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Abstract Platelet-activating factor (PAF) accumulates dur-
ing cerebral ischemia, and inhibition of this process plays a
critical role in neuronal survival. Recently, we demonstrated
that LAU-0901, a novel PAF receptor antagonist, is neuro-
protective in experimental stroke. We used magnetic reso-
nance imaging in conjunction with behavior and
immunohistopathology to expand our understanding of this
novel therapeutic approach. Sprague-Dawley rats received
2 h middle cerebral artery occlusion (MCAo) and were treated
with LAU-0901 (60 mg/kg) or vehicle 2 h from MCAo onset.
Behavioral function, T2-weighted imaging (T2WI), and
apparent diffusion coefficients were performed on days 1, 3,
and 7 after MCAo. Infarct volume and number of GFAP, ED-
1, and NeuN-positive cells were conducted on day 7.
Behavioral deficit was significantly improved by LAU-0901
treatment compared to vehicle on days 1, 3, and 7. Total lesion
volumes computed from T2WI were significantly reduced by
LAU-0901 on days 1, 3, and 7 (by 83%, 90%, and 96%,
respectively), which was consistent with decreased edema
formation. Histopathology revealed that LAU-0901 treatment
resulted in significant reduction of cortical and subcortical
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infarct volumes, attenuated microglial infiltration, and pro-
moted astrocytic and neuronal survival. These findings
suggest LAU-0901 is a promising neuroprotectant and
provide the basis for future therapeutics in patients suffering
ischemic stroke.

Keywords LAU-0901 - PAF antagonist - Magnetic
resonance imaging - Middle cerebral artery occlusion -
Stroke - Neuroprotection

Introduction

Stroke is a leading cause of death and disability worldwide.
Conventional therapies for ischemic stroke include throm-
bolytic therapy, prevention of inappropriate coagulation and
thrombosis, and surgery to repair vascular abnormalities.
Only one FDA-approved therapy exists for treatment of
acute ischemic stroke, the thrombolytic tissue plasminogen
activator (tPA), but due to comorbid conditions and
contraindications, only 5-8% of all ischemic stroke patients
are eligible for treatment with tPA [1]. Thus, there is an
urgent need for good therapeutic strategies to reduce the
devastating deficits resulting from stroke.
Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-
glycero-3-phosphocholine) is a potent, short-lived phos-
pholipid mediator of leukocyte functions, platelet aggrega-
tion, and proinflammatory signaling. PAF accumulates in
the brain after cerebral ischemia, and, in conjunction with
nonspecific glutamate release and glutamate reuptake
inhibition, leads to intracellular Ca®" overload, mitochon-
drial dysfunction, generation of reactive oxygen species,
and inflammation-mediated excitotoxicity [2]. In order to
attenuate PAF’s proinflammatory and excitotoxic effects
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during reperfusion injury, we used LAU-0901, a novel PAF
inhibitor, to promote neuronal survival and prevent ische-
mic brain injury.

LAU-0901 (2,4,6-trimethyl-1, 4-dihydro-pyridine-3, 5-
dicarboxylic acid) is a highly potent and selective PAF
receptor antagonist, named as such to recognize the
collaboration between Louisiana State University Health
Sciences Center, New Orleans, and the Universidad de
Alcala, Spain, universities (Fig. 1). LAU-0901 has been
used as an anti-inflammatory, highly protective treatment in
a variety of inflammation models [3-6]. Recently, we
showed that LAU-0901 has potent neuroprotective activity
when used as a treatment for ischemia—reperfusion injury in
rats and mice [7, 8]. In a dose—response study, we found
that a 60-mg/kg dose of LAU-0901 resulted in improved
behavior and reduced brain infarction after focal cerebral
ischemia [7]. Thus, we choose this dose in the current
study. The effect of LAU-0901 treatment was investigated
using multimodal magnetic resonance imaging (MRI),
neurobehavioral assays, and end point immunohistochem-
istry. No prior studies have used MRI to evaluate the
temporal effects of LAU-0901 treatment on brain ischemia.

Materials and Methods
Animal Preparation

All studies were approved by the Institutional Animal Care
and Use Committees of the Louisiana State University Health
Sciences Center, New Orleans, and Loma Linda University.
Male Sprague—Dawley rats (Charles River Lab., Wilmington,
MA) weighing 260-349 g were fasted overnight but allowed
free access to water. Anesthesia was induced with 3%
isoflurane in a mixture of 70% nitrous oxide and 30% oxygen.
All rats were orally intubated and mechanically ventilated.
Temperature probes were inserted into the rectum and the left
temporalis muscles to maintain temperatures at 36-37°C
during surgical procedures. The right femoral artery and vein
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Fig. 1 Chemical structure of LAU-0901 (Nicolas G. Bazan, Carlos
Sunkel, Victor Marcheselli and Julio Alvarez-Builla Gomez. “2.,4,6-
trimethyl-1,4-dihydro-pyridine-3,5-dicarboxylic acid esters as neuro-
protective drugs.” United States Patent No. 6,566,359)

were catheterized for blood sampling for arterial gases, pH,
and plasma glucose.

Middle Cerebral Artery Occlusion

Rats underwent 2 h of right middle cerebral artery
occlusion (MCAo) by an intraluminal filament, as previ-
ously described [9]. In brief, the right common carotid
artery bifurcation was exposed through a midline neck
incision and the occipital artery branches of the external
carotid artery were isolated, ligated, and dissected. After
careful isolation of the internal carotid artery (ICA), a 3—-0
monofilament coated with poly-L-lysine was advanced
through the ICA to the MCA until mild resistance was felt.
The neck incision was closed with a silk suture, and the
animals were then allowed to recover. After 2 h of MCAo,
rats were reanesthetized with the same anesthetic combina-
tion and intraluminal sutures were carefully removed.

Behavioral Tests

The animals underwent neurobehavioral assays by an
observer blinded to the treatment groups at 60 min (during
MCAo) and then on days 1, 3, and 7 after MCAo. The
battery consisted of the postural reflex test and the forelimb
placement test to visual, tactile, and proprioceptive stimuli.
Neurological function was graded on a scale of 0-12
(normal score—0; maximum score—12) as previously
described [9]. All behavioral tests were performed on the
same days as the MRI scans, prior to the administration of
anesthesia.

Treatment

The agents (LAU-0901; 60 mg/kg; n=5) or vehicle (45%
cyclodextran, 1 ml/kg; n=6) were administered i.p. at the
time of reperfusion, i.e., 2 h from onset of MCAo.

Magnetic Resonance Imaging

MRI was performed at 1, 3, and 7 days following MCAo.
Rats were lightly anesthetized using isoflurane (1.0%) and
imaged on a Bruker Avance 4.7 T MRI (Bruker Biospin,
Billerica MA) as previously described [10]. A thermostat-
controlled heated water cushion maintained body tempera-
ture at 35-37+1°C. Two imaging data sets were acquired:
(1) a six echo T2 and (2) a DWI sequence where each
sequence collected 20 coronal slices (1 mm thickness and
interleaved by a 1 mm). The T2 sequence had the following
parameters: TR/TE=4,600/10.2 ms, matrix=1282, field of
view (FOV)=3 cm, and two averages. The DWI sequence
had the following parameters: TR/TE=1,000/25 ms, two b
values (0.72, 1,855.65 s/mm?), matrix=128> FOV=3 cm,
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and two averages. Total imaging time was 40 min. The
apparent diffusion coefficient (ADC) maps were computed
using an in-house MatLab routine, and ADC values were
calculated for each pixel using the equation ADC=In((So/
Sn)/b), where Sn is the pixel intensity for a DWI, and So is
the pixel intensity for the corresponding unweighted image.
The T2-weighted maps were also computed on a pixel-by-
pixel basis using a nonlinear least square curve fit to the
data by using the equation, M(f)=Mo(1—¢ "™?), where Mo
is the initial magnetization before decay, ¢ is the echo time
(in milliseconds), and T2 is the spin—spin relaxation time.
ADC and T2 maps were transferred to an analysis program,
Cheshire™ (Hayden Image/PARAXEL International Corp.)
for region of interest (ROI) analysis. Three-dimensional
images were obtained to delineate the volumetric develop-
ment of ischemic injury. Analysis included extraction of
lesion, nonlesioned brain, and total brain volumes. ROI was
drawn semiautomatically on each slice and manually
checked. From these ROIs, the lesion volume was
calculated over all slices (volume of lesion/total brain
volume) and expressed as a percentage. T2-weighted
imaging (T2WI) was used to assess the lesion volume
estimation and to obtain tissue level T2 values. The T2
values provide a quantitative measure of the water
“content” and hence edema. Conversely, DWI was acquired
to estimate tissue water mobility quantitatively from the
ADC. The tissue level water mobility is thought to reflect
the level of tissue integrity [10].

Histopathology and Immunostaining

Animals were perfused with 4% paraformaldehyde on
day 7, and brains were removed and embedded in a gelatin
matrix using MultiBrain™ Technology (NeuroScience
Associates, Knoxville, TN) as previously described [11].
Coronal sections were stained with thionine (Nissl), and
immunohistochemical procedures were performed on the
adjacent sections. To quantitate infarct volume, histological
sections were digitized at nine standardized coronal levels
and analyzed (MCID™ Core imaging software, Linton,
Cambridge, UK) as previously described [9]. Infarct
volume was calculated as the integrated product of cross-
sectional area and intersection distance and corrected for
brain swelling. The following antibodies were used: glial
fibrillary acid protein (GFAP; Santa Cruz, SDS Bioscien-
ces, Sweden) to label reactive astrocytes and Cd68/ED-1
(Serotec, Raleigh, NC) for activated microglia/micro-
phages, and neuron-specific nuclear protein (NeuN; Chem-
icon/Millipore, Billerica, MA). The number of GFAP, ED-
1, and NeuN-positive cells was counted (Zeiss Axio Imager
4.6.3) in the cortex and striatum at the level of the central
lesion (bregma level —0.3 mm; magnification x40). Data
were expressed as numbers of positive cells per high-power
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microscopic field. Brain slices were imaged on a Zeiss
LSM-510 Meta laser confocal microscope with a x10
objective (Zeiss Plan-NEOFLUAR 10x/0.3). Fluorophore
visualization (excitation/emission capture) was achieved as
follows: GFAP: DyLight 488 (488 nm/505-530 nm, green)
and EDI: DyLight 594 (594 nm/603-636 nm, red). The
image resolution was set to 2.26 um/pixel, and the cubic
voxel dimension was 129.5 um. Computer-generated
MosaiX-processed images of NeuN, GFAP, ED-1, and
GFAP/ED-1 double staining from vehicle and LAU-0901
rats were generated.

Statistical Analysis

Data are presented as mean values+SEM. Repeated
measures analysis of variance (ANOVA) followed by
Bonferroni procedures to correct for multiple comparisons
were used for intergroup comparisons. Two-tailed Student’s
t tests were used for two-group comparisons. Differences at
P<0.05 were considered statistically significant.

Results
Physiological Variables

Rectal and cranial (temporalis muscle) temperatures, arte-
rial blood gases, and plasma glucose showed no significant
differences among groups (Table 1). LAU-0901-treated rats
significantly increased body weight on day 7 compared to
vehicle group (Table 1). There were no adverse behavioral
side effects observed after LAU-0901 administration to rats
in the present study.

Neurobehavioral Assessment

LAU-0901 treatment significantly improved behavioral
scores compared to vehicle on days 1, 3, and 7 (Fig 2a).
Significant improvement of postural reflex, visual, tactile,
and proprioceptive placing reactions were observed at
different times in LAU-0901-treated rats compared to the
vehicle group (Fig. 2b—g).

MRI Lesion Volume and Brain Edema

T2WI revealed large cortical and subcortical lesions and
enlarged ventricules in vehicle rats (Fig. 3a). In contrast,
LAU-0901-treated rats showed initial smaller infarcts that
were only localized to the subcortex on days 1 and 3 and
were almost indistinguishable from normal tissues by
day 7. In addition, signficantly decreased cystic lesion
development and decreased ventricular enlargement were
observed in LAU-0901-treated rats (Fig. 3a). Total lesion
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Table 1 Physiological variables

Vehicle (n=7) LAU-0901 (n=6)
Before MCAo (15 min)
Rectal temperature (°C) 36.9+0.1 37.0+0.1
Cranial temperature (°C) 36.5+0.2 36.7+0.2
pH 7.41+0.01 7.44+0.02
PO, (mmHg) 122+7 11948
PCO, (mmHg) 39+1 39++1
Plasma glucose (mg/dL) 91+3 91+8
Body weight (g) 317+18 319+14
During MCAo (15 min)
Rectal temperature (°C) 37.1+0.3 37.1+0.1
Cranial temperature (°C) 36.8+0.3 36.7+0.1
pH 7.38+0.02 7.42+0.02
PO, (mmHg) 109+6 106+6
PCO, (mmHg) 44+1 42+2
Plasma glucose (mg/dL) 88+2 98+10
After treatment (day 1)
Rectal temperature (°C) 37.8+0.2 37.5+0.2
Body weight (g) 291+18 306+13
After treatment (day 3)
Rectal temperature (°C) 37.6+0.1 37.6+0.1
Body weight (g) 286+19 309+11
After treatment (day 7)
Rectal temperature (°C) 37.7+0.1 38.1+0.1
Body weight (g) 297+22 326+15°

Values are mean+SEM
MCAo middle cerebral artery occlusion

*Different from vehicle group (P<0.05, repeated measures ANOVA
by Bonferroni tests)

volumes computed from T2WI were significantly reduced
by LAU-0901 treatment on day 1 (by 83%), day 3 (by
90%), and day 7 (by 96%, Fig. 3b). When the cortical and
subcortical regions were analyzed separately, LAU-0901
significantly reduced subcortical lesion volumes on day 1
(by 60%), day 3 (by 69%), and day 7 (by 86%), and cortical
lesion volumes were practically nonexistent on days 1, 3,
and 7 as compared to vehicle (Fig. 3b). Three-dimensional
infarct volumes were computed from T2WI on days 1, 3,
and 7 after MCAo (Fig. 3c). Lesion volume was dramat-
ically reduced with LAU-0901 treatment and was mostly
localized only in the subcortical areas of the brain. When
the cortical and subcortical edema was quantified, LAU-
0901 reduced cortical edema on days 1, 3, and 7 (by 36%,
27%, and 34%, respectively) and also subcortical edema on
days 3 and 7 (by 20% and 22%, respectively) compared to
vehicle-treated group (Fig. 4a). LAU-0901 increased the
ADC in the cortex (by 153%) and striatum (by 132%) on
day 1, consistent with increased water motility and cellular
survival (Fig. 4b). These dynamic processes reflect repair

mechanisms associated with LAU-0901 treatment of the
brain lesion.

Histopathology

All animals survived uneventfully. Cortical and subcortical
infarct areas were significantly smaller on multiple bregma
levels compared to vehicle-treated rats (Fig. 5a). In fact, by
day 7, no cortical infarct was observed in LAU-0901-
treated rats. In addition, total, cortical, and subcortical
infarct volumes were reduced by LAU-0901 compared with
vehicle-treated rats (Fig. 5b). Representative images of
Nissl, GFAP (marker for astrocytes), ED-1 (marker for
microglia), and GFAP/ED-1 double staining are presented
in Fig. 5c. Brains from vehicle-treated rats exhibited a
pannecrotic lesion involving both cortical and subcortical
regions of the right hemisphere (Fig. 5c¢). In addition,
neuronal loss, GFAP-positive reactive astrocytes outlining
the lesion territory, and massive ED-1-positive microglia/
macrophage infiltration were observed in vehicle rats
(Fig 5c). In contrast, LAU-0901 treatment attenuated
damage as well as decreased ED-1-positive microglia/
macrophages and increased GFAP-positive astrocytes. In
order to determine the effect of LAU-0901 treatment on
specific cell types, NeuN, GFAP, and ED-1-positive cells
were quantified and compared to the vehicle group in the
cortex (A, B, C) and subcortex (S; see brain diagram for
RO, Fig. 5d). LAU-0901 treatment significantly increased
neuronal survival in the subcortex (by 95%) and cortical
region B (by 114%), increased GFAP-positive reactive
astrocytes in the subcortex (by 103%) and cortical regions
B and C (116% and 48%), and decreased ED-1-positive
microglia/macrophage infiltration in the subcortex (by
71%) and cortical regions B and C (by 83% and 90%)
7 days after MCAo (Fig. 5d).

Discussion

We have shown here that the novel PAF receptor
antagonist, LAU-0901, provides neurobehavioral recovery,
reduces brain infarction and brain edema, increases the
apparent diffusion coefficient, attenuates microglial infiltra-
tion, and promotes astrocytic and neuronal survival when
administered 2 h after onset of stroke in rats. Activation of
signaling cascades occurs after stroke, which leads to the
inflammatory modulation of metabolic, hemodynamic, and
permeability properties; resolution is varied and complicat-
ed. One fundamental element in all of these signaling
cascades, occurring early after the onset of brain ischemia,
is the rapid release of unesterified essential fatty acids
(arachidonic and docosahexaenoic acid) as well as lyso-
phospholipids from membranes via phospholipase A2
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activity [12]. Arachidonic acid is metabolized into leuko-
trienes, LTC4, D4, E4, prostaglandins, and prostacyclins,
while lysophospholipids are converted into PAF. Under
normal conditions, PAF is produced in nontoxic quantities
in response to specific stimuli by a variety of cell types,
including platelets, neutrophils, monocytes, eosinophils,
and endothelial cells, and promotes memory formation via
increased synaptic plasticity and long-term potentiation [13,
14]. During ischemia, elevated levels of PAF accumulate
and have been shown to be neurotoxic via excessive
glutamate release and the induction of proinflammatory
cyclooxygenase 2 [15]. Excessive PAF also contributes to
cerebral damage by increasing intracellular calcium, dis-
rupting the blood-brain barrier, reducing cerebral blood
flow, and stimulating leucocytes [2].

PAF antagonists have been shown to have many
beneficial effects in various animal models of cerebral
ischemia. They reduce brain injury after neonatal hypoxic
ischemia in rats [16], global cerebral ischemia in gerbils
[17, 18], and focal cerebral ischemia in rats [19] and mice
[20]. PAF antagonists also have beneficial effects in other
models of ischemia and reperfusion, including the reduction
of myocardial reperfusion injury in swines [21], lung
ischemia—reperfusion injury in canines [22], intestinal
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ischemia—reperfusion injury in mice [23], and acute hepatic
injury [24] and renal ischemia injury in rats [25].
Recently, we have shown that LAU-0901, the novel PAF
inhibitor, results in marked infarct volume reduction and
neurobehavioral improvement in focal cerebral ischemia in
rats and mice [7]. LAU-0901 significantly improved the
neurological score compared with vehicle-treated rats at 1,
2, 3, and 7 days. In addition, all doses of LAU-0901
treatment (30, 60, and 90 mg/kg) significantly reduced total
infarct volume compared to vehicle rats by 76%, 88%, and
90%, respectively. Mice treated with LAU-0901 (30 and
60 mg/kg) reduced total infarction by 29% and 66%,
respectively. Furthermore, local cerebral blood flow
(LCBF) continually increased in mice treated with LAU-
0901 by 77% of baseline at 6 h as compared to an LCBF of
41% relative to baseline observed in the vehicle-treated rats
[7]. In a follow-up long-term survival study, 60 mg/kg of
LAU-0901, administered 2 h after onset of stroke, not only
yielded short-term improvements (as observed on days 1, 2,
3, and 7) but also resulted in beneficial effects on
behavioral outcome that persisted 2, 3, and 4 weeks after
MCAo [8]. The histological results in LAU-0901-treated
animals were concordant with the neurological outcome:
namely, a 20% increase in preserved brain tissue at 30 days,
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Fig. 3 a Representative T2WI a
from vehicle and LAU-0901-
treated rats. Enlarged ventricules
and T2 hyperintensites were
observed in the cortex and
striatum of vehicle-treated rats
out to 7 days, consistent with
edema formation. In contrast,
LAU-0901-treated animals had
smaller lesion size, with only
subcortical involvement and
decreased ventricular size on
days 1, 3, and 7 after MCAo. b
Total, cortical, and subcortical
lesion volumes, computed from
T2WI, were significantly
reduced by LAU-0901 treatment
compared to vehicle group.
Values shown are mean+SEM
(vehicle group, n=6 and LAU-
0901 group, n=5). Asterisk
significantly different from
corresponding vehicle group
(P<0.05; repeated measures
ANOVA followed by Bonfer-
roni tests). Yellow arrows
indicate brain hyperintensites
and red arrows ventricle size. ¢ c
3D infarct volumes were com-

puted from T2WI on days 1, 3,

and 7 after MCAo. Vehicle-

treated rats showed large cortical

and subcortical infarct volumes

that slowly decreased over the

course of 7 days. By contrast,

infarct volume was dramatically

reduced in rats treated with

LAU-0901 and was mostly

localized in the subcortical

areas. 3D reconstructions are

from the same animal in each

group over the 7-day

time course

a remarkable reduction in the incidence of extensive
cystic—necrotic lesions, and markedly increased GFAP
and Nissl-positive cell count [8]. The exact mechanisms
of LAU-0901 against a multitude of pathogenic PAF
actions are still not completely understood. However,
recent studies showed that LAU-0901 reduces cell
infiltration and expression of inflammatory mediators in
a model of epithelial injury in mice [26] and induces
hippocampal neuroprotection and limits somatostatin
interneuronal cell loss and inflammation in experimental
epilepsy in rats [27].

T2-Weighted imaging (T2WI) b
Vehicle

Vehicle

Lesion Volumes (from T2WI)
B ota

20 - o1 . Cortex
80 D Subcortex

LAU-0801

* *
¢

Volumes (mma)

80

Vehicle LAU-0901

LAU-0801

Brain edema is a serious complication of ischemic stroke
and can lead to mechanical compression of adjacent brain
structure, cerebral herniation, and death [28]. MRI is the
most widely used technique for assessment of the brain
edema and ischemic lesion. The present study used
multimodal MRI to assess in vivo the neuroprotection
conferred by LAU-0901. Multiparametric MRI (DWI,
T2WI, ADC, 3D volume analysis) was performed to
monitor both brain edema and lesion volume. We discov-
ered that total lesion volumes computed from T2WI were
significantly reduced by LAU-0901 treatment on days 1, 3,
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Fig. 4 a Brain edema was mea- a
sured from T2WI. Coronal brain
diagram showing ROI for T2WI
brain edema measurements.
LAU-0901 reduced T2 values
(decreased edema) within
cortical and subcortical lesions.
No differences in edema were
detected on the contralateral
side. b LAU-0901 increased the
apparent diffusion coefficient
(4DC) in cortex and striatum on
day 1 consistent with water
motility and cellular survival.
Data are means+SEM (vehicle
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Contralateral

T2 Weighted Imaging: Brain Edema
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and 7 with decreased cystic lesion development and decreased
ventricular enlargement. LAU-0901 dramatically reduced
cortical edema on days 1, 3, and 7 and also subcortical edema
on days 3 and 7 compared to the vehicle-treated group. LAU-
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0901 treatment also resulted in an increase of the ADC on
day 1, consistent with increased water mobility and cellular
survival, and reduced the persistence of edema at days 3 and 7
relative to vehicle-treated rats.
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Fig. 5 a Cortical and subcortical infarct areas measured at nine coronal neurons, GFAP-positive astrocytes, and ED-1-positive microglia cells
levels and b total infarct volume in rats on day 7 of survival. ¢ Computer- and on day 7 after 2 h of MCAo. LAU-0901 treatment increased NeuN,

generated MosaiX-processed images of GFAP (green), ED-1 (red), and GFAP, and decreased ED-1-positive cell counts relative to vehicle. Data
GFAP/ED-1 double staining (overlay) on day 7 at a magnification x10. d are mean+SEM (vehicle group, n=6 and LAU-0901 group, n=5).
Coronal brain diagram showing locations of regions for cell counts in Asterisk significantly different from saline (P<0.05; repeated measures
cortex (4, B, and C) and striatum (S). e Number of NeuN-positive ANOVA followed by Bonferroni tests)

Inflammation can extend ischemic brain injury and adverse-  porting messengers. The contribution of astrocyte proliferation
ly affect stroke outcome. Microglial activation is an early  to reactive astrogliosis warrants specific consideration. It is
response to brain ischemia. Microglia continuously respond to  now clear that reactive astrogliosis is not a simple all-or-none
changes in brain homeostasis and to specific signaling  phenomenon but is a finely gradated variety of changes that
molecules released by neighboring cells. These signaling  occur in context-dependent manners regulated by specific

molecules, including ATP, glutamate, cytokines, prostaglan- signaling events [30]. Severe diffuse reactive astrogliosis is
dins, zinc, reactive oxygen species, and HSP60, may induce  generally found in areas surrounding severe focal lesions.
microglial proliferation and migration to the sites of injury [29]. Recent experimental evidence indicates that these astrocyte

Microglial activation requires hours to days to fully develop  scars act as neuroprotective barriers to inflammatory cells and
and thus presents a target for therapeutic intervention. Our  infectious agents and that they form in particular along
results demonstrate that LAU-0901 treatment dramatically  borders of severe tissue damage [30]. It is noteworthy that the
reduces microglial infiltration, which indicates a reduction of ~ glial scar formation is associated with substantive tissue
proliferation, activation, and subsequent release of proinflam-  reorganization and structural changes that are long lasting and
matory mediators typical of microglia in environments with  persist long after the triggering insult may have resolved.
substantial cellular death and debris. In addition, LAU-0901 These data taken together provide a basis by which LAU-
protects neurons directly as well as indirectly via astrocytic ~ 0901 attenuates ischemia—reperfusion injury via neuronal
survival/secretion of neurotrophins and other neuronal sup-  protection, astrocytic proliferation, reductions in microglial
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infiltration, and the inhibition of edema formation and
persistence.

Since the ultimate goal of any stroke therapy is the
restoration of functions that allow for a normal daily life of
patients, an objective appraisal of the behavioral deficits
should be performed. Several behavioral tests have been
applied to ischemia research in regards to clinical criteria. A
recent report has called attention to using standardized
procedures for assessing functional outcome to improve
translation from bench to bedside [31]. Two tests of the
sensorimotor battery appear to be particularly sensitive in
detecting deficits following MCAo: the postural reflex test
and the forelimb placing test [32]. LAU-0901 treatment
significantly improved total neurological score and visual,
tactile, and proprioceptive reactions compared to vehicle on
days 1, 3, and 7.

The beneficial effect of LAU-0901 has been shown
in a well-controlled animal model of MCAo. In the
current study, we used a poly-L-lysine-coated suture and
have found that this method yields reliable and highly
consistent results (coefficient of variation of infarct
volume, 9%) [7, 9]. This infarction closely mimics the
large hemispheric infarcts resulting from proximal MCA
and ICA occlusion in patients. We demonstrated that
LAU-0901 did not have direct effects on body and cranial
temperatures or arterial blood gases because these varia-
bles were carefully controlled and did not differ among
groups.

Conclusion

We have shown that LAU-0901, a novel PAF inhibitor,
provides neurobehavioral recovery, reduces brain infarct
lesion volume and brain edema as observed by MRI,
and promotes cell survival when administered after focal
cerebral ischemia in rats. These findings suggest LAU-
0901 is a promising neuroprotective agent and provide
support for future clinical studies to confirm whether
LAU-0901 is beneficial for patients suffering ischemic
stroke.
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