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Abstract
The following report describes novel methodology for the rapid synthesis of unique
conformationally constrained norstatine analogs of potential biological relevance. A PADAM
(Passerini reaction – Amine Deprotection – Acyl Migration reaction) sequence is followed by a
TFA-mediated microwave-assisted cyclization to generate the final benzimidazole isostere of the
norstatine scaffold in moderate to good yields. The applicability of this solution phase
methodology to the preparation of a small collection of compounds is discussed.
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Aspartic proteases are a group of enzymes involved in a plethora of biological processes
including the development and progression of a variety of diseases, such as HIV infection,
inflammation and cancer.1–3 Possessing this variety of therapeutic potential, they have
become attractive targets over the last twenty years. As such, these enzymes catalyze the
amide bond hydrolysis of peptidic substrates, a process which proceeds via a classical
‘tetrahedral intermediate’, often targeted as a key motif to mimic for new inhibitor design.
Indeed, it is typically found that incorporation of a secondary hydroxyl group enables access
to this key interaction, although interestingly over the last 10 years amines have also been
shown to play this role. 2–6 Accordingly the hydroxyl group is typically found on a poly-
peptidic moiety linked together with different heterocycles.2–3 In fact, the most well-known
amide isosteres in this class are represented by hydroxyethylamines, hydroxyethylenes
(mono or dihydroxy), statines, hydroxymethylenes and norstatines 1.2–5,7 This laboratory
has recently been actively involved in the generation of conformationally constrained
analogs of the latter norstatines, enabling entry into feasibly unique biologically active
aspartic protease space. On this theme, the rapid generation of libraries of cis-constrained
norstatine analogs of general structure 2 using a TMSN3-modified Passerini/de-Boc/N-
capping protocol (a slight modification of the PADAM strategy used to produce libraries of
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1) was reported in 2002 (Figure 1). Such tetrazoles are well known isosteres for cis-amide
bonds.8

In a continuation of our studies, we herein report a novel synthetic protocol for the synthesis
of unique norstatine analogs of general structure 3 (Figure 1). Partially driving the decision
making process toward this new isostere of norstatine was the increased pKa ~ 5.2 of the
benzimidazole which dramatically alters the physicochemical properties of the molecules
under investigation relative to that of the tetrazole 2 or parent norstatine 1.9 Thus, synthetic
methodology coined PADAM (Passerini reaction-Amine deprotection-Acyl migration) by
Banfi, which is typically used to access norstatines 1, was thought potentially applicable to
the synthesis of 3.10 However, in this example, utilizing ortho-N-Boc-phenylisonitrile 5, N-
Boc-α-aminoaldehydes 6 and supporting carboxylic acids 4, two reagents contain protected
‘internal’ amines and it was envisioned that in addition to the PADAM sequence, amino-
cyclodehydration onto the carbonyl in 7, derived from the isocyanide input, would
simultaneously deliver a benzimidazole moiety, Scheme 1. Note that the PADAM sequence
of reactions has the advantage of enabling assembly of complex peptidomimetics in a
straightforward and rapid way and the methodology has been extensively applied to the
synthesis of proteases inhibitors.11

Thus, condensation between N-Boc-α-aminoaldehyde 6, carboxylic acid 4 and ortho-N-Boc
phenylisonitrile 5 afforded the corresponding Passerini product 8 in good isolated yield,
Scheme 2. Removal of the two Boc protecting groups of 8 occurred at room temperature
upon treatment with 10% TFA in DCM, Scheme 3.

Subsequent treatment of the crude intermediate 9 with triethylamine (TEA) in methanol at
room temperature delivered the expected intermediate 7, the product of acyl transfer. Due to
the excellent purity of the crude reaction mixtures of 7 and 9, column chromatography was
unnecessary for the final two steps, greatly facilitating the overall production process.
Encouragingly, the formation of the expected benzimidazole scaffold 3 was achieved upon
treatment of crude 7 with trifluoroacetic acid in dichloroethane, promoted by microwave
irradiation, Scheme 3.

With satisfactory conditions in hand, the reaction scope in terms of substrate tolerance was
explored. A small collection of twelve examples was prepared according to the same
synthetic protocol to demonstrate the generality of the reaction, Figure 2. Diversity was
generated through the employment of eight different carboxylic acids and three N-Boc
protected α-amino aldehydes. Whilst the carboxylic acids and isonitriles were commercially
available, known α-aminoaldehydes 6 were prepared through LiAlH4 reduction of the
corresponding Weinreb hydroxamates, in line with reported methodology.12,13 The
synthesis of the Passerini products proceeded smoothly with isolated yields ranging from 41
to 84%, Figure 2.14 Noteworthy, a slight decrease in the yields of the Passerini product was
observed when 2-pyridine carboxylic acid and 1H-indole-6-carboxylic acid were employed.
In all the examples, purification of intermediates 7 and 9 was avoided, thus significantly
simplifying the synthetic protocol. The final products were obtained after silica-gel column
chromatography in satisfying overall yields (23–38%), spanning 4 functional
transformations in one pot.14 As expected, the observed average stereoselectivity for the
final products was ca. 1:1, as judged by 1H NMR spectra of the pure compounds. In view of
the potential applicability of this methodology to combinatorial synthesis, the lack of
stereoselectivity and production of diastereomers is not considered as a drawback.

In summary, a series of novel conformationally constrained norstatine isosteres were
synthesized in four steps by means of PADAM methodology, combined with benzimidazole
formation. The methodology also represents the first example of an application of the
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Passerini reaction utilizing two internal amine nucleophiles. With final products
characterized by two points of diversity and a facile and practical production protocol,
access to large libraries of diverse analogs is now possible. Being amenable to high-
throughput synthesis, it is expected that this methodology will be embraced by the lead
generation community.
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extracted with EtOAc (20 mL x 3), the organic layers collected, washed with brine (50 mL),
dried (MgSO4) and concentrated under reduced pressure. Purification by column
chromatography (ISCO™ purification system, EtOAc-hexane, 30%) afforded the final
product 6b as colorless oil (76 mg, 0.43 mmol, 61% over two steps). 14) General procedure for
the preparation of3c: A mixture of (S)-tert-butyl (3-methyl-1-oxobutan-2-yl)carbamate
(0.403g, 2.0 mmol, 1.0 eq), butyric acid (0.176g, 2.0 mmol, 1.0 eq) and tert-butyl (2-
isocyanophenyl)carbamate 5 (0.437, 2.0 mmol, 1.0 eq) in DCM (2 mL, 1.0 M) was stirred at
rt overnight. After removal of the solvent under reduced pressure, the residue was purified
by silica-gel column chromatography (EtOAc-hexane, 0 to 30%) using an ISCO™

purification system to afford (3S)-3-((tert-butoxycarbonyl)amino)-1-((2-((tert-
butoxycarbonyl)amino)phenyl)amino)-4-methyl-1-oxopentan-2-yl butyrate (0.640 g, 1.260
mmol, 63% yield). 8c (0.609 g, 1.2 mmol) in 10% TFA/DCM (5 mL) was stirred at room
temperature for 48h. The reaction was diluted in DCM (10mL), washed with sat. NaHCO3
(10 mL) and brine (10 mL). The organic layers were collected, dried over MgSO4 and the
solvent removed under reduced pressure to give intermediate (3S)-3-amino-1-((2-
aminophenyl)amino)-4-methyl-1-oxopentan-2-yl butyrate 9c, which was used in the following
reaction without further purification. 9c was dissolved in TEA/MeOH (1/3, 10 mL) and the
reaction stirred at rt for 3h. After completion, the mixture was diluted with ethyl acetate (30 mL)
and washed with HCl (0.1M, 3 x 10 mL). The organic layer was collected, dried over MgSO4 and
the solvent was evaporated under in vacuo to afford (3S)-N-(2-aminophenyl)-3-butyramido-2-
hydroxy-4-methylpentanamide 7c, which was used in the following reaction without further
purification. 7c was dissolved in 10% TFA/DCE (3 mL), the resulting solution was placed in a 5
mL microwave tube and subjected to microwave irradiation in a Biotage Initiator (10 min, 100°C).
The mixture was diluted in DCM (10 mL), washed with sat. NaHCO3 (10 mL) and the aqueous
layer extracted with DCM (3 x 10 mL). The organic layers were collected, washed with further sat.
NaHCO3 (10 mL), brine (20 mL), dried over MgSO4 and the solvent was removed under reduced
pressure to get the crude product 2c. The crude product 3c were further purified by silica-gel
column chromatography (EtOAc-hexane, 0 to 80%) using a ISCO™ purification system to afford
N-((2R)-1-(1H-benzo[d]imidazol-2-yl)-1-hydroxy-3-methylbutan-2-yl)butyramide 3c (0.142 g,
0.492 mmol, 41% yield in three steps). LCMS [M+1]+ 290.1; diastereomeric ratio ~1:1; 1H NMR
(300 MHz, DMSO-d6, mixture of 2 diastereoisomers): δ 0.58–0.71 (m, 3H), 0.84–0.88 (m, 2H),
0.90–0.93 (m, 3H), 1.05 (d, J = 6.0 Hz, 2 H), 1.22–1.27 (m, 3H), 1.88–1.97 (m, 3H), 2.35 (m, 0.5
H), 2.51 (s, 0.5H), 3.98 (t, J = 9.0 Hz, 0.5H), 4.17 (t, J = 9.0 Hz, 0.5H), 4.97 (d, J = 9.0 Hz, 0.5
Hz), 5.35 (s, 0.5H), 7.33–7.35 (m, 2 H), 7.61–7.64 (m, 2H) ppm. 13C NMR (100 MHz, CDCl3) δ
13.14, 13.28, 15.66, 18.92, 18.94, 19.38, 19.77, 27.68, 29.31, 29.66, 37.91, 38.02, 57.63, 58.79,
67.40, 113.91, 114.02, 115.19, 118.09, 125.22, 125.36, 131.95, 132.13, 155.28, 155.50, 163.03,
163.38, 175.24, 175.35 ppm.
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Figure 1.
General structure of norstatines 1, cis-constrained norstatine analogs 2 and targeted novel
benzimidazole analogs 3.
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Figure 2.
Example analogs (x% = Passerini yield, x% = yield from 8 to 3).
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Scheme 1.
Retrosynthetic analysis.
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Scheme 2.
Passerini condensation (R1 = see Figure 2. R2 = iso-propyl, 6a; methyl, 6b; benzyl, 6c).
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Scheme 3.
Synthesis of 3 from Passerini product 8.
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