  the major obstacles of  islet transplantation is 
the limited human donor supply. Moreover, permanent 
immunosuppressant use is also problematic because 
immunosuppressants have some harmful effects on re-
cipients. Firstly, immunosuppressants provide immune-
tolerance, but they enable opportunistic infection; that is, 
an infection caused by a pathogen that usually does not 
cause disease in a healthy host[5]. A previous clinical re-
port revealed that some of  the patients that received islet 
transplantation had some infectious complications re-
lated to opportunistic infection, e.g., pneumonia, herpes 
infection and abscess formation[2]. Secondly, immuno-
suppressants also induce some side effects such as those 
found in patients with malignant disease treated with 
chemotherapy: mouth ulceration, anemia, leukopenia, di-
arrhea, headache, neutropenia, nausea, vomiting and fa-
tigue[2]. Thirdly, immunosuppressants have islet toxicity. 
For example, it is known that tacrolimus and silolimus, 
which are major immunosuppressants for islet transplan-
tation, impair the islet viability and graft function[6,7]. At 
present, islet transplantation should be done for patients 
with uncontrollable blood glucose and severe renal com-
plications, and should not be performed in DM patients 
with no renal complications. If  the problems concern-
ing donors and immunosuppressants can be overcome, 
islet transplantation could become an ideal therapy for 
severe DM to prevent hypoglycemic shock and irrevers-
ible diabetic complications. We believe immune-isolation 
technology could be a powerful tool to resolve these 
problems.

Immune-isolation can be achieved by covering islets 
with semi-permeable membranes consisting of  high poly-
mer[8,9], which is referred to as encapsulated islets or bio-
artificial pancreas. Semi-permeable membranes protect the 
inner islets from both mechanical stress and the recipient’
s immune system (both cellular and humoral immunities), 
while allowing the bidirectional diffusion of  glucose, oxy-
gen, nutrients, hormone and wastes[9] (Figure 1). Encapsu-
lated islets could enable successful xenotransplantation 
with large animals, such as pigs, with a reduction or even 
absence of  chronic administration of  immunosuppres-
sants, thus preventing important side-effects induced by 
immunosuppressants. Since the first encapsulated islet 
study was reported in 1977[10], encapsulated islets have 

been developed for the clinical setting. 

ISLET ISOLATION AND TRANSPLANTATION
Islets are obtained from the donor pancreas by islet 
isolation. The procedure of  islet isolation consists of  
pancreas digestion and islet purification steps. Pancreata 
are obtained from heart or brain dead donors or from 
living donors (for islet autotransplantation) with minimal 
warm ischemic time. Donor pancreata are preserved in 
cold preservation solution until islet isolation is started. 
University of  Wisconsin (UW) solution has been used 
for this purpose[11,12] and, currently, UW solution is used 
with oxygenated perfluorochemical called the two-layer 
method, for better preservation of  the pancreas[13]. ET-
Kyoto solution, which is also cold preservation solution 
and used for lung preservation, has been used instead of  
UW solution for islet isolation in many institutions[14]. 
ET-Kyoto solution has components similar to extracel-
lular fluid and contains trehalose for a cytoprotective ef-
fect and ulinastatin for inhibiting trypsin. Pancreas diges-
tion is performed with enzyme solution. After removing 
additional organs (duodenum, spleen, lymph nodes and 
vessels), the blended solution of  collagenase and neutral 
protease is injected into the pancreatic main duct until 
the pancreas is distended. The pancreas is cut into pieces 
(approximately 7 to 9 pieces) and put into a Ricordi 
chamber with some marbles. Pancreas digestion is done 
by recirculating warmed (at 37 ℃) enzyme solution and 
mechanical shaking of  the Ricordi chamber. Pancreas di-
gestion is stopped by cooling until an adequate number 
of  islets are obtained by monitoring samples taken from 
the recirculating system. Digested pancreas contains 
many exocrine and connective tissues that may cause 
portal vein hypertension and thrombosis; thus, removing 
these cellular components is necessary. Purification is 
performed using a COBE 2991 cell processor with Ficoll 
or iodixanol gradient solution[15]. Obtaining many good 
islets from the donor pancreas is necessary to cure se-
vere diabetes, but it is impossible to obtain all islets con-
tained in the pancreas by current isolation techniques. In 
the digestion stage, islet loss cannot be prevented if  col-
lagenase solution is not fully injected, if  the digestion is 
inadequate, or if  the digestion time is longer and isolated 
islets are injured. In the purification stage, some islets are 
discarded with other cells such as acinar and ductal cells 
if  the gradient is similar. Over 11 000 islet equivalents 
per kilogram of  body weight are recommended to cure 
DM[1,12], but it is difficult to acquire this number of  islets 
from one donor pancreas using current techniques. This 
is the reason why multiple donors are required. Cultur-
ing isolated islets before transplantation is done to evalu-
ate them and many institutions perform islet culture[12]. 
However, while culturing can reduce contamination of  
acinar cells (improving purity), isolated islets deteriorate 
rapidly in culture, reducing the number. Fresh islet trans-
plantation is recommended for a good outcome[1] and, 
if  immediate transplantation cannot be done, cold pres-
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ervation (4 ℃ in UW solution) before transplantation is 
recommended over 37 ℃ culture for preventing islet loss 
and preserving the size, shape and function of  islets[16].

While there are many transplantation sites (kidney[17-19], 
muscle[20], omentum[21], testis[22], bone marrow[23] and 
some other organs) for islet transplantation in animal ex-
periments, liver is the only the transplantation site used in 
a clinical setting. The islets are injected into the recipient 
liver via the portal vein. There are rare but severe compli-
cations due to this method: portal hypertension, portal 
thrombosis and bleeding[12,24]. Portal thrombosis is an 
especially life-threatening complication. Recently, the Al-
berta group reported that portal thrombosis was detected 
in 3.7% of  islet-transplanted patients, and a higher vol-
ume of  islet graft (over 5.45 mL) and higher increase of  
the portal pressure at transplantation (over 4.5 mmHg) 
are risk factors for portal thrombosis[25]. 

Islet transplantation is classified into three types by 
the cell sources: autotransplantation, allotransplantation 
and xenotransplantation. Autotransplantation means 
transplantation of  self-islets when total pancreatectomy 
cannot be avoided in spite of  benign diseases, i.e., chronic 
pancreatitis[26,27], pancreatic arteriovenous malformation[28] 
and trauma[29]. The outcome of  autotransplantation is 
excellent because transplanted islets are free from im-
munity and rejection and there is no need to use immu-
nosuppressants. In allotransplantation, diabetic (especially 
T1DM) recipients are transplanted islets derived from 
different individual(s). Rejection cannot be prevented in 
allotransplantation and thus immunosuppressants are 

necessary. In xenotransplantation, diabetic recipients are 
transplanted with islets derived from different animals. As 
in allotransplantation, rejection cannot be prevented but 
it is difficult to manage immunity by using any immuno-
suppressants. To utilize these cell sources, studies about 
encapsulated islets have been promoted.

MATERIALS FOR ENCAPSULATION
The materials for encapsulation must have two charac-
teristics: Firstly, they must isolate the encapsulated islets 
from the immune system consisting of  immune compe-
tent cells (T cells, B cells or macrophages), antibody and 
complement; and secondly, they must permit the dif-
fusion of  small molecules like glucose, oxygen and nu-
trients, and the diffusion of  insulin and waste products 
(Figure 1 and Table 1). The function of  encapsulated 
islets depends on the materials.

In 1980, Lim and Sun[30] first developed microencap-
sulated islets using alginate and succeeded in achieving 
normoglycemia in diabetic rats for two-three weeks. 
Alginate is now the most famous material for encapsula-
tion. Alginates are found in brown algae and in bacterial 
species[31]. They consist of  unbranched binary copoly-
mers of  1-4 linked β-D-mannuronic acid (M) and α-L-
guluronic acid (G), of  widely varying composition and 
sequential structure (MMM-blocks, GGGblocks and 
MGM-blocks). The alkali-, ammonium- and magnesium-
alginates are soluble in water. Gelation of  alginates 
occurs when the carboxyl groups of  the polymers are 
cross-linked with multi-valent cations (e.g., Ca2+, Ba2+, 
La3+, Fe3+) and poly-electrolytes[32]. Alginate is a suitable 
material for encapsulated islets because alginate does not 
interfere with the islet function in releasing hormone 
and has good stability[32]. Moreover, various materials 
such as poly (ethylene glycol) (PEG) and poly-L-lysine 
(PLL) have been used to improve the alginate capsule by 
reducing plasma absorption and making a semi-perme-
able membrane. The first report about an alginate/PEG 
capsule was published in 1999. Chandy et al[33] modified 
alginate encapsulated islets by including PEG and suc-
ceeded in improving the stability. Desai and colleagues 
clarified that islets encapsulated by alginate and PEG 
had good viability and insulin releasing function in an 
in vitro assay[34]. The alginate/PLL capsule is the most 
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  Materials Shapes of capsule Donor source 
and recipient

Results

  Alginate[36] Microcapsule Porcine and 
bovine to rat

Achieving 
normoglycemia 

for 9 mo
  Polysulphone[41] Macrocapsule Porcine to rat Normoglyce-

mia over 1 mo
  Polyvinyl alcoho[8] Macrocapsule Rat to mouse Normoglyce-

mia for 30 d
  Low molecular weight 
  dextran sulfate[47]

Microcapsule In vitro assay Inhibition of 
complement

Table 1  List of materials for encapsulated isletsCellular immunity
B cell
T cell
Macrophage

Small molecules
Glucose
Oxygen
Nutrient

Small molecules
Insulin
Waste products

Humoral immunity
Antibody
Complement

Polymer for encapsulation and islets

Figure 1  Scheme of the mechanism for encapsulated islets. Immune iso-
lation can be achieved by covering islets with semi-permeable membranes 
consisting of high polymer. Semi-permeable membranes protect the inner islets 
from both mechanical stress and the recipient's immune system (both cellular 
and humoral immunities), while allowing bidirectional diffusion of glucose, oxy-
gen, nutrients, insulin and waste.
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utilized combination: in 1985, Goosen et al[35] developed 
three layer capsules consisting of  alginate/PLL/alginate 
layers and proved that the capsules had a good immune 
isolation effect by blocking the diffusion of  serum im-
munoglobulin, albumin and hemoglobin. Lanza et al[36] 
transplanted encapsulated xenogeneic islets (porcine and 
bovine islets) into the peritoneal cavities of  diabetic rats 
and found that there was no destruction of  the islets for 
9 mo and no fibrous adhesions around the capsule, while 
achieving normoglycemia. While the size of  their capsule 
was approximately 800 µm, Strand et al[37] succeeded in 
developing thinner capsules (200 µm) with good im-
mune isolation. 

Similar to alginate, polysulphone (PSU) is suitable 
material for encapsulation. PSU has been used for re-
nal dialysis as its hollow fibers remove tight, molecular-
weight waste productions[38]. PSU is focused on as a 
possible material for encapsulated islets because large 
amounts of  insulin are absorbed by the PSU hollow 
fibers. Lembert et al[39,40] developed hydroxy-methylated 
PSU “macroencapsulated” islets which showed good 
insulin releasing function similar to naked islets while 
blocking endogenous retrovirus infection. Transplanta-
tion of  their device also achieved normoglycemia in dia-
betic rats for over 1 mo[41].

Polyvinyl alcohol (PVA) also has been used as a ma-
terial for encapsulated islets. PVA is a water-soluble syn-
thetic polymer that has been used as a material for many 
devices like contact lens solution or artificial tears for the 
treatment of  dry eye. The first report of  PVA encapsu-
lated islets was published in 1992 from the Kyoto group. 
Inoue and colleagues developed a tube type of  PVA 
macrocapsule with a mesh reinforcement. Two thousand 
rat islets were contained in the capsule and diabetic rats 
achieved the normoglycemia by allogeneic-transplan-
tation of  the device for 12 d[42]. The device also had a 
good function of  insulin release as indicated by the in 
vitro glucose concentration[43]. After that, they developed 
various types of  PVA capsules and evaluated the func-
tion. For example, transplantation of  a bag type of  PVA 
capsule encapsulating porcine islets achieved normogly-
cemia in diabetic rats for 2 wk[44]. Sakurai et al[45] modified 
the device with an angiogenesis factor (fibroblast growth 
factor-2) and confirmed neovascularization around the 
capsule. Qi et al[8] evaluated the function of  the sheet type 
of  PVA capsule in vitro and in vivo. Rat islets in the PVA 
capsule had good function in insulin release and achieved 
normoglycemia in diabetic mice for 30 d. Sakata et al[46]also 
attempted to evaluate the therapeutic effect in renal function 
by transplantation of  the device and confirmed an improve-
ment of  the hyperglycemia, serum blood urea nitrogen and 
creatinine and mesangial thickness.

Low molecular weight dextran sulfate (LMW-DS) was 
first introduced as a material for encapsulated islets in 
2003[47]. Ikada et al[47] developed a bio-artificial pancreas 
(encapsulated islets) using LMW-DS and succeeded in 
preventing complement attack. The Korsgren group 
revealed that LMW-DS is useful in preventing instant 

blood-mediated inflammatory reaction (IBMIR: a rapid 
thrombotic reaction, in which binding of  platelets to the 
islet surface, activation of  the coagulation and comple-
ment systems, and leukocyte infiltration of  the islets 
when the islets are exposed to blood occur)[48-50].

Various materials have been studied and shown to 
have positive results, but encapsulated islets that can be 
utilized permanently have not been developed yet. De-
velopment of  a material that can maintain good viability 
of  the encapsulated islets and good immune-isolation 
for the long term is expected.

SHAPES OF ENCAPSULATED ISLETS
Encapsulated islets are classified into two types by the 
size: macrocapsules and microcapsules (Figure 2). Mac-
rocapsules are also divided in two types, intravascular 
and extravascular types. An intravascular macrocapsule 
is a perfusion chamber that is directly connected to the 
host artery and vein[51]. Blood flows into the hollow fi-
bers and islets are placed near the fibers in this system. 
Islets could receive oxygen and nutrient supply from 
blood flow and were protected from immunity by the 
membrane. However, the intravascular macrocapsule had 
the severe problem of  embolization in the hollow fibers 
caused by the formation of  blood clots.

The extravascular macrocapsule is a diffusion cham-
ber containing a large number of  islets. Many shapes, in-
cluding rod[52], tube[43,53] or sheet[54] types, are used for the 
macroencapsulation. One of  the merits of  macrocapsules 
is the ease of  implantation and removal with minimum 
risk when the device is infected. On the other hand, the 
permeability of  the macrocapsule is less than that of  the 
microcapsule because of  the thicker membrane[38].

Microencapsulated islets are microcapsules contain-
ing one or a few islets. Some different protocols for 
making the devices have been reported. For example, the 
alginate capsule is made by dropping it into ionic solu-
tion (Ca2+, Ba2+, etc.)[55] and the agarose capsule is made 
by cooling with shaking[56]. Microcapsules have some 
advantages in the transportation of  oxygen and nutrients 
because of  the smaller distance between the capsule sur-
face and the islet[38]. The response to glucose change is 
better than that by macrocapsules. The disadvantage of  
microcapsules is that they are difficult to remove com-
pletely when necessary. 

The sizes of  encapsulated islets should be selected ac-
cording to the transplant sites and other characteristics.

CELL SOURCES
The purpose of  encapsulation is to prevent loss of  the 
transplanted islets due to immunity. The improvement 
of  the immunosuppression protocol accounts for the 
present success of  islet transplantation[57]. Encapsulation 
can protect allogeneic islets from immunity without us-
ing immunosuppressants. Human islets are the ideal cell 
source, but clinical islet transplantation has been limited 
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by the donor supplies. To overcome this hurdle, cell 
sources in addition to allogeneic islets will be necessary.

One of  the candidates is xenogeneic islets, especially 
those of  pig[58]. Historically, porcine insulin was mainly 
used clinically since insulin was discovered in the early 
1920s[59] before the development of  recombinant insulin. 
Porcine insulin differs little from human insulin (only 
one difference in amino acid)[60]. The pig is a large animal 
with a large pancreas that contains many islets. There-
fore, porcine islets are considered an optimal donor 
source. There are many publications about encapsulated 
porcine islet xenotransplantation that could improve 
the blood glucose control in recipient animals. The first 
report about improved blood glucose by encapsulated 
porcine islets was published in 1991. Lanza et al[61] per-
formed encapsulation of  porcine islets by using alginate 
and transplanted the tube type of  encapsulated islets 
into the peritoneal cavity of  diabetic rats and confirmed 
the normalization of  the blood glucose. Sun et al[62] suc-
ceeded in achieving normoglycemia in a diabetic mon-
key for over 150 d by transplanting microencapsulated 
porcine islets. In spite of  the positive data for xeno-
transplantation, there are some obstacles for the clinical 
setting. The major obstacle is the risk of  viral infection, 
especially porcine endogenous retrovirus (PERV). van 
der Laan et al[63] first described that PERV infection was 
detected in NOD/SCID mice that received porcine islet 
transplantation. Clemenceau et al[64] showed that PERV 

DNA was transmitted into a mouse and human cell line. 
On the other hand, many publications described that 
there was no evidence of  and no influence by HERV 
infection[65-67]. Moreover, a recent study from a Min-
nesota group revealed that not many virus infections 
were detected in porcine organs, including islets, except 
porcine cytomegalovirus (PCMV). They concluded that 
pigs infected with PCMV should not be used as donors 
and pigs not older than 21 wk should be used to prevent 
viral infection[68]. The other obstacle is a reluctance to 
transplant xenogeneic tissue based on religious beliefs 
and customs[69]. In summary, while there are still some 
obstacles to promoting xenotransplantation, encapsula-
tion technology can be a powerful tool for overcoming 
obstacles to xenotransplantation.

IDEAL TRANSPLANTATION SITE FOR 
ENCAPSULATED ISLETS
Intrahepatic transplantation is the current standard for 
islet transplantation and the liver is the only organ that 
has been successful as a transplantation site for clini-
cal islet transplantation. However, several recent studies 
have clearly shown that most of  the islets (approximately 
60% islets) transplanted intraportally are immediately 
destroyed, mainly due to the IBMIR[49,70]. Moreover, the 
infusion of  islets with some other pancreatic tissues 

23 February 15, 2012|Volume 3|Issue 1|WJGP|www.wjgnet.com

Figure 2  Scheme of size of the encapsulated islets. Encapsulated islets are classified into two types by the size: microcapsule (upper) and macrocapsule (lower). 
Microencapsulated islets are microcapsules containing a single or few islets. The microcapsule has some advantages in the transportation of oxygen and nutrients 
because of the smaller distance between the capsule surface and islet. The response to glucose change is better than that of a macrocapsule. The macrocapsule is a 
diffusion chamber containing a large amount of islets. Many shapes including rods, tubes or sheets (shown in the lower figure) are used for the macroencapsulation. 
One of the merits of a macrocapsule is the ease of implantation and removal with minimum risk when the device is infected. Left: Sheet type of polyvinyl alcohol mac-
roencapsulated islets. Center: Inside of the macrocapsule. Intact islets are encapsulated in it. Right: Immunohistochemical staining of the macrocapsule for insulin. 
The islets in the macrocapsule are positive for insulin and viable.

Microcapsule Microcapsule (sheet type)
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(acinar cells, ductal cells or connective tissues) in the 
portal vein always has a risk of  causing portal hyperten-
sion and portal vein embolization[71]. Schneider et al[72] 
transplanted microencapsulated rat islets (with alginate) 
into the livers of  mice, but only a 1 wk normalization in 
the blood glucose level was achieved. We revealed[70] that 
transplanted islets suffer from ischemia due to emboliza-
tion by the islets themselves. The size of  encapsulated 
islets is enlarged by encapsulation and thus encapsulated 
islets may tend to suffer from ischemia by the size and 
loss of  permeability of  the capsule. A thinner capsule 
(almost the same size as naked islets) is necessary for 
successful intraportal transplantation.

Furthermore, other transplant sites should be select-
ed for encapsulated islet transplantation to avoid factors 
that injure islets by intraportal transplantation and the 
side effects of  intraportal transplantation. In experimen-
tal studies, there are many descriptions of  positive data 
on extrahepatic transplantation sites. The Kyoto and 
other groups[73] succeeded in achieving normoglycemia 
in diabetic mice by transplantation of  encapsulated islets 
in muscle, subcutaneous tissue[58,74-76], renal subcapsule[77] 
and omentum[56]. These may be candidate transplantation 
sites in the near future because the loss of  islets due to 
IBMIR, the risk of  portal hypertension and portal vein 
thrombosis could be prevented. Especially, muscle and 
subcutaneous tissue are considered the best positions 
to transplant (easy to approach in comparison with in-
traperitoneal organs) and to remove when the graft fails 
in function or becomes an origin of  infection. In our 
opinion, the ideal transplant site for encapsulated islets 
is a site that is managed easily and has good efficacy in 
transplantation.

CLINICAL TRIALS AND CONCLUSION
Encapsulated islet transplantation was first performed 
in 1999. Encapsulated human islet transplantation was 
performed in a 38 year old man who had severe diabetes 
by a UCLA group[78]. In 2000, Elliott et al[79] transplanted 
encapsulated porcine islets into diabetic patients and con-
firmed no PERV infection in patients. Clinical trials have 
been few, but promising outcomes have been reported. 
Recently, Calafiore et al[80] performed human islets micro-
encapsulation using alginate and transplanted them into 
10 T1DM patients in Italy. Their protocol is based on 
using clinical grade sodium alginate without pyrogen and 
endotoxin, using human islets which have high purity and 
viability (over 80%) and a minimally invasive transplant 
method by intraportal injection under ultrasound imaging 
with local anesthesia. This protocol is approved by the 
Italian Ministry of  Health. An Australia group performed 
transplantation of  barium-alginate encapsulated human 
islets to 4 T1DM patients without immunosuppression 
and followed them for 2.5 years as a phase 1 study[81]. 
While no adverse events were detected, there was no 
improvement of  the diabetic condition in the 4 patients. 
Laparoscopic biopsy revealed no cellular infiltration in 

the capsule and islet necrosis. As compared with non-
capsulated islet transplantation with immunosuppression, 
the outcome of  encapsulated islets is promising. Further 
improvements of  the devices are necessary for the clini-
cal setting, but, when successful, could cure severe DM 
without using immunosuppressants.

In conclusion, encapsulation technology can utilize 
allo- or xenogeneic cell sources to overcome limited do-
nor supplies in islet transplantation. 
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