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Abstract

In this work, behaviors of positively-charged AuNRs in a highly metastatic tumor cell line MDA-MB-231 are examined based
on UV-vis-NIR absorption spectroscopy in combination with inductively coupled plasma mass spectrometry (ICP-MS),
transmission electron microscopy (TEM) and dark-field microscopic observation. It is found that characteristic surface
plasmon resonance (SPR) peaks of AuNRs can be detected using spectroscopic method within living cells that have taken
up AuNRs. The peak area of transverse SPR band is shown to be proportionally related to the amount of AuNRs in the cells
determined with ICP-MS, which suggests a facile and real time quantification method for AuNRs in living cells. The shape of
longitudinal SPR band in UV-vis-NIR spectrum reflects the aggregation state of AuNRs in the cells during the incubation
period, which is proved by TEM and microscopic observations. Experimental results reveal that AuNRs are internalized by
the cells rapidly; the accumulation, distribution and aggregation of AuNRs in the cells compartments are time and dose
dependent. The established spectroscopic analysis method can not only monitor the behaviors of AuNRs in living cells but
may also be helpful in choosing the optimum laser stimulation wavelength for anti-tumor thermotherapy.
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Introduction

Gold nanorods (AuNRs) have been widely explored in

biosensing, imaging, drug delivery and photothermal therapy

because of their special physicochemical properties [1–6]. The

applications of AuNRs in biomedicine were firstly based on

AuNRs themselves in bulk were inert and nontoxic towards

mammalian cells [7–8]. Current researches with AuNRs in

nanomedicine are mostly focused on employing AuNRs as

delivery vehicles, imaging agents and thermo-therapeutic modules

[2,5,8–10]. Increasing experimental results indicated that AuNRs

had attractive and promising application potentials in RNAi

therapy, drug delivery across blood brain barrier, cancer diagnosis

and imaging, and laser stimulated thermotherapy against cancers

[1,11–13]. However, the behaviors of AuNRs in cells as well as

influences that the AuNRs exerted on cells function such as cells

viability and cell cycles were far from adequate and required

further elucidation urgently [8].

The behaviors of AuNRs encountering with cells in vitro could

be basically divided into two aspects: outside the cells (in the cell

culture system) and inside the cells. There were a variety of ions,

saccharides, amino acids as well as proteins in serum containing

media (SCM). It has been generally accepted that nanoparticles

would be coated by a corona of serum proteins when they were

introduced into the SCM [14–15]. This protein corona could

further dictate the fate of the nanoparticles in cells including

uptake and cellular location [15]. Recently, Albanese et al found

that single and aggregated gold nanoparticles had different uptake

patterns while the aggregation did not cause significant cytotox-

icity [16]. The phenomenon suggested that the aggregation state

of nanoparticles in culture media should be handled cautiously

when evaluating the behaviors of nanoparticles in mammalian

cells in vitro.

Following the uptake of the AuNRs, their interactions with

cellular membrane, compartments and molecules have attracted

growing attentions [9,17–18]. A clear understanding of the

interactions was still lacking but undoubtedly would be beneficial

in designing AuNRs as drug or gene delivery vectors, thermo-

therapeutic modules as well as alleviating their side effects such as

cytotoxicity [5,18–19]. During the past few years, large efforts

have been made to probe the uptake and location of AuNRs in

mammalian cells mainly based on various imaging techniques and

inductively coupled plasma mass spectrometry (ICP-MS) [15,20–

22]. For example, using transmission electron microscopy (TEM),

one could visualize the uptake and location of AuNRs in cells at

the single nanoparticle level. In combination with ICP-MS, Au

content in cells could be detected with high sensitivity [23–24].

Several studies have shown that AuNRs were endocytosed

and trapped in vesicles or lysosomes in mammalian cells

[5,10,15,19,25]. When conjugated with nuclear-targeting peptides,

AuNRs were observed located in the nucleus [26]. The different

location of AuNRs may have its specific application potentials.
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When AuNRs were used as siRNA or gene delivery vectors, the

cytoplasmic location would facilitate the gene silencing as the gene

silencing machinery was mainly in cytoplasm, while the nuclear

location would benefit the exogenous gene expression as the gene

expression was mainly regulated in nucleus [3,26].

However, sample preparation for TEM was time consuming

and a very limitation was that only a limited amount of cells were

involved in the TEM observation. In ICP-MS analysis cells had to

be destructed and only gold in ionic form could be detected [23].

Consequently, establishing a quantification system using existing

technologies to simultaneously determine the amount and

aggregation state of AuNRs in living cells was of great significance.

AuNRs had two distinctive absorption bands in their absorption

spectra; the one around 520 nm was called transverse surface

plasmon resonance (TSPR) band and the other one which could

be tuned according to the aspect ratio in the near infrared spectral

region was referred to as longitudinal surface plasmon resonance

(LSPR) band. The LSPR band was highly sensitive towards

dielectric change of surrounding environment and distance and

orientation between nanorods. Adsorption of proteins on AuNRs

induced a red shift of the LSPR peak, and aggregation of AuNRs

resulted in broadening and a shift of LSPR band [1,25]. Recently,

Xia’s group reported a simple spectroscopic method to indirectly

quantify the uptake of AuNRs by cells (breast cancer cell line, SK-

BR-3) based on LSPR peak absorbance variation in culture media

before and after the cell culture [27]. Additionally, due to distinct

peak positions of gold nanospheres and AuNRs, their uptake

amount could be differentiated when cells were incubated with

a mixture of these gold nanostructures. This simple method

provided an easy way to quantify the amount of Au nanostructures

up taken by cells. However, we noticed two drawbacks in this

method. One is that the aggregation status of the AuNRs in the

living cell is lacking; and the other is the effect of aggregation on

detection accuracy as both the intensity and peak of the LSPR

band change with aggregating. In present work, we address these

two issues by extending this strategy to living cells. The absorption

area of TSPR bands in cells are used to directly quantify the

amount of the AuNRs internalized by cells. The results are further

corroborated by ICP-MS, TEM and dark field microscopy. In

addition, the shape of LSPR band of AuNRs in cells is used to

trace the aggregation status of the AuNRs in living cells.

Results and Discussion

Characterization of AuNRs in Serum Culture Medium
The original CTAB (cetyltrimethylammonium bromide)-coated

AuNRs were synthesized using well-developed seed-mediated

growth. They were further sequentially coated by poly (sodium-

p-styrenesulfate) (PSS) and poly (diallyldimethyl ammoniumchlor-

ide) (PDDAC) molecules through electrostatic layer-by-layer

assembly technique as described in our previous work [28]. This

modification strategy increased the stability of AuNRs in culture

media meanwhile reduced their cytotoxicity caused by CTAB

molecules desorbed from the AuNRs surface [4,29]. The PDDAC-

coated AuNRs were characterized by scanning electron micros-

copy (SEM) and UV-vis-NIR absorption spectrophotometer

(shown in Figure 1A). The aspect ratio (length vs. width) was

estimated to be 4.3; and the TSPR and LSPR peaks were at

512 nm and 817 nm, respectively. Figure 1B presents the effects

of serum on absorption spectra of AuNRs dispersed in SCM. The

ratios of total serum proteins (TSP) to AuNRs (TSP/AuNRs) were

used to study the influences of serum content on stability of

AuNRs in the SCM. In the basic medium which was serum free,

AuNRs aggregated quickly with a severe broadening of the LSPR

band; after 30 minutes incubation, the majority of the AuNRs

precipitated from the medium due to too large size of the

aggregates as evidenced by the great loss of AuNRs absorbance.

The culture media were full of various ions which could screen the

electrostatic repulsion between AuNRs and finally resulted in the

aggregation of them in the basic media [4]. When serum was

supplemented in the culture media, the stability of AuNRs in

the SCM was improved as a proportional function of serum

concentration. The AuNRs were well dispersed in the SCM when

the TSP/AuNRs ratio was . 125. Adsorption of serum proteins in

SCM to AuNRs surface has been suggested to stabilize the AuNRs

[4,29]. When the proteins were not enough to coat each individual

nanorod, AuNRs had to share the same proteins which bridged

the AuNRs together [30]. Hence adequate serums were required

to obtain a stable AuNRs dispersion in SCM. To further confirm

this, the UV-vis-NIR spectra of AuNRs dispersed in an only

bovine serum albumin (BSA) containing culture medium were

measured. A similar phenomenon was observed. When the ratio of

BSA to AuNRs (BSA/AuNRs) in the solution was less than 125

BSA/AuNRs, most AuNRs existed in aggregated status as the

LSPR band broadened significantly with great reduction in

intensity. Further increasing the BSA/AuNRs ratio, the absorp-

tion features of individual AuNRs were recovered (Figure 1C).

Notice that at same BSA/AuNRs ratio (125 BSA (or TSP)/

AuNRs), the LSPR band in the only BSA containing culture

media is much broadened than that in SCM, indicating a better

dispersion of the AuNRs in the latter media. This was presumably

the result of the relatively poor capability of only BSA in

maintaining the AuNRs stability in culture media as a combina-

tion of serum proteins constructed the corona of nanoparticles

exposed to the serum [31–32].

Dispersion status of AuNRs in SCM was also incubation time-

dependent. As seen in Figure 1B, when the ratio of TSP/AuNRs

in the media was below 125, the LSPR band was reduced greatly

after 24 or 48 h incubation, indicating further aggregation. At

TSP/AuNRs ratio $250, the LSPR band was better maintained

in SCM. In the media, nanoparticles (especially large or heavy

nanoparticles) experienced a sediment effect during the extended

incubation due to the gravity [33]. The sedimentation would be

markedly augmented when slight aggregation of AuNRs occurred

in SCM with low TSP/AuNRs ratio. These findings remind us

when assessing the interaction between AuNRs and cells with

dosage variation, the aggregation state of AuNRs should be taken

into consideration as the commonly used serum content in culture

media was fixed (10% serum). By UV-vis-NIR absorption

spectroscopy, AuNRs concentration and incubation time were

carefully selected to avoid aggregation problems in the following

cellular experiments.

UV-vis-NIR spectroscopy and ICP-MS with AuNRs-
incubated cells

MDA-MB-231 cells were incubated with 60 pM of AuNRs (250

of TSP/AuNRs) for different hours. At each designated time

point, the cells were detached and centrifuged to obtain cell pellets.

The pellets were dispersed in PBS and 1.56105 of the cells were

subjected to spectroscopic characterization. Same number of the

cells with no treatment was set as a control for the background

subtraction. As shown in Figure 2A, at the beginning of

incubation, the color of the cell pellets resembled that of AuNRs

dispersed in water. The appearance and gradual increase of black

color in the cell pellets was observed after 3 h of incubation,

implying the increased amount of engulfed AuNRs and/or their

increased aggregation inside the cells during the extended

incubation.

Behaviors of Gold Nanorods in Breast Cancer Cells
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On the basis that AuNRs with this aspect ratio have been shown

efficiently internalized by mammalian cells reported in literatures

[19,34] as well as in current experiments, and most of the cells

themselves had very weak absorption in the near-infrared window,

we hypothesized that if high content of AuNRs were taken up by

the cells, the AuNRs-contained cells would display the character-

istic absorption of the AuNRs in the near-infrared region. To

verify the above hypothesis, cells were subjected to UV-vis-NIR

spectroscopic measurements as shown in Figure 2B. The control

cells were shown to have a weak absorbance in the near-infrared

region which was a transparent window used for NIR imaging or

thermotherapy [2,5]. The AuNRs-incubated cells gained two

absorption bands belong to AuNRs. As incubation time was

extended, the two bands grew more legible. After subtracting the

background absorbance from the control cells, spectra of AuNRs

in the cells after different exposure times were presented in

Figure 2C. The absorption spectra were still similar to AuNRs

dispersed in water. However, the LSPR band exhibited a gradual

red shift and unsymmetrical broadening to longer wavelength

region within the incubation period. The red shift extent was

proportionally associated with the color darkening of the cell

pellets with incubation time increased. Hence the red shift may act

as an indicator of AuNRs aggregation in the cells.

Because the shape of TSPR peak of AuNRs in cells was steadily

maintained and the peak area exhibited an increasing trend within

the incubation time, the area of TSPR band was calculated by a

line segment connecting the start and end inflection points of the

TSPR peak in the absorption spectrum (Figure S1). Then the

calculation results were compared with analysis results of gold

content in cells obtained from ICP-MS (Figure 2D–E). As seen in

Figure 2D, the value of TSPR peak area exhibited the same

tendency as a function of incubation time towards gold content in

cells determined by ICP-MS. Results from both peak area

calculation and ICP-MS showed the amount of AuNRs inside

MDA-MB-231 cells was proportional to incubation time within

24 h; however, a slight decrease after 48 h incubation was

observed. This reduction was presumably resulted from the

AuNRs dilution by cells duplication, as doubling time for MDA-

MB-231 cells was approximately 24 hours [35–36]. The exocytosis

of AuNRs may also be attributed to the decrease [21] but not the

main reason here as the concentration of the AuNRs in SCM after

48 h incubation was further decreased (Figure S4).

In order to further compare the two quantification methods, the

data from TSPR peak area and ICP-MS were converted to

number of AuNRs per cell using a calibration line shown in

Figure S2 and the calculation method reported in a reference

[21], respectively (see Materials and Methods). The peak area was

found to have an excellent linear relationship with the AuNRs

concentration as shown in Figure S2. Figure 2E shows that at

each incubation time point, AuNRs number per cell calculated

from the calibration has a similar tendency to that calculated from

ICP-MS results, though the result from spectroscopy-based

Figure 1. Characterization of AuNRs dispersed in water and culture media. (A) The UV-vis-NIR absorption spectrum of AuNRs dispersed in
water. The inserted SEM image shows the morphology of AuNRs deposited from the aqueous solution. (B) Absorption spectra of AuNRs dispersed in
serum containing media (SCM) with 0%, 2.5%, 5%, 10%, 20% and 30% of fetal bovine serum (FBS) as a function of incubation time. Concentration of
AuNRs in the media was 120 pM. The corresponding ratios of total serum proteins (TSP) to AuNRs (TSP/AuNRs) were 0, 31.25, 62.5, 125, 250, and 375.
(C) The absorption spectra of AuNRs dispersed in basic media containing different content of only bovine serum albumin (BSA) for 30 minutes. The
ratios of BSA to AuNRs (BSA/AuNRs) were 1250, 125, 12.5, 1.25 and 0.125.
doi:10.1371/journal.pone.0031957.g001
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Figure 2. Analysis of AuNRs internalized by MDA-MB-231 cells vs incubation time. (A) Pellets of the cells incubated with AuNRs for 0.25,
0.75, 1.5, 3, 6, 12, 24, and 48 hours. Cells with no treatment are control. (B) The representative UV-vis-NIR absorption spectra of the cells incubated
with AuNRs for different hours. The curves are offset for clarity. (C) The absorption spectra of AuNRs in cells. The absorption from the control cells is
subtracted as background and the spectra are offset for clarity. (D) Comparison between results obtained from ICP-MS and TSPR peak area value. (E)

Behaviors of Gold Nanorods in Breast Cancer Cells
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method is 0.84–3.3 times higher than that from the ICP-MS.

Interestingly, results from the spectroscopic method proposed by

Xia et al to quantify AuNRs in the cells were 1.1–3.5 times higher

than that from the ICP-MS [27], which was quite close to the

outcome from our spectroscopic method. The difference between

spectroscopy-based quantification and ICP-MS may arise from

different detection sensitivities, because ICP-MS could detect gold

down to pictogram scale. However, in comparison with ICP-MS,

spectroscopic quantification of AuNRs was nondestructive; cells

exposed to AuNRs were alive during measurement, which posed

as a promising detection strategy in diagnosis.

Bright and dark field microscopy of AuNRs-incubated
cells

Dark-field microscopy could provide the panoramic view of the

AuNRs in cells based on the light scattering from AuNRs [37]. As

shown in Figure 2F, the AuNRs presented as bright dots in the

dark-field microscopy while they appeared as black dots in the

white-light microscopy. The accumulation of AuNRs in the cells

presented a time dependent manner. At the early incubation stage,

only several bright dots were observed in the cell. As the

incubation time was elongated, amounts of the bright dots were

increased correspondingly. After 3 h of incubation, the AuNRs

could be clearly observed as black dots scattered in the cells under

optical microscopy in white light channel, which well matched the

bright dots under dark field microscope. The black dots here

implied the AuNRs aggregation because single AuNRs was smaller

than 100 nm and unable to be visualized with common light

microscopy [1]. The aggregations were also evidenced by the

black color of corresponding cell pellets after 3 hour incubation

(Figure 2A) because color variation was the simplest way to

distinguish AuNRs flocculation. As mentioned above, the LSPR

band exhibited a gradual red shift and unsymmetrical broadening

to longer wavelength region with incubation time increased

(Figure 2C), which was indicative of AuNRs aggregation in the

cells. The aggregation of AuNRs observed by microscopy was

consistent with the variation of the spectra. Most importantly, the

amounts and brightness variation of AuNRs in the dark-field

microscopy exhibited the same tendency to the results from ICP-

MS and TSPR peak area.

Concentration effects of AuNRs on cells internalization
In addition to incubation time, concentration effects of AuNRs

in culture media on internalization by MDA-MB-231 cells were

also directly evaluated by UV-vis-NIR absorption spectroscopy

and the feasibility of this spectroscopy-based method was double-

checked in reference to the results obtained from ICP-MS. In

Figure 3B, the uptake of AuNRs obtained from UV-vis-NIR

spectra and ICP-MS was shown proportionally correlated to the

AuNRs concentration within 7.5–120 pM after an incubation of

6 h. This was comprehensible as a higher concentration of AuNRs

around the cells surface would initiate the uptake more easily and

frequently. Most importantly, the variation tendency of both

content and particle number of AuNRs in the cells calculated from

TSPR peak area could match those from ICP-MS analysis

(Figure 3B–C), which strongly supported the feasibility and

repeatability of this spectroscopy-based quantification for AuNRs

within living cells. Besides, results from dark-field microscopy also

demonstrated the quantity variation of AuNRs in the cells

(Figure 3D–E). Furthermore, to compare the detection capability

between ICP-MS and this spectroscopic analysis, the concentra-

tion of AuNRs in the culture media was reduced to 1.875 pM.

After 6-hours incubation at this concentration, the AuNRs in each

cell was estimated to be 865.7 nanorods detected by ICP-MS

method (Figure 4). It could be seen that the TSPR peak of AuNRs

in cells was too weak to be distinguished (Figure 4A), which made

the peak area calculation infeasible. This was presumably resulted

from the detection limitations of the absorption spectrophotometer

and the absorption disturbance from the cells themselves as the

absorbance of cells was relatively higher in UV-visible region than

that in near-infrared region. When the AuNRs concentration was

increased to 3.75 pM, the TSPR area became perceptible and the

calculated AuNRs number in each cell was in proportion to that

determined by ICP-MS (Figure 4B). Therefore, we would suggest

the minimum detectabiliy of the spectroscopic method was

3.75 pM AuNRs in culture media for a 6-hours culture. And the

corresponding minimum number of gold nanorods in each cell

was about 7000 using this spectroscopic method under our

experimental conditions (Figure 4B). Although the minimum

concentration was higher than that of ICP-MS, its low cost and

facile manipulation made it complementary to the existing

characterization methods. Additionally 1.56105 of cells was

needed in the spectroscopy analysis, which was regularly involved

in the biochemical analysis such as western blot.

Distribution and location of AuNRs in cells vs incubation
time

In order to probe the detailed distribution of AuNRs in the cells,

time resolved TEM observation was conducted and the results are

presented in Figure 5. After an incubation of 15 minutes, AuNRs

were adsorbed on the cells membrane and included in the vesicles

(Figure 5A–B). Meanwhile AuNRs were observed to be

surrounded by endocytic pits and retained in endocytic vesicles

(Figure 5B). These observations indicated that AuNRs were

internalized by MDA-MB-231 cells through endocytosis pathway

because the endocytosed cargos were immediately enclosed in the

vesicles [38]. After 45 and 90 minutes of incubation, AuNRs

began to appear in early endosomes and lysosomes as justified

from their peripheral location (Figure 5C–F) [39–40]. The

lysosomatic location of AuNRs implied that endocytotic vesicles

were fused with lysosomes, which was an important process

involved in lysosome maturation [39]. At 3 h of incubation

AuNRs trapped in late endosome were occasionally observed

(Figure 5H), which further confirmed that AuNRs underwent an

endocytic pathway that contained a series of vesicle structures

including endocytic vesicle, early endosome, late endosome and

lysosome, and finally resided in late lysosome [41]. With

incubation time increased, most of the AuNRs were located in

lysosomes while rare in vesicles. This may result from that

lysosomes could fuse with endosomes in lysosome maturation

[39,42]. Given above, AuNRs were suggested to be internalized

through endocytosis pathway and enter into lysosome maturation.

In the maturation process, cargos in endocytic vesicles would be

finally trapped in the late lysosomes which usually had a

perinuclear location [41], this explained that AuNRs-contained

lysosomes had a tendency of moving towards the perinuclear

region (Figure 5J–P and Figure S3) which was also observed by

Wei et al [22]. Except for endocytic vesicle system, no AuNRs were

The data acquired from the ICP-MS and TSPR peak area is converted to number of AuNRs contained in each cell. (F) Bright and dark field microscopic
observation of the cells incubated with AuNRs for different hours (TSP/AuNRs is 250). The first line is the bright field microscopic observation. The
second and third line is the dark field microscopic images with and without false color. The scale bar represents 50 mm.
doi:10.1371/journal.pone.0031957.g002
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observed in other cellular compartments such as nucleus,

mitochondria, Golgi apparatus, and rough endoplasmic reticulum

(rER). The confinement of AuNRs in the vesicular systems may

guarantee its low cytotoxicity as AuNRs could not exert a direct

influence on other important organelles such as mitochondria and

nucleus [19].

From whole-cell views of TEM observation, it could be seen

that the uptake of AuNRs (black rods in the cells) increased with

incubation time (Figure S3). Importantly, the AuNRs inside the

cell mainly existed in the various aggregated states, in agreement

with the spectral change of AuNRs in the cells. After 15 minutes

incubation, AuNRs in vesicles were mainly individual or small

aggregates with several AuNRs; their LSPR band was located at

794 nm, a blue shift from that dispersed in water (817 nm)

(Figure 2C). This blue shift was considered the result of small

aggregate of AuNRs as well as the change of local refractive index

of AuNRs surface when they were in the cells [6,43]. As

incubation time was further increased, the AuNRs gradually

accumulated in the lysosomes and formed larger aggregates during

48 h exposure. These trends were consistent with the growing red

shift and broadening of LSPR band (Figure 2C).

Absorption spectra of AuNRs remained in the culture
media

In order to exclude the possibility that AuNRs already

aggregated before entering cells, absorption spectra of AuNRs in

Figure 3. Analysis of AuNRs internalized by MDA-MB-231 cells vs AuNRs concentration. (A) Typical absorption curves of AuNRs in cells
cultured with different AuNRs dosages for 6 hours. The curves are offset for clarity. (B–C) A comparison between the quantification methods of ICP-
MS and TSPR peak area calculation. (D) Digital photographs of AuNRs-contained cell pellets co-cultured with different amount of AuNRs in media for
6 hours. (E) Dark field microscopic observations of cells incubated with different concentrations of AuNRs in the media. The red scale bar is 50 mm.
doi:10.1371/journal.pone.0031957.g003
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the culture media after the incubation at each time point were also

examined (Figure S4). No obvious broadening in the LSPR band

within the incubation indicated that the AuNRs were stable and

mainly existed in dispersed states in SCM [4]. The gradual

aggregation of AuNRs in the cells was assumed to be a result of

interactions with cell components. It has been demonstrated that

pH value was gradually decreased in early endosome, late

endosome and lysosome [39], which combined with harsh

environment within endosomes and lysosomes may induce AuNRs

flocculation [18,44]. Besides, fusion between lysosome and

endosome increased the quantity of AuNRs in a single lysosome,

which would enhance their aggregation chance.

In summary, AuNRs-contained living cells are demonstrated to

harvest the absorption information of the AuNRs, thus providing a

facile way to probe the behaviors of AuNRs in the cells based on

simple spectroscopic method. As demonstrated in Figure 6, when

encountered with the cells, AuNRs experienced a series of locations in

the cells including endocytic vesicle, early endosome, late endosome

and lysosome, and have a tendency of aggregation in the lysosomes as

well as move toward perinuclear region during 48 h incubation. The

uptake of AuNRs by MDA-MB-231 cells is positively correlated to

both incubation time and AuNRs concentration. These findings

reveal dynamic behaviors of AuNRs in cells and suggest a simple

spectroscopic technique in quantifying AuNRs and characterizing

their aggregation state within living mammalian cells. The variation

of LSPR location in the living cells may also be helpful in optimizing

laser wavelength in anti-cancer thermotherapy.

Materials and Methods

Materials
Silver nitrate (AgNO3), cetyltrimethylammonium bromide

(CTAB), hydrogen tetrachloroaurate (III) trihydrate (HAuCl4?

3H2O), L-ascorbic acid, glutaraldehyde (25% aqueous solution),

and sodium borohydride (NaBH4) were obtained from Alfa Aesar.

Poly (sodium-p-styrenesulfate) (PSS, molecular weight: 70000) and

poly (diallyldimethyl ammoniumchloride) (PDDAC, 20%) were

purchased from Sigma-Aldrich.

Preparation of AuNRs
The as-synthesized AuNRs were coated with a bilayer of CTAB

molecules. After two-step layer-by-layer electrostatic assembly,

PDDAC-capped AuNRs were obtained. The AuNRs were

centrifuged at 15000 rpm for 5 minutes twice and re-dispersed

in deionized water as final stock solution [28]. The concentration

of the AuNRs stock solution was 12 nM determined by ICP-MS

and TEM measurements [45].

Cells culture
Human breast cancer cell line MDA-MB-231 was purchased

from the Cell Resource Center of Chinese Academy of Medical

Sciences (Beijing, China). This cell line was well documented in

1980s and has been widely used in the breast cancer research [46–

48]. Cells were cultured in Leibovitz’s L-15 Medium (Gibco

Invitrogen, CA, USA) containing phenol red, 10% fetal bovine

serum (FBS), 100 U/ml penicillin, 100 U/ml streptomycin and

maintained in a 37uC humidified incubator with a low-CO2

environment.

Spectroscopy
Absorption spectra were recorded using BioTek SynergyTM 4

Hybrid Multi-Mode Microplate Reader (BioTek Instruments,

USA); spectra were typically measured from 400 nm to 999 nm

with a stepwise of 1 nm. First, fetal bovine serum was added into

the Leibovitz’s L-15 culture medium at different concentrations of

0%, 2.5%, 5%, 10%, 20% and 30% FBS. Bovine serum albumin

(BSA) was added into the culture medium at different contents of

0.005, 0.05, 0.5, 5 and 50 g/L. The total protein amount in 5 g/L

BSA in medium was estimated equal to that in 10% FBS in

medium [49]. A proper amount of AuNRs was added into the

prepared culture media containing different contents of FBS or

BSA. The total medium volume and AuNRs concentration was

fixed at 200 ml and 120 pM respectively. The corresponding

medium without AuNRs was set as background. The ratio of

protein to AuNRs was expressed as the number of total serum

protein (TSP) or BSA per AuNRs (TSP/AuNRs or BSA/AuNRs).

After 30 minutes, 24 and 48 hours incubation, the AuNRs-

contained media were subjected to the UV-vis-NIR absorption

spectroscopic measurements and every treatment was repeated for

three times.

To acquire absorption spectra of AuNRs in the living cells,

36105 cells were seeded on to a 60-mm petri dish and incubated

overnight to allow cells attachment. AuNRs were added into

culture media (10% FBS) at a concentration of 60 pM. After

exposed to AuNRs for different hours, the cultured medium was

collected for UV-vis-NIR spectroscopy. The cells were washed by

PBS buffer for 3 times to wash off the loosely bound AuNRs. Then

cells were collected by trypsin digestion and following centrifuga-

tion. The cells pellets (in PBS) were photographed with a digital

camera. Then the cells were diluted in an appropriate volume of

PBS. Cell number was counted using TC10TM Automated Cell

Counter (Biorad). Then 200 ml of cells suspension (1.56105 cells in

Figure 4. Determination of the minimum detectability of the
spectroscopic analysis. (A) Representative absorption spectra of
AuNRs in cells after 6-hours incubation with 1.875, 3.75, 5 and 7.5 pM
AuNRs in culture media. The curves are offset for clarity. (B) Comparison
between the minimum detectability of ICP-MS and TSPR peak area
calculation in quantifying AuNRs in cells. The Au content in cells is
converted to AuNRs number in each cell. The numbers are presented as
Mean6SD from three parallel experiments.
doi:10.1371/journal.pone.0031957.g004
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PBS) was subjected to spectroscopic measurements. Correspond-

ingly 200 ml of PBS was set as absorbance background and all the

experiments were performed in triplicates. Meanwhile, 1.56105

cells in PBS were stocked in 220uC for later ICP-MS analysis. To

examine concentration effect of AuNRs, the cells were cultured

with different concentration of AuNRs for 6 h.

Transmission electron microscopy of AuNRs-incubated
cells

About 1.16106 MDA-MB-231 cells were seeded into a 10-cm

petri dish and cultured overnight to allow cells adherence. Then

the culture medium was changed with fresh medium containing

60 pM AuNRs. After incubation with AuNRs for 0.25, 0.75, 1.5,

3, 6, 12, 24, 48 hours, the cells were gently rinsed with PBS

solution for three times to wash off the loosely bind AuNRs. The

cells cultured without any AuNRs was set as control. Then cells

were scraped off and centrifuged to form cell pellet in an

eppendorf tube. The cell pellet was fixed in 2.5% glutaraldehyde

overnight and followed by post-fixation in 1% (w/v) osmium

tetroxide in phosphate buffer. After washed with phosphate buffer,

the resulting pellets were dehydrated gradually by ethyl alcohol

and embedded in Epon. Ultrathin sections were cut and placed on

a copper meshwork. The sections were observed on a transmis-

sion electron microscope (TEM, JEM-1010) with different

magnifications.

Dark field microscopic observation
MDA-MB-231 cells were seeded and grown on coverslips in a

24-well plate (56104 cells/well). The cells were incubated with

60 pM AuNRs in medium (10% serum) for 0.25, 0.75, 1.5, 3, 6,

12, 24, 48 hours or cultured with medium which contained 0, 7.5,

15, 30, 60, 120 pM AuNRs for 6 hours. After that, the coverslips

with cells were rinsed by PBS for three times and fixed in 4%

paraformaldehyde for 10 minutes. After washing for three times

with PBS, the coverslips were mounted with an aqueous mounting

medium (Zhongshan Goldenbridge biotechnology Co, Beijing,

China). The cells were visualized under a Leica microscope

equipped with dark field condenser.

ICP-MS analysis
All ICP-MS measurements were conducted on a Thermo ICP-

MS XII instrument (ThermoFisher). The instrumental detection

limit for gold element was as low as 7.68 pg/ml under standard

laboratory conditions. The sample preparation for the ICP-MS

analysis was as follows. Briefly, 1.56105 AuNRs-contained or

control cells were digested by aqua regia and the final sample

solutions were diluted to a fixed volume (10 ml). Each treatment

was repeated for 3 times. The mass of gold element determined

from ICP-MS was converted to the number of AuNRs per cell

using the calculated number of gold atoms in each nanorod.

Conversion of TSPR peak area to AuNRs number in each
cell

The TSPR peak area was converted to AuNRs number in each

cell through a calibration line. In order to simulate the situation of

AuNRs dispersed inside the cells, AuNRs were dispersed in cell

lysate of MDA-MB-231. To prepare the cell lysate, the cells was

lysed by three consecutive freeze-thaw cycles followed by

ultrasonication. Certain amount of AuNRs were dispersed in the

cell lysate of 1.56105 cells and the total volume was fixed at 200 ml

to obtain solutions with determined AuNRs number for the

spectroscopic measurements. Cell lysate without AuNRs was set as

control for background subtraction. The TSPR peak area of the

AuNRs dispersing in the lysate was calculated according the

method described in Figure S1. The calibration line of TSPR peak

area vs numbers of AuNRs was created (Figure S2). The AuNRs

number in each cell was calculated using the calibration line.

Supporting Information

Figure S1 Illustration of the TSPR peak area calcula-
tion. The absorption spectra of AuNRs in cells were acquired by

deducting the absorption from the control cells. The curves were

first smoothed with the FFT (fast Fourier transform) and then a

line segment connecting the inflection points before and after the

TSPR peak was created. The area between the TSPR peak and

the line segment was calculated in the origin 7.5 software. The

inserted graph shows representative absorption spectra of AuNRs-

contained and control cells.

(TIF)

Figure S2 Calibration curve of AuNRs dispersed in
MDA-MB-231 cell lysate as a function of concentration.
Before the spectroscopic analysis was performed, cells were lysed

by three consecutive freeze-thaw cycles followed by ultrasonica-

tion. Various amounts of AuNRs were dispersed in cell lysate of

1.56105 cells and repeated for three times at each concentration.

Figure 6. Schematic illustration of the itinerary of AuNRs in
MDA-MB-231 cells. AuNRs are first taken up by endocytosis and
immediately retained in endocytic vesicles (ev). The AuNRs then
experience lysosome maturation process including early endosome
(ee), late endosome (le) and late lysosome (ll) location. In the cell,
individual AuNRs gradually aggregated one another and located
towards perinuclear region. The rER and Golgi represents rough
endoplasmic reticulum and Golgi apparatus, respectively.
doi:10.1371/journal.pone.0031957.g006

Figure 5. Distribution of AuNRs in MDA-MB-231 cells evaluated by TEM observation with detailed time-resolution. (A, C, E, G, I, K, M,
O) The representative images of AuNRs in cells with different incubation time. The area rectangle labeled is further magnified and shown in the
middle column. (B) AuNRs are shown adsorbed on the membrane and retained in the endocytic vesicle (ev). (D) AuNRs are observed in an early
endosome (ee). (F) AuNRs are located in a late lysosome (ll) which is featured with multilayer structure and near Golgi apparatus. (H) AuNRs are in a
late endosome (le) appeared as multivesicular body (MVB) in perinuclear region. (J, I, N, P) AuNRs-contained lysosomes located in perinuclear region
after 6, 12, 24 and 48 h of incubation with AuNRs. The black arrows point lysosome, white arrows point mitochondria, and black and white arrow
heads mark the Golgi apparatus and rough endoplasmic reticulum (rER), respectively. (n: nucleus, m: membrane).
doi:10.1371/journal.pone.0031957.g005
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The inserted graph presents the representative absorption spectra

of AuNRs dispersed in cell lysates.

(TIF)

Figure S3 Whole-cell view of TEM images of MDA-MB-
231cells incubated with AuNRs for various time periods.
The scale bar represents 2 mm. (A-control, B-0.25 h, C-0.75 h, D-

1.5 h, E-3 h, F-6 h, G-12 h, H-24 h, I-48 h).

(TIF)

Figure S4 Absorption of AuNRs in the culture media
when cells are harvested. (A) The UV-vis-NIR spectra of

AuNRs in the media after a different incubation time. (B) The

absorption spectra of AuNRs remained in the media after cultured

with different concentration of AuNRs for 6 hours. The

absorption disturbance around 550 nm wavelength is resulted

from the strong absorption of phenol red in media when

performing the background deduction [27].

(TIF)

Author Contributions

Conceived and designed the experiments: HX XW. Performed the

experiments: WZ YJ JM. Analyzed the data: WZ YJ. Contributed

reagents/materials/analysis tools: HX XW JM. Wrote the paper: HX XW

WZ.

References

1. Parab JH, Chen HM, Lai T, Huang JH, Chen PH, et al. (2009) Biosensing,
cytotoxicity, and cellular uptake studies of surface-modified gold nanorods. J Phys

Chem C 113: 7574–7578.

2. Tong L, Wei Q, Wei A, Cheng JX (2009) Gold nanorods as contrast agents for

biological imaging: optical properties, surface conjugation and photothermal

effects. Photochem Photobiol 85: 21–32.

3. Zhang W, Meng J, Ji Y, Li X, Kong H, et al. (2011) Inhibiting metastasis of

breast cancer cells in vitro using gold nanorod-siRNA delivery system. Nanoscale
3: 3923–3932.

4. Huang HC, Barua S, Kay DB, Rege K (2009) Simultaneous enhancement of
photothermal stability and gene delivery efficacy of gold nanorods using

polyelectrolytes. ACS Nano 3: 2941–2952.

5. Ungureanu C, Kroes R, Petersen W, Groothuis TA, Ungureanu F, et al. (2011)

Light interactions with gold nanorods and cells: implications for photothermal
nanotherapeutics. Nano Lett 11: 1887–1894.

6. Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and
properties to biological and biomedical applications. Adv Mater 21: 4880–4910.

7. Alkilany AM, Nagaria PK, Wyatt MD, Murphy CJ (2010) Cation exchange on

the surface of gold nanorods with a polymerizable surfactant: polymerization,
stability, and toxicity evaluation. Langmuir 26: 9328–9333.

8. Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ (2011) Gold
nanorods: their potential for photothermal therapeutics and drug delivery,

tempered by the complexity of their biological interactions. Adv Drug Deliv Rev
DOI: 10.1016/j.addr.2011.03005.

9. Tong L, Zhao Y, Huff TB, Hansen MN, Wei A, et al. (2007) Gold nanorods
mediate tumor cell death by compromising membrane integrity. Adv Mater 19:

3136–3141.

10. Zhou Y, Wu X, Wang T, Ming T, Wang PN, et al. (2010) A comparison study of

detecting gold nanorods in living cells with confocal reflectance microscopy and
two-photon fluorescence microscopy. J Microsc 237: 200–207.

11. Bonoiu AC, Mahajan SD, Ding H, Roy I, Yong KT, et al. (2009)

Nanotechnology approach for drug addiction therapy: gene silencing using
delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons. Proc Natl

Acad Sci U S A 106: 5546–5550.

12. Yi DK, Sun IC, Ryu JH, Koo H, Park CW, et al. (2010) Matrix

metalloproteinase sensitive gold nanorod for simultaneous bioimaging and
photothermal therapy of cancer. Bioconjug Chem 21: 2173–2177.

13. Huang X, El-Sayed HI, Qian W, El-Sayed MA (2006) Cancer cell imaging and
photothermal therapy in the near-infrared region by using gold nanorods. J Am

Chem Soc 128: 2115–2120.

14. Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA (2010) What the

cell ‘‘sees’’ in bionanoscience. J Am Chem Soc 132: 5761–5768.

15. Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape

dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:

662–668.

16. Albanese A, Chan WC (2011) Effect of gold nanoparticle aggregation on cell

uptake and toxicity. ACS Nano 5: 5478–5489.

17. Wilson CG, Sisco PN, Goldsmith EC, Murphy CJ (2009) Glycosaminoglycan-

functionalized gold nanorods: interactions with cardiac cells and type I collagen.
J Mater Chem 19: 6332–6340.

18. Wang L, Liu Y, Li W, Jiang X, Ji Y, et al. (2011) Surface chemistry and aspect
ratio mediated cellular uptake of Au nanorods. Nano Let 11: 772–780.

19. Hauck TS, Ghazani AA, Chan WC (2008) Assessing the effect of surface
chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian

cells. Small 4: 153–159.

20. Bartneck M, Keul HA, Singh S, Czaja K, Bornemann J, et al. (2010) Rapid

uptake of gold nanorods by primary human blood phagocytes and immuno-
modulatory effects of surface chemistry. ACS Nano 4: 3073–3086.

21. Qiu Y, Liu Y, Wang L, Xu L, Bai R, et al. (2010) Surface chemistry and aspect
ratio mediated cellular uptake of Au nanorods. Biomaterials 31: 7606–7619.

22. Huff TB, Hansen MN, Zhao Y, Cheng JX, Wei A (2007) Controlling the cellular
uptake of gold nanorods. Langmuir 23: 1596–1599.
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