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Abstract

MicroRNAs, a new class of key regulators of gene expression, have been shown to be involved in diverse biological
processes and linked to many human diseases. To elucidate miRNA function from a global perspective, we constructed a
conserved miRNA co-expression network by integrating multiple human and mouse miRNA expression data. We found that
these conserved co-expressed miRNA pairs tend to reside in close genomic proximity, belong to common families, share
common transcription factors, and regulate common biological processes by targeting common components of those
processes based on miRNA targets and miRNA knockout/transfection expression data, suggesting their strong functional
associations. We also identified several co-expressed miRNA sub-networks. Our analysis reveals that many miRNAs in the
same sub-network are associated with the same diseases. By mapping known disease miRNAs to the network, we identified
three cancer-related miRNA sub-networks. Functional analyses based on targets and miRNA knockout/transfection data
consistently show that these sub-networks are significantly involved in cancer-related biological processes, such as
apoptosis and cell cycle. Our results imply that multiple co-expressed miRNAs can cooperatively regulate a given biological
process by targeting common components of that process, and the pathogenesis of disease may be associated with the
abnormality of multiple functionally cooperative miRNAs rather than individual miRNAs. In addition, many of these co-
expression relationships provide strong evidence for the involvement of new miRNAs in important biological processes,
such as apoptosis, differentiation and cell cycle, indicating their potential disease links.
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Introduction

MicroRNAs (miRNAs) are a class of small non-coding RNA

molecules that ‘fine-tune’ gene expression on the posttranscrip-

tional level. MiRNAs can negatively regulate their target genes by

imperfect base pairing to the 39-untranslated region (UTR) of their

targets, which induce translational inhibition or deadenylation and

mRNA decay. A large number of studies have demonstrated that

miRNAs play important roles in a wide range of biological

processes, such as development, differentiation and apoptosis.

Furthermore, emerging evidence also indicates that miRNAs are

involved in the pathogenesis of many human diseases, such as

cancer and cardiovascular disease. Especially in cancer, miRNAs

can function as oncogenes or tumor suppressors. Nonetheless,

understanding of miRNA function and their roles in disease is still

in its infancy.

A systematic genetic mutation study discovered that the

majority of miRNA gene mutations in Caenorhabditis elegans do

not result in obviously abnormal phenotypes [1]. A recent study

further revealed that only few abnormal phenotypes are observed

in Caenorhabditis elegans strains that each lack of multiple or all

miRNA family members [2]. These results show that miRNAs

may function together with other miRNAs. Many recent studies

also found that some miRNAs can cooperatively control a variety

of biological processes, such as cell development [3] and

differentiation [4,5], apoptosis [6], cell cycle [7,8], and epithelial

cell polarity [9]. Moreover, the multiplicity of miRNA targets can

confer miRNAs the ability to cooperatively regulate a single

biological process by targeting common components of that

process. Using predicted targets, several bioinformatics studies have

discovered many miRNA-mRNA modules [10,11,12,13,14,15].

Our recent work also demonstrated potential functional relation-

ships between miRNAs based on common targets [16]. Thus, it is

reasonable to assume that miRNAs can function in a cooperative

manner, rather than in a separate way. Exploring functional

relationships between miRNAs may provide important clues about

their function and how miRNAs contribute to human disease.

Over the last decade, microarrays have emerged as a powerful

tool for comprehensively analyzing the expression levels for

thousands of genes, and many studies utilized gene expression

profiles to learn about gene functions [17,18,19,20]. Like genes,

miRNA microarrays have been widely used for exploring the roles
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of different miRNAs in various pathophysiological states. Many

miRNA microarray studies have demonstrated that miRNAs can

be used for disease diagnosis, prognosis and treatment [21,22].

These large number of available miRNA expression profiles have

been used to predict miRNA targets and analyze functional

relationships between miRNAs. For example, Ritchie et al. [23]

combined expression data from human and mouse to predict

putative miRNA targets. A recent study completed by Volinia et

al. [24] constructed miRNA networks in normal tissues and cancer

using miRNA expression, and identified important miRNA cliques

in cancer.

In this study, we performed a large-scale bioinformatics analysis

of conserved miRNA co-expression relationships to systematically

investigate functional links between miRNAs. By integrating

human and mouse miRNA expression data, a conserved miRNA

co-expression network was built. We confirmed that these

conserved co-expressed miRNA pairs in the network are more

likely to be functionally relevant. By mapping known disease

miRNAs to the network, we identified three miRNA sub-networks

that are highly related to cancer, and further explored their

functions based on predicted targets and miRNA knockout/

transfection expression data. Our results suggest that the

pathogenesis of human disease may be associated with the

impairment of functional cooperation between miRNAs.

Results

Construction of a conserved miRNA co-expression
network

We collected 16 human and 8 mouse miRNA expression data

sets respectively including 611 and 107 samples (Figure 1A). All

expression data sets were generated using Agilent arrays. After

normalization and probes mapping, 702 and 490 mature miRNAs

were consistently present in human and mouse miRNA expression

data sets, respectively. To identify miRNAs that are co-expressed

across human and mouse, we identified 285 human-mouse

orthologous miRNAs by all-against-all alignment of precursor

miRNA (pre-miRNA) sequences with 11 bp flanking regions.

Because all expression data sets used in this study are specific for

mature miRNAs, we then linked mature miRNAs in human with

their corresponding mature miRNAs in mouse according to these

285 orthologous miRNAs. Finally, 341 human-mouse orthologous

mature miRNAs were identified. Of these, 253 with both members

having expression measurements were used in the following

analysis (Table S1).

Using the method described in [20], we identified 182

significant conserved co-expression relationships (corrected p-

value,0.05). Based on these relationships, a conserved miRNA

co-expression network with 163 nodes and 182 edges was

constructed. In order to verify the significance of these conserved

co-expressed relationships, we randomly permuted the ortholo-

gous mature miRNAs (i.e. random selections of miRNAs from

human and mouse as putative human-mouse orthologous mature

miRNAs), and constructed a conserved miRNA co-expression

network using the permuted orthologous mature miRNAs. By

repeating the permutation procedure 1000 times, we found

significantly more co-expression relationships in the real conserved

co-expression network than in the random networks (p-value,0.001,

Figure 1B).

Because samples in the human and mouse miRNA expression

data sets are derived from different tissues with different

phenotypes, these conserved co-expression relationships may be

influenced by sample heterogeneity. To determine whether these

co-expression relationships are robust to the choice of samples, we

randomly selected 80% of samples from human and mouse

expression data sets for identifying conserved co-expression

relationships. We repeated the procedure 1000 times. An average

of 184 relationships was identified. Furthermore, we found that an

average of 89.1% of relationships is also included in the network

constructed using all samples. These results suggest that the

majority of co-expression relationships are widespread in a variety

of tissues and disease states, representing a general set of co-

expression relationships.

To further evaluate the conserved co-expression relationships,

we sought to use the receiving operator characteristic (ROC)

curve, which provide a way of measuring sensitivity and specificity,

to quantify the significant of these relationships. The area under

the ROC curve (AUC) was used as a measure for the overall

accuracy. Due to the absence of validated co-expression

relationships, we constructed three sets of co-expression relation-

ships according to different Pearson correlation thresholds using a

PCR-based miRNA expression data (GSE23024). Our results

illustrated in Figure 1C show that the conserved co-expression

relationships achieve high AUC scores (.85.0%), which are

significantly higher than random (p-value,0.001).

Functional relationships between conserved co-
expressed miRNA pairs

In order to further understand these conserved co-expression

relationships, we retrieved the human network from the human-

mouse conserved miRNA co-expression network by simply

extracting human miRNAs in each node. We sought to analyze

some characteristics of conserved co-expressed miRNA pairs in

the human network. To determine the significance of these

characteristics, we generated 1000 random sets with the same

number of co-expression relationships as in the real network. For

each randomization, we generated 182 miRNA pairs by randomly

choosing two miRNAs and linking them together.

Firstly, we examined genomic distances between conserved co-

expressed miRNAs. Genomic distances of 64 pairs of miRNAs

located on the same chromosome were computed. We found 32

pairs of miRNAs (50%) within 1 Kb of each other, 58 (90.6%)

within 50 Kb (Figure 2A). These conserved co-expressed miRNA

pairs are significantly closer to each other than non co-expressed

miRNA pairs (Wilcoxon rank sum test, p-value,2.2e-16). Similarly,

50 pairs of miRNAs belonging to the same miRNA cluster were

observed. We found that the real conserved co-expressed miRNA

pairs have significantly more pairs of miRNAs within the same

cluster than randomly selected miRNA pairs (p-value,0.001,

Figure 2B). These results, consistent with those reported earlier

by Baskerville et al. [25], suggest that these co-expressed miRNAs

within a short distance may derive from common transcriptions.

Regulation of miRNA gene transcription is similar to that of

protein-coding gene transcription, which is controlled by many

TFs. In order to investigate whether these co-expressed miRNA

pairs are regulated by common TFs, we obtained 260 experi-

mentally validated TF-miRNA regulation relationships from the

TransmiR database [26]. We observed that 47 pairs of miRNAs

are co-regulated by at least one common TF, significantly more

than randomly selected miRNA pairs (p-value,0.001, Figure 2C).

This reflects that the co-expression of miRNAs may be resulted

from common regulation, indicating their potential functional

relevance.

Emerging evidence shows that members of a miRNA family

(such as the let-7 family) have similar functions since an abundance

of overlapping targets resulted from their common seed sequences.

We observed 44 pairs of miRNAs belonging to the same family,

Dysfunction of MicroRNAs Cooperation in Disease
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significantly more than randomly selected pairs of miRNAs (p-

value,0.001, Figure 2D).

To validate whether co-expressed miRNAs have functional

associations, we obtained their predicted targets from the

TargetScan5.1 database [27]. Considering a large number of

targets predicted by TargetScan5.1, we used a ‘context score’

(20.3), which corresponds to a certain magnitude of regression, as

a cutoff to screen targets regardless of conservation status of

binding sites. Among 182 pairs of miRNAs, 149 pairs in which

both members have targets were analyzed. We found that 132

pairs of miRNAs have significantly more overlapping targets than

expected by chance (hypergeometric distribution, FDR-corrected

p-value,0.05). When compared with randomly selected miRNA

pairs, more pairs of miRNAs having significant overlapping targets

were identified in these real conserved co-expressed miRNA pairs

(p-value = 0.001, Figure 2E). Furthermore, functional enrichment

analyses identified 88 miRNA pairs with common targets

significantly involved in at least one biological process, significantly

more than randomly selected pairs of miRNAs (p-value = 0.022,

Figure 2F).

Subsequently, we obtained an additional paired miRNA and

mRNA expression dataset (GSE25692), and then calculated

Pearson correlation coefficients (PCCs) between miRNAs and

genes. For each miRNA, genes with absolute PCC.0.5 were

regarded as its expression-related genes. Using the hypergeometric

distribution, we identified 81 miRNA pairs with significantly

overlapping expression-related genes, significantly more than

randomly selected pairs of miRNAs (p-value = 0.034, Figure 2G).

Figure 1. Evaluation of the conserved co-expression relationships. (A) Pie charts of miRNA expression data from human (top) and mouse
(bottom) included in the analysis. Colors represent different tissues. (B) Probability density of the number of co-expression links identified through the
permutation of orthologous miRNAs. The permutation experiment was repeated 100 times. (C) ROC curves used to quantify the significant of these
relationships using a PCR-based miRNA expression data (GSE23024).
doi:10.1371/journal.pone.0032201.g001
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Moreover, we sought to use miRNA-affected genes generated by

knockout/transfection of miRNAs to further determine function

associations of these conserved co-expressed miRNA pairs. Multiple

gene expression data sets referring to knockout/transfection of

different miRNAs were obtained from Gene Expression Omnibus

(GEO). Sixteen miRNA pairs in which both members have

knockout/transfection data were used. Genes with FC.1.2 were

regarded as miRNA-affected genes. Using the hypergeometric

distribution, we found that these pairs have significantly more

overlapping affected genes except one (Table S2).

Together, our findings suggest strong functional relationships

between conserved co-expressed miRNAs, which may be derived

from common clusters and/or common families, and can be

regulated by common TFs. More importantly, miRNAs can

cooperatively regulate a single biological process by targeting

common components of that process, which may be the crucial

mechanism underlying the ‘fine-tuning’ of gene expression.

Dysfunction of miRNA cooperation in disease
Currently, many miRNAs have been identified as disease

miRNAs, which play important roles in the development and

progression of various diseases. Is the functional cooperation

between miRNAs associated with disease? We obtained disease

miRNAs from the miR2Disease database [28], and then 204

miRNAs with ‘causal’ relations were gained. Among them, 73

disease miRNAs can be mapped to the network. We identified 54

miRNA pairs sharing a common disease. We verified the

significance by means of permuting co-expressed miRNA pairs

and disease miRNAs separately. First, we generated 1000 random

sets, each of which is composed of 182 randomly selected miRNA

pairs. We found that the real conserved co-expressed miRNA pairs

have significantly more pairs sharing a common disease than

randomly selected miRNA pairs (p-value,0.001, Figure 3A). We

next evaluated the significance by constructing 1000 sets of

randomly selected disease miRNAs. We compared the observed

number with the distribution of the number of miRNA pairs

sharing a common disease seen in the 1000 randomly generated

disease miRNA sets. The similar result was observed (p-

value,0.001, Figure 3B). These results indicate that dysfunction

of function-related miRNAs may be associated with the patho-

genesis of disease.

Subsequently, we identified several highly connected sub-

networks using random walks [29]. We observed that some sub-

networks are obviously enriched by disease miRNAs (Figure 4).

The three sub-networks containing the most disease miRNAs were

identified. The sub-network I, II and III contain 16, 14 and 8

miRNAs, respectively. To our surprise, we found that multiple

miRNAs in each sub-network are significantly involved in the

same diseases (Figure 3C). For example, 14 miRNAs in the sub-

network I are disease miRNAs. Of these, 9 miRNAs have been

identified as important factors contributing to the development of

hepatocellular carcinoma. Furthermore, the remaining 5 disease

miRNAs in this sub-network are also associated with various other

cancers. In the sub-network III, 6 of 8 miRNAs are breast cancer-

related miRNAs. These findings indicate that carcinogenesis may

be associated with dysfunction of multiple function-related

miRNAs in these sub-networks rather than single miRNAs.

To determine whether these miRNA sub-networks are involved

in cancer-related biological processes, we obtained their predicted

targets using TargetScan5.1 (without the ‘context score’ limita-

tion). In the sub-network I and II, 64 and 90 common targets

shared by at least 13 and 12 miRNAs were identified, respectively.

In the sub-network III, 54 common targets regulated by all 8

miRNAs were identified. Through functional enrichment analyses

of these sets of common targets, we found that the sub-network I,

II and III is significantly involved in ‘induction of apoptosis by

intracellular signals’, ‘regulation of Ras protein signal transduc-

tion’ and ‘regulation of cell differentiation’ respectively, suggesting

that miRNAs in each sub-network can cooperatively regulate

important cancer-related biological processes by targeting com-

mon transcripts.

Especially, many miRNAs in the sub-networks are from the

same family. This might make the prediction of their functions

based on their targets biased, because miRNAs in the same family

have similar targets. Therefore, we re-predicted the functions of

these sub-networks by eliminating the affection of miRNAs from

the same family. In each sub-network, common targets of miRNAs

from the same family were obtained, and then these family-based

target sets together with target sets of other miRNAs not belonging

to the same family were used to determine the functions of the sub-

network. The sub-network I contains a total of 16 miRNAs, with

15 having predicted targets. In the sub-network I, 12 miRNAs are

from 5 miRNA families. For each miRNA family, their common

targets were determined. Then, the 5 family-based target sets and

3 target sets from the remaining 3 miRNAs were obtained. We

identified 158 common targets shared by at least 6 of these 8 target

sets. By function enrichment, we found ‘induction of apoptosis by

intracellular signals’ significantly overrepresented in the common

targets. Similarly, we identified ‘regulation of Ras protein signal

transduction’ and ‘regulation of cell differentiation’ significantly

overrepresented in sub-network II and III, respectively. These

results are obviously consistent with the above results determined

using all predicted targets.

In addition, we determined the functions of these sub-networks

based on a paired miRNA and mRNA expression data set

(GSE25692). For each miRNA, genes with absolute PCC.0.5

were identified as its expression-related genes. In the sub-network

I, 13 miRNAs have expression values in the miRNA expression

dataset. 64 common expression-related genes shared by at least 11

miRNAs were identified. We found that these common genes are

Figure 2. Functional relationships of 182 conserved co-expressed miRNA pairs. (A) Genomic distances of the observed miRNA pairs, which
are significantly shorter than the distances of non co-expressed miRNA pairs (Wilcoxon rank sum test, p-value,2.2e-16). (B) Probability density of the
number of miRNA pairs that belong to the same cluster from randomly selected miRNA pairs. The count observed in the real co-expressed miRNA
pairs (50, located by the blue arrow) is significantly higher than those in the random pairs (p-value,0.001). (C) Probability density of the number of
miRNA pairs that share common TFs from randomly selected miRNA pairs. The count observed in the real co-expressed miRNA pairs (47, located by
the blue arrow) is significantly higher than those in the random pairs (p-value,0.001). (D) Probability density of the number of miRNA pairs belonging
to the same family from randomly selected miRNA pairs. The count observed in the real co-expressed miRNA pairs (44, located by the blue arrow) is
significantly higher than those in the random pairs (p-value,0.001). (E) The number of miRNA pairs with significantly overlapping targets in the real
conserved co-expression pairs (132, located by the blue arrow) is significantly higher than those in the randomly selected miRNA pairs (p-
value = 0.001). (F) The number of miRNA pairs with common targets significantly involved in at least one biological process in the real conserved co-
expression pairs (88, located by the blue arrow) is significantly higher than those in the randomly selected miRNA pairs (p-value = 0.022). (G) The
number of miRNA pairs with significantly overlapping expression-related genes in the real conserved co-expression pairs (81, located by the blue
arrow) is significantly higher than those in the randomly selected miRNA pairs (p-value = 0.034).
doi:10.1371/journal.pone.0032201.g002
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significantly involved in ‘negative regulation of NF-kappaB import

into nucleus’, which plays an important role in apoptosis. Likewise,

we found that the sub-network II and III are significantly involved

in ‘regulation of Rab GTPase activity’ and ‘cell cycle’, respectively.

To further validation the functions of the three sub-networks,

we identified consistently affected genes for each sub-network

based on expression data sets from different miRNA knockout/

transfection experiments. In the sub-network I, knockout/

transfection expression data of 8 miRNAs were collected and

their consistently affected genes (FC.1.2) were identified. The

process of ‘regulation of apoptosis’ is significantly overrepresented

in their common affected genes. For the sub-network II, three

Figure 3. Dysfunction of multiple co-expressed microRNAs in a common disease. (A) The distribution of the number of miRNA pairs
sharing a common disease from random selections of miRNA pairs. The number observed in the real conserved co-expression pairs (located by the
blue arrow) is significantly higher than those in the randomly selected miRNA pairs (p-value,0.001). (B) The distribution of the number of miRNA
pairs sharing a common disease from random selections of disease miRNAs. The number observed in the real conserved co-expression pairs (located
by the blue arrow) is significantly higher than those from the randomly selected disease miRNAs (p-value,0.001). (C) The numbers of miRNAs
associated with different human diseases in each sub-network.
doi:10.1371/journal.pone.0032201.g003
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biological processes including ‘induction of apoptosis’, ‘cell

migration’ and ‘angiogenesis’ are significantly enriched in their

common affected genes in 6 miRNAs. Likewise, based on

knockout/transfection expression data of 3 miRNAs in the sub-

network III, we found that their common affected genes are

significantly involved in ‘regulation of cell differentiation’ and ‘cell

cycle’. For the sub-network I and III, these results are obviously

consistent with those determined using predicted targets. For the

sub-network II, although without any consistent processes, the Ras

signaling pathway can control apoptosis and cell migration, and its

abnormality can lead to increased invasion and metastasis. Taken

together, our findings suggest that these three sub-networks play

important roles in cancer, further supporting the dysfunction of

cooperation of miRNAs in disease.

Furthermore, we found that these disease-related sub-networks

are composed of different clusters and families as well as other

unrelated miRNAs. The sub-network I is composed of three

clusters including miR-17-92, miR-106b-25 and miR-15b-16

clusters, and two paralogous miRNAs miR-103 and miR-107 as

well as three unrelated miRNAs including let-7i, miR-130b and

miR-140-5p. Of these 16 miRNAs, 14 are identified as disease

miRNAs. We found that this sub-network is associated with

hepatocellular carcinoma, and can be cooperatively involved in

regulation of apoptosis by analyzing predicted targets and affected

genes from knockout/transfection of miRNAs. The miR-17-92

cluster has been widely demonstrated to be involved in cell

proliferation, apoptosis and angiogenesis in different types of

cancers [30]. The miR-106b-25 cluster, one miR-17-92 para-

logous cluster, also has important roles in hepatocellular

carcinoma. Li et al. [31] revealed consistent aberrant expression

of these two paralogous clusters in hepatocellular carcinoma. A

recent work completed by Ventura et al. [32] showed that the miR-

17-92 and miR-106b-25 double knockout mice have more severe

phenotype than that of miR-17-92 single knockout mice. For the

miR-15b-16 cluster, Guo et al. [33] found that its two members

miR-15b and miR-16 are essential for apoptosis in the rat hepatic

stellate cells. The evidence further confirmed our results that these

three miRNA clusters may function together to cooperatively

control apoptosis, and their impairments may contribute to

hepatocellular carcinoma.

The sub-network II is composed of six members of the let-7

family (let-7a, let-7b, let-7c, let-7d, let-7f, and let-7g), the miR-30

family, the miR-195/miR-497 cluster, and two unrelated miRNAs

including miR-26b and miR-150. Of these 14 miRNAs, 8 are

disease miRNAs, and 6 are related to lung cancer. Functional

enrichment analyses based on targets show that this sub-network is

significantly involved in regulation of Ras protein signal

transduction. Analysis of affected genes from knockout/transfec-

Figure 4. The human conserved miRNA co-expression network. Known disease miRNAs (green) were mapped onto the network. Three
disease-related miRNA sub-networks in the dashed boxes were identified. MiRNAs with knockout/transfection experiments are labeled with red stars.
Biological processes significantly overrepresented in common targets of each sub-network are recorded on top of the corresponding dashed box
with black color. Using miRNAs with knockout/transfection experiments in each sub-network, biological processes significantly overrepresented in
consistently affected genes are recorded at the bottom of the corresponding dashed box with blue color.
doi:10.1371/journal.pone.0032201.g004
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tion of miRNAs also shows similar results. The let-7 family has

been widely identified to be a tumor suppressor that can inhibit

cell proliferation in lung cancer. A recent study demonstrated that

the miR-195/497 cluster can suppress cell proliferation and

invasion of breast cancer [34]. For the miR-30 family, its function

is unclear. Our results indicate that the miR-30 family may

function together with the let-7 family and the miR-195/497

cluster to control cell proliferation by cooperatively destroying the

Ras signaling pathway. It is notable that miR-26b is highly

connected with four let-7 family members including let-7a, let-7d,

let-7f and let-7g. The function of miR-26b is unclear. Using

predicted targets, we found that all of these miRNAs in the sub-

network can consistently regulate Lin28B, which encodes a highly

conserved RNA-binding protein, and has important roles in

oncogenesis. Therefore, it is rational to presume that miR-26b

may function together with these four let-7 family members to

consistently regress the expression of Lin28B, and dysfunction of

their functional cooperation may lead to up-regulation of Lin28B,

which in turn contribute to tumorigenesis. The sub-network III is

composed of the miR-200 family (including miR-200a, miR-200b,

miR-200c, and miR-141), the miR-183-96-182 cluster, and miR-

375. Of these 8 miRNAs, 7 are disease miRNAs, and 6 are related

to breast cancer. Functional enrichment analysis using predicted

targets and affected genes from miRNA knockout/transfection

data consistently show that the network is significantly involved in

the regulation of cell differentiation. A recent study revealed that

the miR-200 family and the miR-183-96-182 cluster are

consistently down-regulated in breast cancer stem cells [35]. By

analyzing the process ‘regulation of cell differentiation’ enriched

by their targets and affected genes, we found two common genes

including WNT5A and CDK6. WNT5A is a member of the WNT

gene family, which can tightly regulate self-renewal in stem cells

and maintain the undifferentiated state of stem cells. Activation of

WNT signaling has been identified in many cancers [36]. CDK6

overexpressed in several malignancies (including breast cancer,

lymphoma and melanoma) has been demonstrated to be involved

in leukemic cell differentiation block [37]. It seems that the

common down-regulation of the miR-200 family and the miR-

183-96-182 cluster results in the activities of WNT signaling and

CDK6, which can control breast cancer stem cell differentiation

and self-renewal to allow malignant proliferation.

Discussion

By combining multiple miRNA expression data sets from

human and mouse, we constructed a conserved miRNA co-

expression networks. We analyzed several characteristics of these

conserved co-expressed miRNA pairs, and found that parts of

these miRNA pairs are located in neighboring genomic positions

(belonging to common miRNA clusters), indicating that they are

generally derived from common transcripts. The remaining pairs

are not located in the same chromosome, suggesting a more

general mechanism for regulating expressions of miRNAs. By

investigating TF-miRNA relationships, we found that co-expressed

miRNA pairs tend to be regulated by common TFs. Recent

studies demonstrated that miRNAs can frequently participate in

regulatory networks with TFs [38,39,40,41,42], and different types

of feedback loops between miRNAs and TFs may play important

roles in many developmental processes, such as self-renewal of

human embryonic stem cells [43,44]. Hence, we suspected that

these conserved co-expressed miRNAs are finely controlled by TFs.

Analyses of predicted targets demonstrated that these co-

expressed miRNAs have similar targets and similar functions. We

also used an additional paired miRNA and mRNA expression

data set to validate the functional associations of these co-

expressed miRNA pairs based on expression-related genes. This

strategy has been used to predict miRNA functions [45]. In

addition, the application of miRNA knockout/transfection

approaches provide the efficient way for analyzing miRNA

functions. The affected genes derived from knockout/transfection

of a specific miRNA can be its direct targets or second targets. We

evaluated the function relations between these co-expressed

miRNAs using some knockout/transfection data. All of our

findings show that these co-expressed miRNA pairs can cooper-

atively regulate common genes, suggesting their functional

relevance. In addition, because these expression data sets are

derived from different tissues and cell lines in different disease

states, the conserved co-expressed miRNA pairs represent wide-

spread co-expression relationships, suggesting their general function

associations and their potential important roles in cell function.

By mapping known disease miRNAs, we found that many

disease miRNAs are co-expressed, and identified three disease-

related sub-networks. Particularly, many members in each sub-

network are associated with the same disease. Based on predicted

targets, paired miRNA and mRNA expression data and affected

genes derived from knockout/transfection of miRNAs, we further

demonstrated that miRNAs in each sub-network can cooperatively

control some crucial cancer-related processes, such as induction of

apoptosis and cell differentiation, by targeting common compo-

nents of those processes. These findings strongly suggest that the

development of disease may be associated with dysfunction of

cooperation of multiple miRNAs rather than individual miRNAs.

That is, the abnormality of single miRNA may be insufficient to

impair normal cell function. The functional cooperation between

miRNAs may hint that single miRNA can ‘fine-tune’ gene

expression, while multiple function-related miRNAs can have

‘big impacts’ on gene expression. Notably, miRNAs with

cooperative functions are not merely limited in the same miRNA

clusters or families, suggesting that cooperative functions are

dependent on different miRNA cluster and/or family members.

Recently, several studies identified a number of cancer-related

miRNA modules. Volinia et al. [24] identified miRNA cliques by

constructing cancer networks using miRNA expression. Bandyo-

padhyay et al. [46] constructed a cancer-miRNA network based

on experimentally validated cancer-miRNA relationships, and

then recognized a number of cancer-miRNA modules. Comparing

with their results, we found that many cancer-related miRNA

modules reported in the previous studies were also identified in our

study. For example, three miRNAs (including miR-106b, miR-93

and miR-20a), which were identified as a miRNA module in [24],

were included in the sub-network I. Three miRNAs (including let-

7a, let-7d and let-7f), which were identified as a miRNA module in

[46], were included in the sub-network II. Interestingly, in the

cancer network constructed in [24], 8 members of the sub-network

II (including miR-30c, miR-30b, let-7a, let-7b, let-7c, let-7d, let-7f

and let-7g) were found to be located in two neighboring modules.

Note that there are 44 pairs of co-expressed miRNAs in the same

family, which may result from the redundancy or lack of probe

specificity in the experiments. To rule out this possibility, we

measured expression correlations between these 44 pairs of miRNAs

using additional three deep sequencing-based (GSE20592,

GSE18012 and GSE15229) and one PCR-based expression data

sets (GSE23024). We observed that these 44 miRNA pairs exhibit

high expression correlations in these expression datasets (Figure S1),

suggesting that the co-expressions of miRNAs belonging to the same

family are biologically meaningful, not due to the non-specificity of

probes in the experiments. Also, we found some members of miRNA

families having distinct expression patterns. For example, three
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miRNAs including miR-25, miR-92a and miR-92b are from the

miR-25 family. MiR-25 and miR-92a show a high expression

correlation (PCC = 0.798), whereas miR-92b has distinct expression

patterns with miR-25 and miR-92a. The expression correlation

between miR-92a and miR-92b is 0.2, and the expression

correlation between miR-25 and miR-92b is 0.172. Both miR-25

and miR-92a were found to play roles in cell proliferation [31,47].

MiR-92b was found to suppress pro-inflammatory responses [48].

This indicates that not all miRNAs with similar seeds can perform

similar functions.

In particular, because many co-expressed miRNA pairs are

belonging to the same family and likely have the same or similar

seeds, this might make our results (i.e., these co-expressed miRNAs

tend to be proximally located in the genome, belong to the same

clusters, share the same TFs, target similar genes, and have similar

functions) biased. Hence, we re-evaluated the 138 co-expressed

miRNA pairs not belonging to the same family. We found that

these 138 co-expressed miRNA pairs show the similar tendency as

observed in the whole 182 co-expressed miRNA pairs (Figure S2).

It should be noted that using knockout/transfection data was a

more effective method for analyzing the functional relations

between co-expressed miRNAs, although targets and expression-

related genes were used to comprehensively validate the functional

relations. However, there were only few knockout/transfection

data available. We only analyzed 16 pairs of co-expressed

miRNAs using knockout/transfection data. Unfortunately, many

miRNA pairs validated using knockout/transfection data were

between family members. Thus, more knockout/transfection data

should be used to further demonstrate the functional relations

between co-expressed miRNAs.

In summary, we constructed a conserved miRNA co-expression

network by combining human and mouse miRNA expression data

sets. We demonstrated close functional relationships between these

conserved co-expressed pairs of miRNAs. Moreover, we identified

three disease-related sub-networks and found that members in

each sub-network can cooperatively regulate some cancer-related

biological processes (e.g. regulation of apoptosis). Our results hint

that human disease may be associated with the impairment of

functional cooperation of multiple miRNAs rather than single

miRNAs. Therefore, understanding miRNA function only depen-

dent on single miRNAs is difficult. Instead, analyzing functionally

cooperative miRNAs may be an important step for deciphering

the complex function of miRNAs and their roles in human disease.

Materials and Methods

MiRNA expression data sets
We collected 16 human and 8 mouse miRNA expression data

sets profiling using Agilent arrays from GEO (human: GSE14985,

GSE15144, GSE16444, GSE17498, GSE18469, GSE18470,

GSE18999, GSE19232, GSE19347, GSE19544, GSE19783,

GSE21036, GSE21687, GSE23690, GSE24485 and GSE25508;

mouse: GSE14267, GSE17000, GSE18786, GSE19421,

GSE19487, GSE21003, GSE21798 and GSE24321). All miRNA

expression data sets were normalized by using the quantiles

method, as implemented in the Bioconductor affy package [49].

Since miRNA probes from various Agilent platforms were

designed based on different miRBase versions, probe sequences

were mapped to known mature miRNA sequences from the

miRBase [50] database (version 16.0). Probes mapped to multiple

miRNAs were removed. In cases where a single miRNA is

mapped by multiple probes, the median value was used. For each

species, miRNAs present in all microarray platforms were used for

the combination of expression data sets.

Identification of orthologous miRNAs
A typical animal primary miRNA (pri-miRNA) contains a

hairpin stem of 33 bp, a terminal loop, and two single-stranded

flanking segments. Drosha and DGCR8 formed ‘Microprocessor’

play essential roles in pri-miRNA processing, and their processing

center is placed at the double-stranded stem, ,11 bp from the

junction between the stem and flanking regions [51]. Because the

sequences of most pri-miRNAs are unknown, we obtained human

and mouse pre-miRNA sequences including their flanking

sequences (upstream and downstream 11 bp) using the UCSC

database [52]. Orthologs were identified by performing all-

against-all alignment between every pair of sequences from

human and mouse using the BLAT algorithm. Only the miRNA

pairs that show best reciprocal hits and have identical seed regions

(nucleotides 2–7) were regarded as orthologous miRNAs.

Construction of a conserved miRNA co-expression
network

In order to identity conserved co-expressed miRNAs across

human and mouse, a previously proposed method by Stuart et al.

[20] was applied. Given a species, we calculated pairwise Pearson

correlation coefficients for all miRNAs in the species., For each

miRNA, we ranked all of the other miRNAs relative to this

miRNA based on their correlation coefficients in a descending

order and then calculated rank ratios by dividing the ranks by the

total number of miRNAs in the species. For a miRNA pair A–B,

the rank ratio of miRNA A relative to B and the rank ratio of

miRNA B relative to A were recorded. The minimum rank ratio

was used to represent the correlation coefficient of this miRNA

pair. Likewise, the rank ratio for its ortholog miRNA pair A9–B9 in

the other species was computed as above. Finally, for each miRNA

pair in human and its corresponding ortholog pair in mouse, two

rank ratios were obtained. Based on the technique of order

statistics, the probability of getting the observed rank ratios by

chance was calculated using the joint cumulative distribution of an

n-dimensional order statistics.

P(r1,r2,:::,rn)~n!

ðr1

0

ðr2

s1

:::

ðrn

sn{1

ds1ds2:::dsn

The above integral was computed using the following recursive

formula:

P(r1r2,:::,rn)~
Xn

i~1

(rn{iz1{rn{i)P(r1r2,:::,rn{i,rn{iz2,:::,rn)

where ri is the rank ratio for species i, n is the number of species

(n = 2 in this analysis), and r0 = 0. We then performed multiple

testing correction using the Bonferroni method, with a p-

value,0.05 considered as statistically significant.

MiRNA genomic location, cluster, family, TF, targets and
disease information

MiRNA genomic location, cluster (defined by a 10 Kb

threshold) and family information were retrieved from the

miRBase database (version 16.0). Experimentally validated TF-

miRNA regulation relationships were gained from the TransmiR

database [26]. Targets of miRNAs were predicted using

TargetScan 5.1 [27]. All known disease miRNAs with ‘causal’

relationships were collected from the miR2Disease database [28].
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Gene expression data from miRNA knockout/transfection
experiments

Gene expression data sets referring to knockout/transfection of

single miRNAs were collected from the GEO (GSE2075,

GSE6474, GSE6838, GSE8501, GSE11968, GSE12615,

GSE14847, GSE19688, GSE19777 and GSE22002). In each

miRNA knockout/transfection experiment, fold changes of all

genes were calculated by comparing expression values between

cases and controls. Genes with fold change (FC).1.2 were

identified as differential genes. If a single miRNA is knockout or

overexpressed in multiple different cell lines, the union of the

differential genes in all cell lines was defined as the miRNA-

affected gene set.

Functional enrichment analysis
For a set of genes, overrepresented biological processes were

determined using the hypergeometric distribution based on Gene

Ontology (GO). P-value of 0.001 was used as the cutoff value to

identify significantly overrepresented biological processes. Func-

tional enrichment analysis was performed using the Bioconductor

package GOstats [53].

Supporting Information

Figure S1 Probability density of the Pearson correlation

coefficients of the 44 co-expressed miRNA pairs belonging to

the same family. The Pearson correlation coefficients were

calculated using three deep sequencing- and one PCR-based

expression data sets.

(TIF)

Figure S2 Functional relationships of 138 conserved co-

expressed miRNA pairs not belonging to the same family. (A)

Genomic distances of the observed miRNA pairs, which are

significantly lower than the distances of non co-expressed miRNA

pairs (Wilcoxon rank sum test, p-value,4.963e-14). (B) Distribu-

tions Probability density of the number of miRNA pairs that

belong to the same cluster from randomly selected miRNA pairs.

The count observed in the real co-expressed miRNA pairs (25,

located by the blue arrow) is significantly higher than those in the

random pairs (p-value,0.001). (C) Probability density of the

number of miRNA pairs that share common TFs from randomly

selected miRNA pairs. The count observed in the real co-

expressed miRNA pairs (26, located by the blue arrow) is

significantly higher than those in the random pairs (p-value,0.001).

(D) The number of miRNA pairs with significantly overlapping

targets in the real conserved co-expression pairs (99, located by the

blue arrow) is significantly higher than those in the randomly

selected miRNA pairs (p-value = 0.02).

(TIF)

Table S1 253 human-mouse mature orthologous miRNAs.

(DOC)

Table S2 Significance of overlapping affected genes between

conserved co-expressed miRNA pairs using miRNA knockout/

transfection expression data.

(DOC)

Author Contributions

Conceived and designed the experiments: YX CX XL. Performed the

experiments: YX CX JG YP HF YL HZ XL. Analyzed the data: YX CX

JG YP XL. Wrote the paper: YX CX XL. Designed computational tools

used in analysis: YX CX HF YL HZ.

References

1. Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB, et al. (2007)

Most Caenorhabditis elegans microRNAs are individually not essential for
development or viability. PLoS Genet 3: e215.

2. Alvarez-Saavedra E, Horvitz HR (2010) Many families of C. elegans

microRNAs are not essential for development or viability. Curr Biol 20:

367–373.

3. Yoo AS, Staahl BT, Chen L, Crabtree GR (2009) MicroRNA-mediated
switching of chromatin-remodelling complexes in neural development. Nature

460: 642–646.

4. Hashimi ST, Fulcher JA, Chang MH, Gov L, Wang S, et al. (2009) MicroRNA

profiling identifies miR-34a and miR-21 and their target genes JAG1 and
WNT1 in the coordinate regulation of dendritic cell differentiation. Blood 114:

404–414.

5. Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate

self-renewal in mouse embryonic stem cells. Nature 463: 621–626.

6. Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death

Differ 17: 193–199.

7. Georges SA, Biery MC, Kim SY, Schelter JM, Guo J, et al. (2008) Coordinated

regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 and
miR-215. Cancer Res 68: 10105–10112.

8. Kim YK, Yu J, Han TS, Park SY, Namkoong B, et al. (2009) Functional links

between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA
clusters in gastric cancer. Nucleic Acids Res 37: 1672–1681.

9. Tsuchiya S, Oku M, Imanaka Y, Kunimoto R, Okuno Y, et al. (2009)
MicroRNA-338-3p and microRNA-451 contribute to the formation of

basolateral polarity in epithelial cells. Nucleic Acids Res 37: 3821–3827.

10. Yoon S, De Micheli G (2005) Prediction of regulatory modules comprising

microRNAs and target genes. Bioinformatics 21 Suppl 2: ii93–100.

11. Joung JG, Hwang KB, Nam JW, Kim SJ, Zhang BT (2007) Discovery of

microRNA-mRNA modules via population-based probabilistic learning. Bioin-
formatics 23: 1141–1147.

12. Gusev Y, Schmittgen TD, Lerner M, Postier R, Brackett D (2007)

Computational analysis of biological functions and pathways collectively

targeted by co-expressed microRNAs in cancer. BMC Bioinformatics 8 Suppl
7: S16.

13. Antonov AV, Dietmann S, Wong P, Lutter D, Mewes HW (2009)

GeneSet2miRNA: finding the signature of cooperative miRNA activities in

the gene lists. Nucleic Acids Res 37: W323–328.

14. Tran DH, Satou K, Ho TB (2008) Finding microRNA regulatory modules in
human genome using rule induction. BMC Bioinformatics 9 Suppl 12: S5.

15. Liu B, Liu L, Tsykin A, Goodall GJ, Green JE, et al. (2010) Identifying

functional miRNA-mRNA regulatory modules with correspondence latent
dirichlet allocation. Bioinformatics 26: 3105–3111.

16. Xu J, Li CX, Li YS, Lv JY, Ma Y, et al. (2010) MiRNA-miRNA synergistic

network: construction via co-regulating functional modules and disease miRNA
topological features. Nucleic Acids Res.

17. Nayak RR, Kearns M, Spielman RS, Cheung VG (2009) Coexpression network

based on natural variation in human gene expression reveals gene interactions
and functions. Genome Res 19: 1953–1962.

18. Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, et al. (2008)
Functional organization of the transcriptome in human brain. Nat Neurosci 11:

1271–1282.

19. Lee HK, Hsu AK, Sajdak J, Qin J, Pavlidis P (2004) Coexpression analysis of
human genes across many microarray data sets. Genome Res 14: 1085–1094.

20. Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for

global discovery of conserved genetic modules. Science 302: 249–255.

21. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, et al. (2005) MicroRNA

expression profiles classify human cancers. Nature 435: 834–838.

22. Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, et al. (2008)
MicroRNA expression profiles associated with prognosis and therapeutic

outcome in colon adenocarcinoma. JAMA 299: 425–436.

23. Ritchie W, Rajasekhar M, Flamant S, Rasko JE (2009) Conserved expression
patterns predict microRNA targets. PLoS Comput Biol 5: e1000513.

24. Volinia S, Galasso M, Costinean S, Tagliavini L, Gamberoni G, et al. (2010)

Reprogramming of miRNA networks in cancer and leukemia. Genome Res 20:
589–599.

25. Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent
coexpression with neighboring miRNAs and host genes. RNA 11: 241–247.

26. Wang J, Lu M, Qiu C, Cui Q (2010) TransmiR: a transcription factor-

microRNA regulation database. Nucleic Acids Res 38: D119–122.

27. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, et al. (2007)

MicroRNA targeting specificity in mammals: determinants beyond seed pairing.

Mol Cell 27: 91–105.

28. Jiang Q, Wang Y, Hao Y, Juan L, Teng M, et al. (2009) miR2Disease: a

manually curated database for microRNA deregulation in human disease.

Nucleic Acids Res 37: D98–104.

Dysfunction of MicroRNAs Cooperation in Disease

PLoS ONE | www.plosone.org 10 February 2012 | Volume 7 | Issue 2 | e32201



29. Pons P, Latapy M (2005) Computing Communities in Large Networks Using

Random Walks. In: Yolum p, Güngör T, Gürgen F, Özturan C, eds. Computer
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