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Purpose: To retrospectively evaluate the fidelity of magnetic resonance 
(MR) spectroscopic imaging data preservation at a range 
of accelerations by using compressed sensing.

Materials and 
Methods:

The protocols were approved by the institutional review 
board of the university, and written informed consent to 
acquire and analyze MR spectroscopic imaging data was 
obtained from the subjects prior to the acquisitions. This 
study was HIPAA compliant. Retrospective application 
of compressed sensing was performed on 10 clinical MR 
spectroscopic imaging data sets, yielding 600 voxels from 
six normal brain data sets, 163 voxels from two brain tumor 
data sets, and 36 voxels from two prostate cancer data sets 
for analysis. The reconstructions were performed at ac-
celeration factors of two, three, four, five, and 10 and were 
evaluated by using the root mean square error (RMSE) met-
ric, metabolite maps (choline, creatine, N-acetylaspartate 
[NAA], and/or citrate), and statistical analysis involving a 
voxelwise paired t test and one-way analysis of variance 
for metabolite maps and ratios for comparison of the 
accelerated reconstruction with the original case.

Results: The reconstructions showed high fidelity for accelerations 
up to 10 as determined by the low RMSE (, 0.05). Similar 
means of the metabolite intensities and hot-spot localization 
on metabolite maps were observed up to a factor of five, 
with lack of statistically significant differences compared 
with the original data. The metabolite ratios of choline 
to NAA and choline plus creatine to citrate did not show 
significant differences from the original data for up to an 
acceleration factor of five in all cases and up to that of 10 
for some cases.

Conclusion: A reduction of acquisition time by up to 80%, with negligible 
loss of information as evaluated with clinically relevant met-
rics, has been successfully demonstrated for hydrogen 1 MR 
spectroscopic imaging.
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imaging data was obtained from the 
subjects prior to imaging. This study 
was Health Insurance Portability and 
Accountability Act compliant. MR pa-
rameters for these acquisitions are de-
tailed in Table 1.

MR Spectroscopic Imaging Data and 
Undersampling
The original data sets were normalized to 
a range of 0 to 1, and a k-space under-
sampled in the phase-encode directions 
was obtained by using a sampling mask 
generated on the basis of the acceler-
ation factor (two, three, four, five, and 
10) and variable density sampling. The 
mask was generated by picking random 
samples weighted by a two-dimensional 
probability density function, resulting in 
more samples in the center of k-space 
than at the edges (11). The extent of the 
fully sampled center of the chosen prob-
ability density function was dependent on 
the inverse of the acceleration factor (ie, 
smaller fully sampled region for higher 
acceleration).

Reconstruction
The undersampled k-space was zero 
filled and subjected to inverse Fouri-
er transform to obtain an initial esti-
mate of the desired MR spectroscopic 

the appropriate transform domain (eg, 
wavelet transform), thereby reducing 
the number of samples required for 
reconstruction of MR data. This has 
been demonstrated with various MR 
methods such as brain imaging, MR an-
giography (10), radial imaging (11), car-
diac cine imaging (12), and dynamic 
contrast material–enhanced imaging 
(13), among other MR methods. Ap-
plication of compressed sensing for MR 
spectroscopic imaging is apt because 
data are sparse in multiple dimensions 
of frequency and space in transform do-
mains of wavelets and total variation. 
Wavelet-based analyses including quan-
tification, spectral editing, and denois-
ing have been applied to MR spectros-
copy (14–17). Fast MR spectroscopic 
imaging has also been accomplished by 
the use of wavelets to enable compres-
sion in the spectral and spatial domains, 
which exploits the sparsity existing in 
this transform domain (18,19). The 
purpose of this study was to retrospec-
tively evaluate the fidelity of MR spec-
troscopic imaging data preservation at 
a range of accelerations by using com-
pressed sensing.

Materials and Methods

This study was performed retrospec-
tively on two-dimensional hydrogen 1 
(1H) MR spectroscopic imaging data 
from six healthy volunteers, two patients 
with brain tumor (malignant glioma), 
and two patients with prostate cancer. 
The protocols were approved by the in-
stitutional review board of the univer-
sity, and written informed consent to 
acquire and analyze MR spectroscopic 

Magnetic resonance (MR) spectro-
scopic imaging has been increas-
ingly used in clinical research to 

assess therapy and aid in diagnosis (1–
3). It is well established that malignant 
prostate and brain tumors express in-
creased levels of choline (4). It also has 
been demonstrated that brain tumors ex-
press decreased levels of N-acetylaspar-
tate (NAA) and creatine, which leads 
to the use of a choline-to-NAA index as 
a cancer biomarker (4–7). Similarly, a 
useful biomarker for prostate cancer is 
the ratio of the sum of choline and cre-
atine to citrate. It has been extensively 
shown that citrate levels decrease while 
choline levels increase in malignant 
prostate tumors (4).

The advantages of multivoxel (two- 
and three-dimensional) spectroscopy 
over single-voxel spectroscopy are 
widely established (7,8). It is possible 
to obtain better localization of meta-
bolic abnormality and observe changes 
in regions originally outside the mor-
phologic lesion by using multivoxel MR 
spectroscopy. However, the major dis-
advantage of this technique is the longer 
acquisition time, which is a barrier for 
routine clinical use (7–9). Compressive 
sensing (10,11) provides an innovative 
approach to undersample k-space by 
exploiting the underlying sparsity in 

Implications for Patient Care

nn Reduction of time spent by the 
patient in the imager could 
increase throughput and/or allow 
for appending more protocols in 
a given time frame.

nn This approach could enable a 
more widespread integration of 
1H MR spectroscopic imaging, a 
powerful clinical tool, into clinical 
MR imaging protocols.

Advances in Knowledge

nn Compressed sensing could reduce 
acquisition time of clinical hydro-
gen 1 (1H) MR spectroscopic im-
aging by 80%, while maintaining 
high fidelity (root mean square 
error , 0.05) for these unders-
ampled reconstructions com-
pared with full data 
reconstruction.

nn The approach is capable of pre-
serving the fidelity of MR spec-
troscopic imaging biomarkers at 
an acceleration of five or higher, 
as shown by the statistically in-
significant difference (P . .05) 
between biomarker metabolite 
maps resulting from accelerated 
reconstructions and those from 
the original case.
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Statistical Analysis
The metabolite map intensities for 
each reconstruction and relevant me-
tabolite ratios (choline-to-NAA index 
for healthy brain and brain tumor, 
choline plus creatine–to-citrate ratio 
for prostate cancer) were subjected 
to a voxelwise two-tailed paired t test 
(Excel; Microsoft, Redmond, Wash) 
to compare with the acceleration fac-
tor of one (original) case. In addition, 
one-way repeated-measures analysis of 
variance was performed followed by a 
Bonferroni multiple comparison test to 
further evaluate the effect of correla-
tions among the reconstruction for the 
acceleration values chosen (GraphPad 
Prism; GraphPad Software, La Jolla, 
Calif). The resulting t values from the 
Bonferroni test were converted into P 
values (Excel; Microsoft). A P value less 
than .05 was considered to indicate a sta-
tistically significant difference.

Results

The results of the reconstruction of a 
representative healthy brain MR spec-
troscopic imaging data set are shown in 
Figures 1 and 2. Figure 1 shows the MR 
spectroscopic imaging grids correspond-
ing to a region shown on the anatomic 
scout image at different acceleration 
factors. The reconstructed MR spectro-
scopic imaging data exhibited similar 
spatial profiles as that of the original 
over the range of accelerations. The 
green and red boxes represent the lo-
cations of two voxels chosen to inspect 

where N is the total number of data 
points in an MR spectroscopic imaging 
data set, y is the data reconstructed from 
full k-space, and y9 is the reconstructed 
data from undersampled k-space. Be-
cause the data range was normalized to 
vary from 0 to 1, RMSE is equivalent to 
the commonly used normalized RMSE.

Postprocessing
The MR spectroscopic imaging data sets 
were subjected to the following minimal 
processing steps in Java-based MR user 
interface (jMRUI; http://www.mrui.uab.
es/mrui/mrui_Overview.shtml) (21): (a) 
apodization to remove existing truncation 
artifacts, (b) baseline correction, (c) time-
domain Hankel-Lanczos singular value 
decomposition filtering of residual water 
and fat peaks, (d) automated zero-order 
global-phase correction, and (e) gener-
ation of metabolite maps by using the 
quantitation based on quantum estimation 
(QUEST) algorithm (22) from the “real” 
part of the phased MR spectroscopic spec-
trum, where metabolite map intensities 
represent contributions of the respective 
spectral components in the QUEST fit. 
In the case of brain MR spectroscopic 
imaging data (healthy and cancer), only 
the region interior to the brain was ana-
lyzed. The total number of voxels used 
for further analysis was 600, 163, and 36 
for the healthy brain, brain tumor, and 
prostate cancer data sets, respectively. 
For the ratio calculations, voxels with a 
denominator of 0 (signifying a lack of 
deterministic solution in the QUEST fit) 
in the original data or compressed-sens-
ing–reconstructed data were set to 0.

imaging data. The reconstruction of the 
MR spectroscopic imaging data set was 
cast as a convex optimization problem 
by minimizing the following cost func-
tion Є (modified from Lustig et al [11])

Є(m) 5 ‖ Fum – y ‖2 1 lL1 ‖ Wm ‖1  
      1 lTV TV (m)

by using a custom implementation of 
the nonlinear conjugate gradient algo-
rithm by using Matlab (MathWorks, 
Natick, Mass), where m is the desired 
MR spectroscopic imaging data, Fu is 
the Fourier transform operator, y is 
the measured k-space data, W is the 
wavelet transform operator, and TV is 
the total variation operator; ‖ ‖1 and ‖ 
‖2 are the L1 and L2 norm operators, 
respectively; lL1 and lTV are regulariza-
tion parameters for the L1 term and 
total variation term, respectively. The 
Daubechies wavelet transform (20) was 
used to encode each of the two dimen-
sions of the kx 2 t matrix at all points 
in ky. The values for the regularization 
terms lL1 and lTV were experimentally 
determined to be 0.001 and 0.005, re-
spectively. The reconstruction was sub-
ject to eight iterations to obtain conver-
gence in the value of the cost function.

Error Metric
The error of reconstruction was quan-
tified by the root mean square error 
(RMSE) metric computed as

	 =
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Table 1

MR Acquisition Parameters of the Data Sets Used in the Study

MR Spectroscopic  
Imaging Data Imager

Radiofrequency  
Coil (Receive)

Repetition Time  
(msec)

Echo Time  
(msec)

No. of Signals  
Acquired Grid Size Field of View (mm)

Brain (n = 6) 3.0-T Trio Tim (Siemens,  
  Erlangen, Germany)

12-channel  
  head coil

1700 270 4 16 3 16 100 3 100 3 15

Brain tumor  
  (n = 2)

3.0-T Achieva (Philips,  
  Best, the Netherlands)

Eight-channel  
  head coil

1000 112 2 18 3 21, 19 3 22 180 3 210 3 15,  
  190 3 220 3 15

Prostate cancer  
  (n = 2)

3.0-T Achieva (Philips) Endorectal 1200, 1000 140 1 14 3 10, 16 3 12 25 3 50 3 33,  
  20 3 51 3 26

Note.—All data sets were acquired with a point-resolved spatially localized spectroscopy–based sequence with 1024 points in the temporal dimension.
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the quality of the reconstructed spectra 
in Figure 2. The voxel overlapping the 
ventricles (green box) showed reduced 
concentrations of NAA, creatine, and 
choline (right column of Figure 2) com-
pared with the metabolite levels in the 
other voxel (red box), as was expected. 
The reconstructed spectra for the accel-
erated factors in Figure 2 are similar to 
that of the original. It can be observed 
that the compressed-sensing recon-
struction preserves the line shape of 
the original data as well, but spectra are 
smoother at higher acceleration. Figure 
3 shows the metabolite maps of NAA, 
creatine, choline (reflecting area under 
the peak), and choline-to-NAA index as 
a function of acceleration. The hyper-
intensities on the original and recon-
structed cases occur in similar locations. 
However, at an acceleration factor of 10, 
the metabolite maps show increased in-
tensity compared with the original.

The original and compressed-sens-
ing–reconstructed brain tumor MR 
spectroscopic imaging data set for two 
voxels representing normal tissue and 
cancer tissue are shown in Figure 4a
. The different metabolite profile that 
discriminates normal brain tissue from 

Figure 2

Figure 2:  Spectra from two selected voxels (red and green 
voxels from Fig 1) from a representative brain MR spectroscopic 
imaging data set for the acceleration factors of one (1X), two 
(2X), five (5X), and 10 (10X). The y-axis limits for all the plots 
are 20.25 to 1. Cho = choline, Cr = creatine.

Figure 1

Figure 1:  Reconstruction of the data grid for a representative brain MR spectroscopic imaging data set for the acceler-
ation factors of one (1X), two (2X), five (5X), and 10 (10X). Center: Anatomic MR image shows MR spectroscopic imaging 
region of interest (yellow square) that corresponds to grids. Two locations (red and green voxels) are further examined in 
Figure 2.
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cancerous tissue has been faithfully 
preserved for the results of reconstruc-
tion up to an acceleration factor of 10. 
Figure 4 depicts the reconstruction of 
two voxels representing normal tissue 
and cancer tissue from a prostate can-
cer MR spectroscopic imaging data set. 
The compressed-sensing–reconstructed 
spectra maintained fidelity of the differ-
ent metabolic profiles for both the nor-
mal prostate and prostate tumor cases. 
The metabolite maps generated on 
the basis of these reconstructions are 
shown in Figure 5a and 5b as a function 
of acceleration. For the brain tumor 
data set, the metabolite and choline-to-
NAA index maps for accelerations of 
two and five maintained high fidelity, 
while those at 10 showed increased 
deviation from the original data. For 
the prostate cancer data set, a decrease 
in intensity was seen on the metabolite 
maps as a function of acceleration, but 
the ratio map of choline plus creatine 
to citrate for the prostate cancer data 
set displayed high fidelity even up to 10, 
particularly for hot-spot localization.

Means 6 standard deviations cal-
culated for each metabolite at acceler-
ation factors of one, two, five, and 10 
are reported in Table 2. The means of 
these metabolites were comparable at 
factors of two and five, while the re-
sults at a factor of 10 showed statis-
tically significant differences in six of 
the nine metabolite maps compared 
with the original data. The means for 
the ratio maps were also similar to the 
original, demonstrating that there were 
no significant changes in the values of 
the critical biomarkers up to a factor 
of five for the healthy brain and brain 
tumor data and up to a factor of 10 for 
the prostate cancer data. The P values 
resulting from one-way analysis of var-
iance followed by a Bonferroni test are 
shown in Table 3. The values indicated 
a strong correlation between accelera-
tion factors of one, two, and five, while 
correlations between 10 and the other 
accelerations were significantly weaker, 
resulting in a lower P value. The errors 
of reconstruction quantified by using 
the RMSE metric for the three data 
types at the five acceleration factors can 
be seen in Figure 6. The RMSE values 

Figure 3

Figure 3:  Comparative metabolite maps of NAA, creatine (Cr), choline (Cho), and choline-to-NAA index 
(CNI) for a healthy brain data set for the acceleration factors of one (1X), two (2X), five (5X), and 10 (10X). The 
yellow box on the MR anatomic image (Fig 1) indicates the MR spectroscopic imaging region of interest depicted 
on the maps. a.u. = arbitrary unit.

Figure 4

Figure 4:  Spectra from two selected voxels from representative (left) brain tumor and (right) prostate can-
cer MR spectroscopic imaging data sets for the acceleration factors of one (1X), two (2X), five (5X), and 10 
(10X). In each case, the left column shows a voxel from healthy tissue, while the right column shows a voxel 
in the tumor-bearing region. The y-axis limits for all the plots are 20.25 to 1. Cho = choline, Cit = citrate, Cr 
= methyl signal of total creatine, Cr

2
 = methylene signal of total creatine.
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the reconstructed time-domain data for 
these data sets remained below 0.05 for 
accelerations up to 10. Given that the 
original data sets were normalized be-
fore undersampling, this reflects an er-
ror of less than 5% for the reconstruc-
tions up to a factor of 10. Conversion 
of acquired MR spectroscopic imaging 
time-domain data to metabolite infor-
mation is a complicated process involv-
ing many user-chosen steps that can 
potentially influence the appearance of 
final metabolite maps. Minimal postpro-
cessing of the original and compressed-
sensing–reconstructed data allows us to 

failed. The results of our approach also 
showed that the reconstructions do not 
cause a change in these biomarkers such 
as choline-to-NAA index and choline-
to-citrate ratio. Therefore, the recon-
struction also maintains fidelity in such 
derived parameters as well. The statis-
tical analyses indicated that the recon-
structions at a factor of five are simi-
lar to the original and the differences 
are statistically insignificant. However, 
at a factor of 10, the reconstructions 
showed increased error and differences 
in the biomarker values. On the other 
hand, the RMSE values computed on 

increased with increase in acceleration, 
as was expected, but it remained below 
0.05 for accelerations up to 10.

Discussion

The goal of our study was to investigate 
an approach to accelerate 1H MR spec-
troscopic imaging acquisition without 
loss of information, with a view to facil-
itate widespread integration of 1H MR 
spectroscopic imaging into standard 
clinical protocols. By using compressive 
sensing–based reconstruction, we have 
demonstrated a potential reduction in 
acquisition time by up to 80% or more 
for 1H MR spectroscopic imaging, with 
negligible loss of information as evalu-
ated on the basis of clinically relevant 
metrics.

The reconstructed spectra displayed 
lesser noise than the original spectra. 
This can be attributed to the denoising 
quality of the wavelets and the smoothing 
effect of the total variation factor in the 
reconstruction. As demonstrated, the 
implemented reconstruction method is 
able to generate metabolite maps sim-
ilar to the original case. The metabo-
lite maps generated by using MR spec-
troscopic imaging hold diagnostic and 
prognostic importance, and the re-
construction preserves this information 
content faithfully. The high standard 
deviation in the metabolite intensities 
in our original data sets (acceleration 
factor of one), even for normal brain, 
resulted inherently from the placement 
of the acquisition grid over the entire 
brain, including the cerebrospinal fluid 
(Figs 2, 3). Apart from visual inspection 
of the maps, paired t tests and one-way 
analysis of variance allow comparison of 
information content at a given location 
between fully sampled and compressed-
sensing–reconstructed undersampled 
data at various accelerations. As we are 
testing for fidelity and nonsignificant 
differences rather than significant dif-
ferences between accelerations and the 
original, a P value threshold of .05 is 
a stricter criterion than a P value of, 
say, .01, because a P value less than 
.05 indicates significant differences 
from the original, which would mean 
that the reconstruction algorithm has 

Figure 5

Figure 5:  Comparative metabolite and ratio maps from (a) brain tumor (NAA, creatine [Cr], choline [Cho]) 
and (b) prostate cancer (citrate [Cit], creatine, choline) MR spectroscopic imaging data sets for the accelera-
tion factors of one (1X), two (2X), five (5X), and 10 (10X). (Fig 5 continues).
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evaluate the fidelity of the reconstruc-
tion objectively, but it is possible that 
the differences observed on the maps 
at higher accelerations may result from 
differences in the automated global-
phase correction. When looking at the 
trends in metabolite map intensity, for 
the brain data, it was observed that the 
intensity goes up with acceleration fac-
tor, whereas for the prostate case, the 
intensity goes down with acceleration 
factor. Deviations in either direction 
are possible based on various factors 
such as the regularization parameters, 
grid size, and signal-to-noise ratio of the 
sampled k-space; therefore, this is not 
a trend that is being proposed. For a 
given set of regularization parameters 
and acceleration factor, optimization 
routines result in increased error with 
increased acceleration, as has been no-
ticed by increasing RMSE value. Thus, 
the estimates of the concentrations 
tend to move further away from the orig-
inal as acceleration is increased. From 
the perspective of applicability of the 
proposed method, we are reassured by 
the observation that the deviations in 
intensity remain monotonic functions 
of acceleration (ie, either increasing 

Table 2

Metabolite Intensities and Ratios for the Pooled Voxel Data for Normal Brain, Brain Tumor, and Prostate Cancer as a  
Function of Acceleration

Data Type and Acceleration  
Factor NAA (a.u.) Citrate (a.u.) Creatine (a.u.) Choline (a.u.) Ratio*

Healthy brain (n = 600 voxels)
  1X 200 6 97 … 52 6 28 14 6 9 0.075 6 0.047
  2X 200 6 99 (.8259) … 52 6 34 (.8328) 14 6 10 (.9263) 0.073 6 0.064 (.6286)
  5X 202 6 110 (.1926) … 52 6 31 (.8545) 14 6 11 (.8521) 0.082 6 0.152 (.7480)
  10X 241 6 138 (,.0001)† … 65 6 39 (,.0001)† 18 6 13 (,.0001)† 0.086 6 0.083 (.0002)†

Brain tumor (n = 163 voxels)
  1X 107 6 64 … 42 6 24 32 6 14 0.468 6 0.519
  2X 108 6 64 (.6195) … 43 6 26 (.3344) 32 6 14 (.9796) 0.625 6 1.50 (.0833)
  5X 106 6 74 (.6539) … 42 6 24 (.8694) 32 6 14 (.9590) 0.712 6 1.82 (.0698)
  10X 111 6 88 (.4051) … 37 6 17 (.0035)† 33 6 15 (.4065) 0.837 6 1.89 (.0058)†

Prostate cancer (n = 36 voxels)
  1X … 19 6 17 50 6 82 201 6 173 19.25 6 25.23
  2X … 19 6 13 (.6894) 43 6 83 (.1522) 185 6 146 (.2097) 14.10 6 10.21 (.1889)
  5X … 19 6 13 (.6951) 38 6 54 (.2283) 183 6 145 (.1732) 16.12 6 16.44 (.4761)
  10X … 14 6 11 (.0003)† 38 6 54 (.2112) 147 6 96 (.0028)† 16.38 6 23.59 (.2686)

Note.—Data are means 6 standard deviations. P values greater than .0001 are in parentheses. 

* Ratio data are choline-to-NAA index for brain (normal and tumor) data and (choline + creatine)/citrate for prostate cancer data.
† P value less than .05, according to two-tailed paired t test.

Figure 5 (continued)

 Figure 5   (continued). Ratio maps depict choline-to-NAA index (CNI) for the brain tumor data and (choline 
+ creatine)/citrate for the prostate cancer data. Top: Yellow box on anatomic MR images indicate the MR 
spectroscopic imaging region of interest depicted on the maps. a.u. = arbitrary unit.
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or decreasing on increasing undersam-
pling) and RMSE remains small even at 
a factor of 10.

Several other fast chemical shift 
imaging and spectroscopic imaging ap-
proaches have been developed in the 
past and compared theoretically (23) 
and experimentally (24). In particu-
lar, echo-planar spectroscopic imaging 
(25,26) is a powerful spectroscopic 
imaging technique that remains unde-
rutilized in the clinic (27). This method 
speeds up spectroscopic imaging by 
echo-planar readout of one spectral 
and one spatial dimension, thereby 
achieving an acceleration factor equal 
to the number of points in that spatial 
dimension. For example, a 16 3 16 
two-dimensional matrix would take 16 
times less time with echo-planar spec-
troscopic imaging as with conventional 
chemical shift imaging. However, the 
speedup may be at the expense of signal-
to-noise ratio (27), and spectra could 
be affected by Nyquist ghost artifacts 
(28). The undersampling approach we 
have proposed involves omission of spe-
cific phase-encode values, which is eas-
ily implementable with two- or three-
dimensional chemical shift imaging 
sequences as well as with echo-planar 
spectroscopic imaging. Thus, further 
reduction in imaging time is possible 
in most fast spectroscopic imaging se-
quences by the incorporation of a com-
pressed-sensing method. It has been 
shown that undersampling in increased 
dimensions allows for more efficient 
exploitation of inherent sparsity and 
results in improved reconstructions for 
compressed sensing (11). For MR spec-
troscopic imaging data, the sparsity in 
the spectral dimension exceeds that in 
the spatial dimensions alone. Obtaining 
randomly sampled data in the phase en-
code as well as time dimension requires 
complex pulse sequences involving fast 
switching gradients. This has also been 
demonstrated in the application of com-
pressed sensing for the reconstruction 
of hyperpolarized carbon 13 MR spec-
troscopic imaging data (19). However, 
the decrease in acquisition time due to 
undersampling in the temporal dimen-
sion alone is marginal compared with 
that obtained due to undersampling of 

Figure 6

Figure 6:  Graph of RMSE values for MR spectroscopic imaging data accord-
ing to acceleration factors of two (2X), three (3X), four (4X), five (5X), and 10 
(10X) in comparison with the original data.

Table 3

P Values Resulting from One-Way Analysis of Variance Followed by Bonferroni 
Comparison Test

Data Type and Acceleration Factor 
Comparison NAA Citrate Creatine Choline Ratio*

Healthy brain (n = 600 voxels)
  1X versus 2X .8988 … .8651 .9422 .7621
  1X versus 5X .4922 … .8956 .8866 .2318
  1X versus 10X .0003† … .0005† .0010† .1081
  2X versus 5X .4261 … .7647 .8301 .1652
  2X versus 10X .0003† … .0006† .0010† .0804
  5X versus 10X .0004† … .0005† .0011† .4964
Brain tumor (n = 163 voxels)
  1X versus 2X .8245 … .6307 .9789 .3498

  1X versus 5X .8151 … .9271 .9818 .1864
  1X versus 10X .3756 … .0278† .3261 .0812
  2X versus 5X .6533 … .5718 .9608 .5893
  2X versus 10X .4839 … .0200† .3163 .2347
  5X versus 10X .2866 … .0297† .3349 .4432
Prostate cancer (n = 36 voxels)
  1X versus 2X … .2833 .4675 .3116 .2614
  1X versus 5X … .2848 .2730 .2667 .4651
  1X versus 10X … .0909 .2579 .0239† .4985
  2X versus 5X … .9960 .6461 .8920 .6235
  2X versus 10X … .0328† .6125 .0562 .5838
  5X versus 10X … .0329† .9598 .0633 .9509

* Ratio data are choline-to-NAA index for brain (normal and tumor) data and (choline + creatine)/citrate for prostate cancer data.
† P value less than .05.
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the phase-encode directions, and the 
acceleration factor is not directly rep-
resentative of the undersampling factor 
except for echo-planar acquisitions. We 
have focused in this study on acceler-
ating conventional MR spectroscopic 
imaging acquisition protocols that are 
routinely available in the clinic, but the 
application is not limited to these as 
discussed previously.

An important concern for the appli-
cation of any new reconstruction tech-
nique to spectroscopic imaging is the 
effect on the point-spread function and 
the related bleed-through of information 
from one spatial location to another. The 
nature of the point-spread function and 
the transform point spread function for 
compressed sensing in MR imaging has 
been discussed in detail by Lustig et al 
(11). The transform point spread func-
tion for the three-dimensional Fourier 
transform case described therein is anal-
ogous to our two-dimensional MR spec-
troscopic imaging case with the tempo-
ral (free induction decay or echo) data 
being the dimension that is completely 
acquired as analogous to the read-
out direction in addition to two spatial 
phase-encode directions. The advantage 
of compressed sensing is that the inco-
herent sampling avoids aliasing artifacts 
(as seen with echo-planar imaging and 
echo-planar spectroscopic imaging) (11), 
and the net effect is a noiselike scatter 
of intensities all over the field of view as 
opposed to a coherent broadening of the 
point-spread function and corresponding 
bleed-through of information into neigh-
boring voxels.

A limitation of the current study 
was that it was performed retro-
spectively on clinical data acquired 
previously. While retrospective re-
construction is an important first 
step to determine the feasibility of 
our approach, a necessary follow-up 
step would be prospective studies in 
healthy volunteers where the pro-
posed undersampling scheme is im-
plemented with clinical imagers and 
data acquired, reconstructed, and 
compared at various undersampling 
factors. Other directions for improve-
ment could be extension to three-di-
mensional MR spectroscopic imaging 

and the design of new reconstruction 
routines to exploit sparsity in the 
spectral dimension along with spatial 
sparsity and achieve even higher ac-
celeration, particularly for three-di-
mensional MR spectroscopic imaging.

In summary, the results indicated 
insignificant loss of information for an 
acceleration of up to five, which trans-
lates to a saving of up to 80% of ac-
quisition time. This would potentially 
enable increased use of MR spectro-
scopic imaging protocols in the clinic. 
Acceleration obtained by using this 
approach could be extended for MR 
spectroscopic imaging data of other 
organs such as the breast. Alterna-
tively, the reduced acquisition time 
per acquisition could also be used to 
acquire spectra with harder-to-de-
tect metabolites such as glycine (29) 
through increased averaging.
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