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Abstract

Inferring aspects of the population histories of species using coalescent analyses of non-coding nuclear DNA has grown in
popularity. These inferences, such as divergence, gene flow, and changes in population size, assume that genetic data
reflect simple population histories and neutral evolutionary processes. However, violating model assumptions can result in a
poor fit between empirical data and the models. We sampled 22 nuclear intron sequences from at least 19 different
chromosomes (a genomic transect) to test for deviations from selective neutrality in the gadwall (Anas strepera), a Holarctic
duck. Nucleotide diversity among these loci varied by nearly two orders of magnitude (from 0.0004 to 0.029), and this
heterogeneity could not be explained by differences in substitution rates alone. Using two different coalescent methods to
infer models of population history and then simulating neutral genetic diversity under these models, we found that the
observed among-locus heterogeneity in nucleotide diversity was significantly higher than expected for these simple
models. Defining more complex models of population history demonstrated that a pre-divergence bottleneck was also
unlikely to explain this heterogeneity. However, both selection and interspecific hybridization could account for the
heterogeneity observed among loci. Regardless of the cause of the deviation, our results illustrate that violating key
assumptions of coalescent models can mislead inferences of population history.
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Introduction

DNA polymorphisms provide an invaluable means to study

the influence of historical processes that shape genetic diversity,

such as divergence times, gene flow, and fluctuations in

population sizes. To increase the statistical rigor by which these

processes are inferred, the field of phylogeography has advanced

in two directions. First, coalescent theory [1,2] is now routinely

applied in phylogeographic studies. Coalescent methods incor-

porate the stochastic variance of genetic processes by estimating

parameters from many genealogies consistent with the data, and

thus provide a framework for testing competing hypotheses

while accounting for uncertainty (i.e., confidence intervals) in

parameter estimates [3,4]. Second, estimating parameters from

multiple independent loci has become common [5–12]. A

multilocus approach has been motivated by two fundamental

problems with single-locus studies: the stochasticity of mutation

and genetic drift creates variable signatures in DNA even when

different loci experienced identical population histories

[3,13,14], and single-locus studies do not adequately address

the possibility that selection, not population history, has

generated patterns in DNA [15–17]. Because mutation, drift,

and selection operate independently on unlinked loci, applying

coalescent methods to multiple loci can strengthen inferences of

population history.

Although coalescent methods and multilocus approaches have

advanced the field substantially, there are still a number of

challenges to be addressed. Among them is how well the genetic

data fit the coalescent models used to infer population histories

[18,19]. Actual population histories are usually, if not always,

more complex than the available models, and they can violate any

number of simplifying assumptions. Common assumptions in

analytical programs using coalescence include constant or

exponentially-changing effective population sizes (Ne), constant

migration rates over time, panmictic populations that do not

exchange genes with other populations, simple models of

molecular evolution, and selective neutrality [20–22]. Simulation

studies demonstrate that violating these assumptions can some-

times bias parameter estimates [23–25]. Therefore, understanding

how well empirical data fit these models is necessary to obtain

robust inferences of population history and to understand the

influences of selection and other processes. Although coalescent

methods can be incredibly flexible, and additional relevant

parameters can be added [26], doing so increases computational

demands and requires additional data (e.g., more loci) to obtain

sufficient signal in the DNA.
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Empirical studies have revealed that heterogeneity in the

patterns of genetic diversity can be substantially higher than

expected under simple, neutral models of population history,

which is attributed to more complex demographic histories or

selection [27–32]. Distinguishing between these scenarios is

difficult, because patterns generated by different forms of selection

can mimic the patterns generated by various population histories

[15,33,34]. A key to disentangling the effects of population history

and selection is that population history affects loci throughout the

genome in a similar fashion, whereas selection only affects the

locus (or loci) under selection and those that are closely linked.

Thus, population history generates similar patterns of DNA

polymorphisms throughout the genome, whereas selection has a

local effect causing idiosyncratic patterns among loci [34–36].

However, some forms of demographic history, such as bottlenecks,

can cause heterogeneous patterns among loci that are difficult to

distinguish from the effects of selection [27,28,30,31,37]. Further-

more, if selection is pervasive throughout the genome, it might

have a strong net effect on our ability to infer population histories.

In this study, we tested the fit of non-coding DNA sequence data

sampled from a genomic transect (,1 locus per chromosome; 22

loci) in a species of duck, the gadwall (Anas strepera), to two popular

coalescent models: the two-island model from the program

LAMARC [22] and the isolation-migration model from the program

IM [20]. We then used coalescent simulations to test three

hypotheses that might explain the poor fit between empirical data

and the models, including a pre-divergence bottleneck, interspe-

cific hybridization, and selection. Because there are an infinite

number of complexities that could contribute to empirical data

deviating from the models, these hypotheses are not intended to be

exhaustive. Rather, we focus on these three hypotheses because we

suspect a priori that these factors might have had a prominent

influence on measures of genetic diversity.

Materials and Methods

Study Taxon
The gadwall has a Holarctic distribution extending across

Eurasia and North America (Fig. 1). Range disjunctions created by

the Atlantic and Pacific oceans subdivide the gadwall into two

allopatric populations that are genetically differentiated [10,38].

An Old World (OW) population occurs from Spain to Japan, and

a New World (NW) population occurs from Alaska to the east

coast of North America. Genetic evidence suggests that population

structure within continents is limited to a few peripheral

populations that differ from the remaining populations in

mitochondrial DNA (mtDNA) haplotype frequencies [10,38], but

that nuclear DNA (nuDNA) is consistent with a single panmictic

population within each continent [10]. These data also suggest

that gadwalls colonized North America from Eurasia during the

Pleistocene, and that these two populations are connected by

moderate levels of gene flow [10].

DNA Sequencing
We sampled 25 OW and 25 NW gadwalls from widely

distributed locations across North America, Europe, and Asia

(Fig. 1; individuals were subsampled from the dataset of Peters

et al. [10]). We also sampled seven species as outgroups to examine

relative substitution rates among loci; these seven species were the

snow goose (Anser caerulescens), ruddy duck (Oxyura jamaicensis), musk

duck (Biziura lobata), pink-eared duck (Malacorhynchus membranaceus),

black-bellied whistling duck (Dendrocygna autumnalis), magpie goose

(Anseranas semipalmata), and southern screamer (Chauna torquata).

These species represent the major clades of waterfowl (Order

Anseriformes) that are all deeply divergent from each other [39].

They are close enough genetically for reasonable sequence

alignment, but distant enough to reduce the effects of differential

sorting of ancestral polymorphisms on estimates of long-term

substitution rates (see below for additional details).

For each individual, we obtained nuclear DNA sequences for 22

non-coding loci, including 21 introns and 1 microsatellite locus,

covering more than 7 kbp of sequence data and mapping to at

least 19 different chromosomes in the chicken (Gallus gallus)

genome [40,41] (Table 1). Five of these loci had been published

previously [10], seven loci were chosen because primers had been

developed for other studies of ducks [42–44] (M. Sorenson unpubl.

data), and ten loci were found by searching GenBank for intron or

mRNA sequences isolated from ducks. Our primary requirement

for selecting a new locus was that it be linked to a different

chromosome in chickens, but we also targeted shorter introns

when available sequence from ducks was limited to mRNA (intron

length and location was estimated from the chicken genome). We

chose all loci blindly with respect to levels of polymorphism. When

designing primers, we used both duck and chicken sequences, and

therefore our primers will likely be useful for studies of other birds.

The 17 new loci were amplified using standard PCR protocols

with an annealing temperature of 58uC and 45 cycles (primer

sequences are available in Supporting Information, Table S1).

Sequencing was performed using the Big Dye v.3.1 sequencing kit

(Applied Biosystems) and direct sequencing was done using an ABI

3100 automated sequencer (Applied Biosystems). Sequences were

edited using Sequencher software (Gene Codes, Ann Arbor, MI);

all sequences have been deposited in GenBank (Accession

numbers JQ180538–1538, JQ255480–5607). When available,

outgroup sequences published in GenBank were used (Supporting

Information, Table S2) [39,42,45–48]. Loci were initially aligned

in Sequencher, but loci containing indels that could not be

Figure 1. Sampling locations and population assignment
probabilities. Assignment probabilities are based on genotypes from
22 non-coding loci for 50 gadwalls. Note that all 25 individuals sampled
from the OW were assigned to population 1, and all 25 individuals
sampled from the NW were assigned to population 2 with high
assignment probabilities.
doi:10.1371/journal.pone.0031972.g001
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unambiguously aligned (CPD, LCAT, NCL, SAA, and SOX9)

were aligned using ClustalW in the program MEGA 5.0 [49].

Outgroup sequences were also aligned in MEGA 5.0.

We resolved the gametic phase of alleles using three methods.

First, sequences containing indels were resolved by comparing the

ambiguous 39 end of the forward strand with the unambiguous 59

end of the reverse strand, and vice versa, to determine the length

and composition of the gap region. Because indels result in shifted

peaks in the chromatograms, it was possible to determine which

polymorphisms throughout the sequence were linked to the gap

[50], thus resolving the gametic phases. Seventy-two sequences

were heterozygous for multiple indels, and we designed allele-

specific primers that targeted either a single nucleotide polymor-

phism or the indel itself to preferentially amplify and sequence

each allele independently to resolve those alleles. Second, we used

the program PHASE to reconstruct the most likely gametic phase of

each heterozygous sequence [51]. PHASE input files were created

using the program SEQPHASE [52]. Third, when the probability of

reconstructed alleles was less than 0.95, we used allele-specific

primers to amplify and sequence one of the two alleles

independently and then subtracted this allele from the heterozy-

gous sequence to resolve the gametic phase of the other allele [53].

We then repeated PHASE analyses, with the newly resolved alleles

defined as known alleles to verify that all reconstruction

probabilities were $0.95. In total, 289 of the 850 new sequences

(34%) were resolved using allele-specific priming. FASTA files

containing the resolved alleles for each locus are archived in DRYAD

(datadryad.org; doi:10.5061/dryad.nv5v1v59).

Delineating Populations
We estimated the number of genetic populations (K) and

assigned individuals to those populations using the MCMC

Bayesian method in the program STRUCTURE v.2.2.3 [54], which

uses deviations from Hardy-Weinberg equilibrium and linkage

disequilibrium to examine population structure. We numbered

alleles for each locus from 1 to n, where n is the total number of

different alleles for that locus. We used an admixture model with

allelic frequencies assumed to be independent and estimated

Pr(X|K) for K = 1 to 5 populations. We then calculated DK [55],

which has been shown to be a better estimator of the true K

compared to Pr(X|K). No a priori information about sampling

localities was included in these analyses. Each analysis was run for

a burn-in of 10,000 generations followed by 20,000 generations of

sampling. We replicated each run five times and report values

averaged across all runs.

Summary Statistics
We calculated the following parameters from the empirical

data: p (nucleotide diversity within the total gadwall population),

WST (the percentage of nucleotide diversity explained by differences

between OW and NW gadwalls), and Tajima’s D (a measure of the

Table 1. Characteristics of the 22 non-coding loci sequenced in gadwalls.

Locus Abbreviation1 Location2 Intron # Length (bp) p3 WST
3 Tajima’s D3

Chromo-helicase-DNA binding protein gene 1 CHD1Z Z/Z 19 270 0.0015 0.038* 20.67

Lactate dehydrogenase 1 LDHB 1/1A 3 460–461 0.0008 0.143*** 20.96

T-cell surface glycoprotein CD4 (surface antigen) CD4 1/1 5 345 0.0010 20.002 22.14**

S-acyl fatty acid synthase thioesterase FAST 2/2 2 319–322 0.0027 0.026 21.13

Ornithine decarboxylase ODC1 3/3 5 275–295 0.0143 0.010 20.66

Fibrinogen beta chain FGB 4/4 7 433 0.0076 0.032* 20.61

Serum amyloid A SAA 5/5 2 347–351 0.0195 0.053** 20.22

Annexin A11 ANXA11 6/6 5 405 0.0061 0.132*** 20.41

Myostatin MSTN 7/7 2 291 0.0175 0.026* 20.20

Sterol O-acyltransferase 1 SOAT1 8/? 12 352 0.0071 20.014 0.72

Nucleolin NCL 9/9 12 329–341 0.0260 0.068** 0.69

Lecithin-cholesterol acyltransferase LCAT ?/11 2 308–339 0.0215 0.036** 0.66

Preproghrelin GHRL 12/? 3 348–351 0.0220 0.191*** 0.10

Glutamate receptor, ionotropic, N-methyl D aspartate I GRIN1 17/17 11 290 0.0004 0.014 21.28

Sex determining region Y-box 9 SOX9 18/18 2 352–381 0.0295 0.045*** 20.04

Carboxypeptidase D CPD 19/19 9 304–328 0.0293 0.092*** 1.11

Phosphenolpyruvate carboxykinase PCK1 20/20 9 324–325 0.0036 0.001 0.43

Alpha enolase 1 ENO1 21/21 8 164–175 0.0062 0.089*** 21.03*

Alpha-B crystallin CRYAB 24/24 1 294 0.0015 0.147** 20.14

Growth hormone 1 GH1 27/1? 3 363 0.0018 0.005 20.33

Splicing factor 3A subunit 2 Sf3A2 28/? 8 305 0.0004 0.007 21.43*

Tetranucleotide microsatellite repeat A27E1 A27E1 ?/? NA 171–183 0.0027 0.292*** 20.67*

1Locus abbreviations follow standards put forth by the Chicken Gene Nomenclature Committee [41].
2Chromosomal location within the chicken genome and the zebrafinch genome, respectively. ? = unknown.
3Summary statistics exclude regions containing gaps;
*p,0.05,
**p,0.01,
***p,0.001.
doi:10.1371/journal.pone.0031972.t001
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relative abundance of low-frequency polymorphisms). These

parameters were calculated in the program DnaSP v. 4.50.3

[56] and Arlequin v3.11 [57]. We inferred haplotype networks

using the median-joining algorithm in the program Network v.

4.5.1.0 [58]. Gaps were excluded from all analyses.

Heterogeneous Substitution Rates
We tested for heterogeneous substitution rates using one

arbitrarily selected gadwall sequence (UAM 18797) and each of

the seven outgroup sequences. By using multiple outgroups that

are deeply diverged from Anas ducks, we were able to account for

the stochastic variance of mutation and lineage sorting in our

estimates of substitution rates. We estimated relative substitution

rates (mR) among loci using the multispecies coalescent method in

*BEAST [59]. All 22 loci were included in the analysis, and mR for

each locus was scaled to the average rate among loci. We ran

*BEAST for 100,000,000 generations, sampling parameters every

10,000 generations and discarding the first 1,000 samples as burn-

in. Based on preliminary analyses, we used uniform priors on mR

that ranged from 0.1 to 5 times the average (these priors were

wider than the bounds on the posterior distribution from the

preliminary analysis, and were therefore assumed to be uninfor-

mative). We used a relaxed lognormal molecular clock to account

for the possibility of unequal rates among branches [60]. Our

*BEAST input file has been submitted to DRYAD (doi:10.5061/

dryad.nv5v1v59).

Inferring Population History
We used coalescent methods to infer the population history of

gadwalls under two different models of population subdivision.

The first model was a simple two-island migration model, whereby

Ne and migration rates were assumed to be constant over time and

divergence times occurred infinitely in the past (Fig. 2a). We used

the MCMC Bayesian method in the coalescent program LAMARC

v2.1.6 [22] to jointly estimate the parameters Hi (where Hi = 4Neim,

and Nei is the effective size of population i and m is the geometric

mean of the per-site substitution rates among loci) and Mi (where

Mi = mi/m, and mi is the migration rate into population i from

population j). Recombination was also incorporated into this

analysis, and we used the Felsenstein 84 model of substitution

(ti:tv = 2.5; the average ratio among loci). Each locus was run

independently for a burn-in of 2,000,000 generations followed by

20,000,000 generations sampling parameters every 1,000 gener-

ations (a total of 20,000 samples). Each run was replicated with a

different random number seed to verify convergence among runs.

Parameters estimated in LAMARC are scaled to the substitution

rate per site (m), and we adjusted these estimates using mR for each

locus calculated in the *BEAST analysis of the eight-taxon dataset

(see above). To do this, we divided each estimate of the locus-

specific H sampled from the posterior distribution by the locus-

specific mR randomly selected from the posterior distribution

obtained from *BEAST. Likewise, we multiplied each value from the

posterior distribution of M by a randomly selected value of mR.

Thus, our conversions incorporated uncertainty in mR. Following

the LAMARC methods, we calculated joint estimates of H and M by

multiplying the likelihoods among all loci after smoothing the

distributions using a biweight kernel.

For the second model, we used the MCMC Bayesian genealogy

sampler in the coalescent program IM [20,21] to infer a more

complex isolation-migration model (Fig. 2b) that included joint

estimates of hi (where hi = 4Neiu, and u is the geometric mean of the

per-locus substitution rate), constant migration rates (where

Mi = mi/u), time since divergence (where t = Tu, and T is the

number of generations that have passed since the populations

split), ancestral h (hA) at the time of divergence, and population

growth (s & 12s; the proportion of the ancestral population

contributing to each of the daughter populations). (Note that the

different symbols are used to differentiate between parameters

scaled to the substitution rate per site (H, m) in LAMARC versus those

scaled to the rate per locus (h, u) in IM.) Because IM does not

accommodate recombination, we used the program IMgc [61] to

select an optimal fragment size consistent with no recombination

by removing individuals and/or base pairs of data. We allowed a

maximum of 5% of alleles (n = 5) to be removed from the analysis,

which presumably allows for the removal of rare recombinants

and PCR/editing errors without dramatically changing allele

frequencies. We included all loci in a single IM run with 40 chains

and a burn-in of 1,000,000 generations. We then sampled

parameters every 50 generations for at least 10,000,000 genera-

tions. The minimum ESS was 100 among parameters, and the

analysis was replicated with a different random number seed to

verify convergence.

Simulating Genetic Diversity
To explore the joint effects of heterogeneous mutation rates,

stochastic genetic processes, and uncertainty in population history,

we used the parameters inferred from the two-island and the

isolation-migration coalescent models to simulate neutral genetic

diversity in the program MS [62] (see Supporting Information,

Table S3, for converting parameter estimates from LAMARC and IM

to MS). We simulated 1,000 22-locus data sets, each consisting of

50 alleles per population to mimic our empirical sampling effort.

To incorporate uncertainty in population history in the two-island

model (Fig. 2a; Table 2), we randomly sampled 1,000 values for

each demographic parameter from the joint posterior distributions

from LAMARC. This protocol resulted in 1,000 sampled histories,

and we simulated data for all 22 loci under each history. In

addition, we incorporated three other potential sources of among-

Figure 2. Basic population models. Illustrations of the two-island
(a) and isolation-migration (b) models of population subdivision
inferred in this study.
doi:10.1371/journal.pone.0031972.g002
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locus heterogeneity in these simulations. (1) We incorporated

differences in evolutionary rates among loci by sampling 1,000

independent estimates of mR for each locus (selected every 10,000th

step) from the *BEAST analysis. In this case, we chose to sample

steps, each of which contributed to the posterior distributions,

rather than randomly sample directly from the posterior

distributions because mean mR for each simulated history must

equal one by definition. Each set of mR values was arbitrarily

assigned to one of the sampled histories, and locus-specific values

of mR were used for each locus-specific simulation. (2) We included

locus-specific recombination rates that were estimated from the

LAMARC analysis. To incorporate a variety of recombination rates,

and hence uncertainty in those rates, we randomly sampled 1,000

rates for each locus from LAMARC’s posterior distributions. Locus-

specific recombination rates were used for each locus-specific

simulation. (3) Finally, we accounted for variance in fragment sizes

among loci by multiplying H by the locus-specific fragment size for

each simulation (Tables 1 & S3). Because CHD1Z is sex-linked, we

adjusted parameters by a factor of 0.75 prior to conducting the

simulations.

To simulate genetic diversity under the isolation-migration

model (Fig. 2b; Table 2), we chose parameter values from 1,000

histories (every 10,000th step) visited during the Markov Chain in

the IM analysis. We converted h for each locus by dividing h by the

geometric mean of fragment length among the loci and

multiplying the resulting value by the locus-specific fragment size

and mR (sampled as described above). We also incorporated

recombination rates from the LAMARC analyses (as described

above); in this way, we could address the full range of

heterogeneity in our data by simulating genetic diversity over

the full locus length rather than the truncated length. Thus, our

simulations incorporated uncertainty in population history,

uncertainty in relative substitution rates, uncertainty in recombi-

nation rates, and variance in fragment size (Table 2).

In addition to the basic two-island and isolation-migration

models, we simulated data under three scenarios hypothesized to

affect among-locus heterogeneity in genetic diversity (models are

summarized in Table 2). First, we simulated a pre-divergence

bottleneck. This model was a combination of the results from the

isolation-migration model and the two-island model. We used the

same 1,000 histories sampled for the isolation-migration model to

define demographic parameters, but we assumed that the ancestral

population had experienced a bottleneck prior to divergence. To

define parameters associated with this bottleneck, we randomly

selected values from a uniform distribution between t and 2t to

vary the time of the bottleneck (tB) among the 1,000 simulated

histories. For the period between time t and tB (pastwards in time),

we defined population growth rates inferred from OW gadwalls

(the probable ancestral population [10]) so that the population size

continued shrinking (corresponding to an expansion forwards in

time). At time tB the ancestral population instantaneously

recovered (corresponding to a population crash forwards in time)

to a size equal to hOW estimated from LAMARC; we used the same

values of hOW that were used in the two-island model, and each

value was arbitrarily assigned to one of the 1,000 histories. In this

way, we varied both the timing and the magnitude of the

bottleneck among the 1,000 simulated datasets. We incorporated

the three additional sources of heterogeneity (mR, recombination,

and fragment size) as described above.

Our second model considered the effects of gene flow from a

third population (Table 2). Specifically, we simulated hybridization

between gadwalls and their sister species, the falcated duck (Anas

falcata). Hybridization between these taxa has resulted in mtDNA

introgression into the gadwall gene pool, and there is also some

evidence of CHD1Z introgression [50]. For these simulations, we

used the results from the basic isolation-migration model, but

incorporated migration rates obtained from Peters et al. [50].

Because that study only examined the mtDNA control region and

two nuclear loci (LDHB and CHD1Z), the results were not directly

comparable. However, in our MS simulations, we scaled all

parameters to hOW (see Table S3); thus, we were able to make the

results comparable by scaling parameters estimated in Peters et al.

[50] to hOW from the same analysis. We sampled 1,000 estimates

of hFD/hOW (size of the falcated duck population relative to the

gadwall population), hOWMOW (effective number of migrants from

falcated ducks into OW gadwalls), hOWMFD (effective number of

migrants from OW gadwalls into falcated ducks scaled to hOW as

per MS guidelines), and t/hOW (time since divergence scaled to the

effective population size of OW gadwalls) from the posterior

distributions. We assumed that any falcated ducks entering the

NW population had to go through OW gadwalls, because these

species are sympatric in Asia only—this scenario is consistent with

the data [50]. Each set of values was then combined with one of

the 1,000 histories sampled for the basic isolation-migration

model, including the three additional sources of among-locus

heterogeneity.

Our final model addressed the possibility that among-locus

heterogeneity in selection has contributed to genetic diversity

(Table 2). For this analysis, we first used the HKA software

(available from Jody Hey, Rutgers University, Piscataway, NJ) to

perform an HKA test [36] for selective neutrality. For this test, we

compared the number of segregating sites in gadwalls to the

Table 2. Summary of the software, data, and parameters used to define in each of the five models simulated in this study.

Model simulated

Two-island Isolation-migration Bottleneck Hybridization Selection

Demographic parameters1
LAMARC: hOW, hNW,
MOW, MNW

IM: hOW, hNW, hA, MOW,
MNW, t, s

IM: hOW, hNW, hA, MOW,
MNW, t, s

IM: hOW, hNW, hA, MOW,
MNW, t, s

IM: hOW, hNW, hA,
MOW, MNW, t, s

Number of loci 22 22 22 22 16

Recombination1
LAMARC LAMARC LAMARC LAMARC LAMARC

Relative substitution rates (mR)1 *BEAST *BEAST *BEAST *BEAST *BEAST

Additional parameters ----- ----- LAMARC: hOW

(i.e., hpre-bottleneck)
IM: hfalcated duck,
Mfalcated duckROW,
tfalcated duck-gadwall

-----

1Incorporated uncertainty by sampling values from the posterior distributions calculated for each parameter.
doi:10.1371/journal.pone.0031972.t002
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average number of differences between gadwalls and each of the

seven outgroup species. We then used an iterative process to

determine which loci contributed significantly to overall devia-

tions. Specifically, when an initial comparison showed significant

deviations from the model, we removed the locus with the highest

overall deviation and repeated the test. This was done for all 7

comparisons independently until each test was no longer

significant. Loci that were eventually removed from more than

50% of the tests (N$4 tests) were treated as significant outliers. We

then repeated the isolation-migration analysis with the outliers

excluded and simulated data with parameters drawn from those

posterior distributions as described above for the basic isolation-

migration model.

For each of the five simulated models, we calculated nucleotide

diversity (p; OW and NW gadwalls combined), WST, and Tajima’s

D (averaged between OW and NW) from each locus (5

models61,000 histories/model622 loci/history = 110,000 simu-

lated loci in total). These summary statistics were calculated using

a script written in R [63] by TER (MS.OUT.R; datadryad.org;

doi:10.5061/dryad.nv5v1v59). For each locus and model we

generated posterior predictive distributions [64] of those summary

statistics using the 1,000 locus-specific values. We also constructed

posterior predictive distributions for both the means and

coefficients of variation (a measure of heterogeneity) of p, WST,

and Tajima’s D calculated for each 22-locus dataset (1,000 values

per model).

Goodness-of-Fit Tests
We performed goodness-of-fit tests as described in Becquet and

Przeworski [18]. We compared our empirical values of p, WST, and

Tajima’s D with the posterior predictive probabilities generated

from the simulated datasets. For each comparison, we compared

both the means and the coefficients of variation expected for a 22-

locus dataset (1,000 replicates). We considered the test significant if

the empirical values were within the 2.5% tails of the posterior

predictive distributions (i.e., P#0.05).

We also performed locus-specific goodness-of-fit tests [18] by

applying the test to each locus separately. Here we compared the

empirical value for each parameter with the posterior predictive

probabilities generated with locus-specific parameters (fragment

size, mR, and recombination rates). Because one locus in a 22-locus

dataset is expected to deviate significantly from the model by

chance alone (with a = 0.05), we applied a correction for multiple

tests based on the false discovery rate (FDR; [65]). We considered

the test significant if the empirical values were within the 2.5% tails

of the posterior predictive distributions after applying the FDR

correction.

Results

Genetic Diversity and Population Structure
DNA sequences from 22 non-coding nuclear loci sequenced

for 50 gadwalls revealed high heterogeneity in genetic diversity

among loci (Fig. 3). Nucleotide diversity (p) varied across nearly

two orders of magnitude (range = 0.0004 to 0.029; mean =

0.01060.010 SD; Table 1), expected heterozygosity varied

between 0.12 and 0.99 (mean = 0.6260.30 SD), and allelic

richness varied between five and 66 alleles per locus

(mean = 20.0618.6 SD). All three measures of genetic diversity

were significantly correlated between OW and NW gadwalls

(R2.0.86, F-ratio .58.7, P#0.0000002), demonstrating that the

heterogeneity was not specific to a single population.

STRUCTURE indicated that the data best fit a two-population

model (K = 2), with OW and NW gadwalls being genetically

diagnosable (Fig. 1). In this model, 100% of OW gadwalls were

assigned to population 1 with a mean assignment probability of

0.96 (60.04 SD), and 100% of NW gadwalls were assigned to

population 2 with a mean probability of 0.97 (60.03 SD; Fig. 1).

Only two individuals (both from Eurasia) received an assignment

Figure 3. Haplotype networks. Haplotype networks illustrating the heterogeneity in genetic diversity among 22 non-coding loci sequenced from
gadwalls. The area of the circles is proportional to the number of alleles occurring in the total sample (N = 50); substitutions are shown as branches
between the alleles. See Table 1 for full gene names.
doi:10.1371/journal.pone.0031972.g003
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probability less than 95% (82.8% & 92.1%, respectively).

Examining higher values of K and partitioning the data into

separate OW and NW analyses failed to detect population

structure within continents. Averaged across the 22 loci, 6.5%

(mean WST = 0.06560.075 SD) of the total genetic diversity was

partitioned between OW and NW gadwalls (Table 1), and

differences were significant at 14 loci (AMOVA, P#0.05).

Mean Tajima’s D was 20.59 (60.87SD) and 20.16 (60.87 SD)

for OW and NW gadwalls, respectively. Tajima’s D was

significantly negative for four loci in OW gadwalls (A27E1,

Sf3A2, CD4, and ENO1) and one locus in NW gadwalls (CD4),

and values among loci were significantly correlated between OW

and NW populations (R2 = 0.46, F-ratio = 17.0, P = 0.0005).

Averaging Tajima’s D between the two populations, mean D

was 20.37 (60.80 SD; Table 1). Tajima’s D was also significantly

correlated with p in both populations (OW: R2 = 0.44, F-

ratio = 16.0, P = 0.0007; NW: R2 = 0.34, F-ratio = 10.1, P =

0.005), indicating that low-diversity loci tended to have an excess

of rare polymorphisms relative to high-diversity loci.

Heterogeneous Substitution Rates
To test the hypothesis that heterogeneous substitution rates

among loci caused the observed heterogeneity in genetic diversity,

we estimated relative substitution rates (mR) among the 22 loci

using seven outgroup species. The 95% highest posterior

distributions of mR did not overlap for 38 pairs of loci, suggesting

that substitution rates were significantly heterogeneous among loci

(Fig. 4a). Overall, we found a 3-fold difference in mR among loci

(coefficient of variation, CV = 25%), which is similar to the 6-fold

(CV = 32%) and 3-fold (CV = 21%) differences in evolutionary

rates found in other large-scale studies of intron divergence in

birds [66,67]. However, this heterogeneity is low compared to the

.75-fold difference observed in p, and p for gadwalls and mR were

not significantly correlated among loci (R2 = 0.079, F = 1.72,

P = 0.2; Fig. 4b), as predicted by neutral theory [36,68]. Therefore,

the observed differences in long-term substitution rates alone are

insufficient for explaining the high among-locus heterogeneity that

we found in genetic diversity.

Comparing intraspecific genetic diversity within gadwalls with

interspecific divergence between gadwalls and each of the seven

outgroup species revealed significant deviations from neutral

expectations (HKA test; Sum of Deviations .50.1, df = 15–21,

P,0.001, for all pairwise comparisons). Iteratively removing the

loci that contributed the most to significant deviations required

that 4–7 loci be removed before model expectations were met (i.e.,

the HKA test was non-significant). For all seven outgroup

comparisons, LDHB uniformly had the highest deviation (Sup-

porting Information; Fig. S1). Iteratively removing one additional

locus at a time, CRYAB and GH1 also contributed to strong

deviations and were ultimately removed from each test. GRIN1

and Sf3A2 were iteratively removed from five and four of the tests,

respectively. Finally, SOAT1, CHD1Zb, and FGB contributed to

significant deviations in one or two of the models each. All seven

loci had a paucity of segregating sites within gadwalls relative to

interspecific divergence.

Population History
The two-island model of population divergence suggested high

heterogeneity in H among the 22 loci, even after controlling for

heterogeneous substitution rates (including uncertainty in mR;

Fig. 5). The 95% highest posterior distributions (HPDs) did not

overlap for 35 pairs of loci for HOW, but overlapped between all

pairs for HNW. Calculating joint estimates of H resulted in a

narrow range of values that were consistent with the observed

genetic diversity at all loci for both OW (H = 0.0092, 95%

HPD = 0.0077–0.011) and NW (H = 0.0042, 95% HPD = 0.0028–

0.0052) populations (Fig. 5). Regardless, 17 loci and the joint

estimates supported higher effective population sizes for OW

gadwalls relative to NW gadwalls. Estimates of M among loci were

less heterogeneous, with 7 and 6 pairs of loci having non-

overlapping 95% HPDs for MOW and MNW, respectively (Fig. 5).

Joint estimates of M suggested higher gene flow (forward in time)

into North America (MNW = 1480, 95% = 1050–1850) than into

Eurasia (MOW = 1010, 95% CI = 660–1340). Recombination rates

also varied significantly among loci, with higher-diversity loci

tending to have higher recombination rates, although low-diversity

loci contained little information regarding recombination (Fig. 5).

Inferring an isolation-migration model in IM, all parameters

had finite posterior distributions except hNW, which contained a

flat tail (Fig. 6). In this model, hOW and hNW did not differ

(hOW = 2.53, 95% HPD = 0.83–23.4; hNW = 2.98, 95% HPD =

,0.63–44.8), but hA was generally smaller and had a narrower

confidence interval (hA = 1.69, 95% HPD = 1.36–2.13). The

splitting parameter, s, suggested that only 2.2% (95% HPD =

0.7–8.3%) of the ancestral population contributed to the NW

population at the time of divergence (t = 0.032, 95% HPD =

0.016–0.059). Consistent with the two-island model, the isolation-

migration model supported asymmetrical gene flow with higher rates

(forward in time) into North America (MNW = 12.2, 95% HPD = 4.8–

33.0) than into Eurasia (MOW = 0.13, 95% HPD = ,0–13.1).

Overall, these results from 22 loci were consistent with results from

a smaller dataset that included five introns and the mtDNA control

region [10].

Figure 4. Substitution rates and genetic diversity. (a) Estimates
of relative substitution rates (mR) and their 95% higest posterior
densities based on the analyses of eight taxa in *BEAST; loci are ranked on
the x-axis (lowest to highest) by values of nucleotide diversity within
gadwalls, and the horizontal dashed line indicates the mean relative
rate (1.0 by definition). (b) Relationship between mR and nucleotide
diversity within gadwalls.
doi:10.1371/journal.pone.0031972.g004
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Simulations
To test for the combined effects of heterogeneous substitution

rates and the stochastic variance of genetic processes, we simulated

DNA sequences under selective neutrality using the parameters

estimated from the two models of population divergence (Fig. 2).

Simulations under the two-island model over-predicted mean p,

whereas simulations under the isolation-migration model under-

predicted mean p (Fig. 7a); however, only the deviation from the

isolation-migration model was significant (P = 0.016). Further-

more, the dispersion of values around the mean (coefficients of

variation, CVs) was significantly higher than expected for both

models (P = 0.001; Fig. 7b). In contrast, values of WST (both mean

and CV) were within the 95% CIs for both models (Fig. 7c–d).

Simulations under the two-island model, but not the isolation-

migration model, significantly over-predicted Tajima’s D

(P,0.001; Fig. 7e). The CVs for D were within the CIs for both

models (Fig. 7f).

Locus-specific goodness-of-fit tests revealed that six loci (Sf3A2,

GRIN1, LDHB, CD4, CRYAB, and GH1) had significantly lower

p than expected under the two-island model (Fig. 8a). Under the

isolation-migration model, three low-diversity (GRIN1, LDHB,

and CD4) and six high-diversity loci (MSTN, LCAT, GHRL,

NCL, CPD, and SOX9) had values of p that deviated significantly

from the simulated values (Fig. 8b). Thus, values of p deviated

from the models for 27.3% and 40.9% of the loci examined.

Likewise, one locus (CD4) had a significantly more negative value

for Tajima’s D in both models, but all values of WST were within the

95% CIs of the posterior predictive distributions. Regardless of the

differences between the two models, both demonstrated that the

combined effects of stochastic processes and heterogeneous

substitution rates cannot fully account for the high heterogeneity

we observed in p.

Our method for defining a bottleneck resulted in popula-

tion sizes changing by 297% to 43% (mean = 256%; 95%

CI = 215% to 291%) from the long-term ancestral size to the

bottlenecked population size (positive values of population size

change resulted from six histories in which the ancestral Ne

inferred from IM was larger than the long-term Ne inferred from

LAMARC). Simulating a pre-divergence bottleneck resulted in

higher mean values of p compared to the basic isolation-

migration model (Fig. 7a) but not the CV (Fig. 7b). Indeed, the

empirical CV was significantly higher than simulated values

Figure 5. Two-island model results. Mean and 95% HPDs of estimates of the five parameters from the two-island model of population
divergence. Gray shading indicates the joint estimates obtained by multiplying the posteriors among loci. Loci are ranked by nucleotide diversity
from low to high.
doi:10.1371/journal.pone.0031972.g005
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(P,0.001). Furthermore, the simulated CV was not related to

the magnitude of the bottleneck (R2 = 0.0002, df = 999, F-

ratio = 0.18, P = 0.67). Empirical values of mean WST and the

associated CV were within the 95% CIs of the simulated data

(Fig. 7c, d). Similar to the basic two-island model, the bottleneck

model significantly over-predicted mean Tajima’s D (P = 0.004;

Fig. 7e), but the empirical CV fell within the 95% confidence

intervals of the simulated data (Fig. 7f).

Relative to the basic models, the locus-specific values of p were

more consistent with the bottleneck model, with only three loci

(GRIN1, LDHB, and CD4; all low-diversity) significantly

deviating from the simulated values (Fig. 8c). All locus-specific

values of WST were within the 95% CIs, and Tajima’s D deviated

from the simulated values only for CD4.

Incorporating introgression from a third population (i.e.,

hybridization with the falcated duck) had the largest effect on

Figure 6. Isolation-migration model results. Posterior distributions of the seven parameters estimated using the isolation-migration model of
population divergence. Heavy lines are the posterior distributions from the analysis of the full 22-locus dataset; light lines are from the analysis of the
16-locus dataset excluding six loci that may be under selection. Values are rescaled to the per-site substitution rate.
doi:10.1371/journal.pone.0031972.g006

Among-Locus Heterogeneity in Genetic Diversity

PLoS ONE | www.plosone.org 9 February 2012 | Volume 7 | Issue 2 | e31972



the mean and CVs for p (Fig. 7a, b). We found both higher means

and higher CVs under this model, and the empirical values were

within the 95% CIs for both measures. However, GRIN1, LDHB,

and CD4 continued to have lower diversity than simulated data

(Fig. 8d). Mean and CVs for Tajima’s D and WST were all within

the simulated range of values (Fig. 7c–f), and only CD4 had a

significantly negative D.

On the basis of the HKA test, we excluded Sf3A2, GRIN1,

CRYAB, LDHB, and GH1 from analyses to address the possibility

that selection has contributed to the among-locus heterogeneity that

we observed. We also excluded CD4 from this analysis, because this

locus consistently had a paucity of p and a more negative value for

Tajima’s D in previous models. Removing these six loci resulted in

smaller estimates of hNW and MNW, but estimates of hOW, MOW, t, and s

did not change appreciably (Fig. 6). The most prominent difference

between this selection model and the basic isolation-migration

model was that hA was significantly larger after removing loci

inferred to be under selection (Fig. 6). Compared to the basic model,

simulating data under the selection model resulted in a better fit

between mean p for the 16-locus dataset and model expectations,

although p was still slightly under-predicted (P = 0.012; Fig. 7a).

However, the CV for the 16-locus dataset was within the 95% CIs of

the posterior predictive distributions (Fig. 7a, b). Furthermore,

empirical values of p for 15 of the 16 loci were within the 95% CIs

(CPD had higher diversity than expected; Fig. 8e); GRIN1, LDHB,

and CD4 continued to deviate from expectations. Results for

Tajima’s D and WST were consistent with the above analyses.

Discussion

Sequences from 22 non-coding, nuclear loci in Holarctic

gadwalls revealed high among-locus heterogeneity in genetic

diversity, and this heterogeneity did not fit simple models of

neutral population histories. The two-island model moderately

over-predicted mean values of p, whereas the isolation-migration

model under-predicted p. Furthermore, the observed among-locus

heterogeneity was significantly higher than expected under both

neutral models. Because we incorporated relative substitution rates

obtained from outgroup comparisons, heterogeneous substitution

rates alone cannot explain the among-locus heterogeneity that we

observed. Likewise, our use of allele-specific priming to resolve the

gametic phases of alleles confirmed that our results were not an

artifact of amplifying and sequencing paralogs [48]. Thus, the

observed heterogeneity suggests that our data violate key

assumptions of the models, and that these violations likely bias

estimates of population history. We will now examine some of

these assumptions.

Changes in Population Size
The two-island model assumes that Ne has been constant over

time. In contrast, the isolation-migration model assumes

exponential size changes following divergence, but that the

ancestral Ne has been constant. Any other changes in population

sizes would violate these assumptions and could have contrib-

uted to the poor fit between the empirical data and the models.

For example, bottlenecks of moderate strength can cause high

among-locus heterogeneity in p, which can result in an overly

liberal HKA test [28,30]. However, including a pre-divergence

bottleneck in our simulations did not appreciably change the

variance expected under the isolation-migration model, despite

simulating data using a broad range of values for both the

timing and the magnitude of the simulated bottleneck.

Furthermore, we did not find a significant relationship between

the among-locus heterogeneity in p and the magnitude of the

Figure 7. Goodness-of-fit tests of five models of population history. Box plots indicate the posterior predictive distributions of the mean (a, c, e)
and coefficient of variation (b, d, f) for nucleotide diversity (a, b), WST (c, d), and Tajima’s D (e, f) simulated for a 22-locus dataset (or a 16-locus dataset in the
selection model) with 1,000 replicates; horizontal lines indicate the 95% confidence limits. Lightly shaded squares mark the values for empirical data that
fell within the 95% confidence intervals; dark shading indicates empirical values that fell within the 2.5% tails of the posterior predictive distributions.
doi:10.1371/journal.pone.0031972.g007
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simulated bottleneck. Although there are an infinite number of

possible bottleneck scenarios that have not been examined here,

a pre-divergence bottleneck seems insufficient for explaining the

high among-locus heterogeneity in our empirical dataset

[27,28,31].

Long term fluctuations in population sizes, which we did not

explicitly examine, could also have contributed to our findings.

Fluctuations in population size cause Ne to be approximately equal

to the harmonic mean of long-term population size [69,70].

Because H is a function of Ne, an assumption of constant size

would seem adequate. However, when using genetic data, H is

estimated over the genealogy and thus represents the harmonic

mean of Ne between the present and the time of the most recent

common ancestor (TMRCA) within the sampled genealogy. Given

the differences in nucleotide diversity among our loci, TMRCA

likely varied considerably, and this variance could result in among-

locus heterogeneity in H. For example, if population sizes were

small in the recent past, then any locus that coalesces within that

timeframe would have a small H. However, a locus with a

substantially older TMRCA could include periods of larger sizes

within their history, which would cause H to be larger. Thus,

fluctuating population sizes contributing to among-locus differ-

ences in TMRCA theoretically could have caused the high

among-locus heterogeneity in H that we observed in the two-island

model. Despite allowing for exponential growth or decline

following divergence, the isolation-migration model could also be

sensitive to among-locus differences in timescales reflected in our

data, because this model assumes a constant ancestral Ne. This

possibility is supported by our observation that removing the low-

diversity loci (those inferred to be under selection) from the IM

analysis resulted in a significantly larger estimate for the ancestral

population size and a better fit between the empirical and the

simulated data.

Hybridization and Gene Flow
Both the two-island and the isolation-migration model assume

that the sampled populations do not exchange genes with other

unsampled populations. Ducks are well known for their capacity to

hybridize and produce fertile offspring with other species [71–74],

and larger sample sizes of gadwalls revealed introgression of

mtDNA from several species [38,50]. In particular, about 5% of

North American gadwalls carry mtDNA haplotypes derived from

falcated ducks, and one Asian gadwall had a putatively

introgressed CHD1Z allele (no evidence of introgression for

LDHB was found). Thus, falcated ducks and other species

potentially contributed to the nuclear gene pool of gadwalls as

well, which could have caused heterogeneity among loci. In

support of this hypothesis, we found that incorporating hybrid-

ization from falcated ducks into our simulations resulted in the CV

for p to be consistent with the observed empirical data. These

simulations demonstrate that the stochasticity of genetic drift can

cause the genetic contribution of a third population to vary among

loci, thus creating among-locus heterogeneity in genetic diversity.

Although hybridization is a strong candidate for explaining our

results in gadwall, results from a previously published simulation

study [24] seem inconsistent with this hypothesis. Specifically, gene

flow with a third population tends to cause ancestral population

sizes to be overestimated and to have large CIs [24]. In contrast,

our isolation-migration results suggested that the ancestral

population size was small relative to current sizes and the estimate

had a narrow CI. The effects of interspecific hybridization warrant

further study, especially using an n-population model [75] that

includes sequences from falcated ducks.

Selection
Both IM and LAMARC assume that the loci studied are selectively

neutral. However, selection can affect polymorphisms in non-

coding DNA both directly and indirectly. For example, compo-

nents of introns such as structural and regulatory elements are

Figure 8. Goodness-of-fit tests of locus-specific nucleotide
diversity from five models of population history. Box plots
indicate the posterior predictive distributions for each locus (1,000
replicates; horizontal lines indicate the 95% confidence limits). Light-
shaded circles mark the values for empirical data that fell within the
95% confidence intervals, whereas dark-shaded circles mark significant
outliers (after applying a correction for the false discovery rate). GRIN1,
LDHB, and CD4 consistently deviated from the simualted values. Loci
are ranked on the x-axis by nucleotide diversity.
doi:10.1371/journal.pone.0031972.g008
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functional and selectively constrained [76,77]. Indirect effects of

selection via genetic hitchhiking can also alter genetic signatures in

non-coding DNA that is closely linked to coding exons [78,79].

Indeed, there is growing evidence that selection can have a

prominent effect on polymorphisms in non-coding DNA [80–88].

Although different forms of selection can create patterns that

mimic the genetic signatures of various population histories [15],

the overall importance of selection in biasing inferences of

population-level parameters is not well understood.

Three lines of evidence support the hypothesis that selection has

influenced some of our loci. First, low-diversity loci were more

likely than high-diversity loci to contain an excess of rare

polymorphisms, which is consistent with the effects of purifying

or directional selection acting at those loci [89]. For example, CD4

is critical for an adaptive immune response and has a conserved

interaction with the class II major histocompatibility complex that

is required for the activation of T-helper cells [90–92].

Accordingly, the CD4 gene is likely subject to strong selection,

which could have an indirect effect on polymorphisms within the

linked introns. Consistent with this possibility, CD4 had low

nucleotide diversity and an excess of rare polymorphisms (i.e., a

significantly negative Tajima’s D) relative to the values simulated

under all five of our models. Furthermore, the network topology

exhibited the classic star-like pattern (Fig. 3) suggestive of a

selective sweep [34]. GRIN1, Sf3A2, and LDHB also exhibited

this star-like network, negative Tajima’s Ds, and a paucity of

intraspecific polymorphisms relative to interspecific divergence, all

of which are consistent with selective sweeps. Second, removing

low-diversity loci that the HKA test detected as significant outliers

resulted in a better fit between the heterogeneity observed in the

empirical data and data simulated under the isolation-migration

model. Third, removing the low-diversity loci resulted in a

significantly larger estimate of the ancestral Ne, suggesting that

different categories of loci contain heterogeneous signatures of

population history. This heterogeneity is also reflected in the

among-locus differences in H estimated from the two-island

model. Although the HKA test might have caused the liberal

removal of loci (i.e., loci not influenced by selection; see [28]),

these results demonstrate that selection is a strong candidate for

explaining the among-locus heterogeneity in p that we observed.

Population Structure
Both models assume that the populations are each panmictic.

This assumption seems reasonable for our data. First, structure

analyses best supported a two-population model (OW and NW),

and repeating the analyses for each continent separately did not

detect any additional structure. Second, a larger sample size of

individuals for three nuclear loci revealed that genetic variation

was significantly partitioned between OW and NW populations,

but not among sampling localities within continents [10].

Furthermore, Strasburg and Rieseberg [24] found that IM was

generally insensitive to even moderate levels of population

substructure. Thus, it is unlikely that undetected substructure

within our OW and NW populations explains the deviations from

the models of population history. Structure within the ancestral

population is also unlikely to explain our results, because this

violation should have resulted in a large ancestral population size

[23], which we did not find.

Population History and Basic Model Differences
In addition to finding a poor fit between the empirical data and

the basic coalescent models, we found that simulating data under

the inferred two-island and isolation-migration models gave

different null expectations, especially for p and Tajima’s D. One

possible explanation for these discrepancies was the manner in

which recombining loci were handled. Whereas LAMARC incorpo-

rates recombination into the analyses, IM assumes no recombina-

tion. To meet this assumption of no recombination, we used a

recombination-filtered data set that removed 19.4% of the

nucleotides and 41.6% of the segregating sites from the IM

analysis. Simulations show that this practice of truncating

sequences causes a systematic downward bias in estimates of h
[24,61]. This bias might have been especially problematic in our

data set, because only small fragments of high-diversity loci could

be used, whereas the low-diversity loci did not require truncating.

If using recombination-filtered data sets caused IM to underesti-

mate h, then mean p also would be under-predicted in our

simulations, as we observed for the isolation-migration model.

However, this difference cannot explain why the two-island model

over-predicted mean p.

Other differences between the models could also have

contributed to the contrasting results. The isolation-migration

model included estimates of divergence time, ancestral population

size, and population growth rates, which were not incorporated

into the two-island model. Indeed, assuming a constant Ne in the

two-island model is a probable explanation for the over-prediction

of Tajima’s D in the simulated data. In addition, IM infers

differences in substitution rates (mutation scalars) from the data

analyzed [20], whereas we defined relative substitution rates for

the LAMARC analysis that were estimated from independent data.

Any differences in the inferred rates could have contributed to

differences between parameters estimated from the two models,

especially for h and p. Despite these inconsistencies, it is

encouraging that both models supported a larger Ne for OW

gadwalls relative to NW gadwalls (average h over the long term),

and both models supported asymmetrical gene flow, with greater

movements from OW to NW than vice versa.

Conclusions
The high heterogeneity in nucleotide diversity that we observed

among 22 non-coding loci in gadwall ducks did not fit simple,

neutral models of population history. Based on simulations,

interspecific hybridization and selection are both strong candidates

for causing the observed deviations from the models. The effects of

hybridization and selection could be synergistic, thereby having an

additive effect on among-locus heterogeneity. For example,

selection could inhibit or prevent some genes from crossing

species or population boundaries, which can create heterogeneous

patterns among different loci [8,32,43,44,93]. More specifically,

loci with a higher propensity for introgression would have a higher

Ne than loci for which gene flow is restricted. Examining both of

these hypotheses simultaneously might provide a better under-

standing of the complexity underlying genetic diversity within the

genomes of diverging populations.

Given our results suggesting that genomic diversity is more

complex than predicted by available coalescent models, one might

question the value of these methods for studying population

histories, especially given their sensitivity to the violation of

assumptions [23,24]. We argue that our results do not undermine

the value of coalescent models but rather demonstrate the need to

test how well empirical data fit these models. The results from

coalescent analyses serve as an invaluable null model, and

comparing empirical and simulated data enables the evaluation

of factors that might have contributed to a lack of fit. Furthermore,

other research might show that sequence data from other species

and populations fit the models well. In either case, coalescent

methods coupled with coalescent simulations offer rigorous means

of examining how historical events have contributed to DNA
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polymorphisms, and thus should continue to provide insights into

the generation and maintenance of genetic diversity.
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