Table 2.
Precision Matrix | Measure | MNGM | GGM-I | GGM-C GGM-R |
---|---|---|---|---|
Model 3, n = 100, p = 150, q = 150 |
||||
A | ||ΔA|| | 0.12(0.014) | 0.31(0.013) | 0.78(0.094) |
|||ΔA|||∞ | 0.32(0.028) | 0.59(0.027) | 1.45(0.092) | |
||ΔA||∞ | 0.05(0.011) | 0.20(0.010) | 0.49(0.074) | |
||ΔA||F | 0.61(0.069) | 2.26(0.120) | 4.72(0.802) | |
SPEA | 0.84(0.005) | 0.80(0.004) | 1.00(0.000) | |
SENA | 1.00(0.000) | 1.00(0.000) | 0.00(0.000) | |
MCCA | 0.45(0.006) | 0.40(0.004) | 0.05(0.022) | |
B | ||ΔB|| | 0.10(0.009) | 0.10(0.009) | 0.77(0.186) |
|||ΔB||| | 0.29(0.022) | 0.32(0.025) | 1.38(0.208) | |
||ΔB||∞ | 0.04(0.007) | 0.04(0.007) | 0.58(0.236) | |
||ΔB||F | 0.53(0.025) | 0.56(0.024) | 4.25(0.856) | |
SPEB | 0.83(0.005) | 0.80(0.003) | 1.00(0.000) | |
SENB | 1.00(0.000) | 1.00(0.000) | 0.01(0.000) | |
MCCB | 0.43(0.007) | 0.40(0.004) | 0.07(0.021) | |
Model 4, n = 100, p = 500, q = 500 |
||||
A | ||ΔA|| | 0.10(0.008) | 0.22(0.008) | 3.69(0.521) |
|||ΔA|||∞ | 0.27(0.018) | 0.45(0.019) | 4.23(0.502) | |
||ΔA||∞ | 0.04(0.007) | 0.14(0.006) | 3.63(0.581) | |
||ΔA||F | 0.95(0.078) | 2.94(0.131) | 43.68(6.153) | |
SPEA | 0.99(0.001) | 0.95(0.001) | 1.00(0.002) | |
SENA | 1.00(0.00) | 1.00(0.00) | 0.01(0.038) | |
MCCA | 0.76(0.008) | 0.52(0.003) | 0.13(0.030) | |
B | ||ΔB|| | 0.08(0.006) | 0.08(0.006) | 1.17(0.026) |
|||ΔB|||∞ | 0.26(0.019) | 0.26(0.019) | 6.88(0.809) | |
||ΔB||∞ | 0.03(0.003) | 0.03(0.004) | 0.34(0.088) | |
||ΔB||F | 0.79(0.028) | 0.76(0.031) | 13.07(0.773) | |
SPEB | 0.98(0.001) | 0.97(0.001) | 0.64(0.055) | |
SENB | 1.00(0.000) | 1.00(0.000) | 0.65(0.095) | |
MCCB | 0.75(0.007) | 0.62(0.003) | 0.06(0.015) |
MNGM: the matrix normal graphical model with l1 penalties; GGM-I: Gaussian graphical model treating rows or columns as independent; GGM-R/GGM-C: Gaussian graphical model that uses only data from the first column or the first row. For each measurement, mean and standard deviation are calculated over 50 replications.