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Abstract

Objectives—To examine the role of lipoprotein-associated phospholipase A2 (Lp-PLA,/
PLA2G7) in human inflammation and coronary atherosclerosis.

Background—Lp-PLA, has emerged as a potential therapeutic target in coronary heart disease
(CHD). Data supporting Lp-PLA, are indirect and confounded by species differences; whether
Lp-PLA, is causal in CHD remains in question.

Methods—We examined inflammatory regulation of Lp-PLA, during experimental endotoxemia
in human, probed the source of Lp-PLA, in human leukocytes under inflammatory conditions, and
assessed the relationship of variation in PLA2G7, the gene encoding Lp-PLA,, with coronary
artery calcification (CAC).

Results—In contrast to circulating TNFa and CRP, blood and monocyte Lp-PLA; mRNA
decreased transiently, and plasma Lp-PLA, mass declined modestly during endotoxemia. In vitro,
Lp-PLA, expression increased dramatically during human monocyte to macrophage
differentiation and further in inflammatory macrophages and foam like-cells. Despite only a
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marginal association of SNPs in PLA2G7 with Lp-PLA; activity or mass, numerous PLA2G7
SNPs were associated with CAC. In contrast, several SNPs in CRP were significantly associated
with plasma CRP levels but had no relation with CAC.

Conclusions—Circulating Lp-PLA, did not increase during acute phase response in human,
while inflammatory macrophages and foam cells, but not circulating monocytes, are major
leukocyte sources of Lp-PLA,. Common genetic variation in PLA2G7 is associated with sub-
clinical coronary atherosclerosis. These data link Lp-PLA, to atherosclerosis in human while
highlighting the challenge in using circulating Lp-PLA, as a biomarker of Lp-PLA, actions in the
vasculature.
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INTRODUCTION

Lipoprotein-associated phospholipase A2 (Lp-PLA») has emerged as a potential therapeutic
target in coronary heart disease (CHD) and phase I11 clinical trials are underway. Supporting
evidence includes apparent atherogenic biochemical properties; Lp-PLA, cleaves oxidized
phosphatidylcholine on modified LDL producing inflammatory lysophosphatidylcholine and
oxidized non-esterified fatty acids (1,2). In addition, enzymatic expression of Lp-PLA; is
up-regulated in human atherosclerosis (3), while circulating levels are associated with
incident CHD (4). Promising proof-of-principle pre-clinical and clinical trials have been
carried out (5-7). However, whether Lp-PLA is causal and whether its inhibition will
prevent CHD events remain open questions.

Data for Lp-PLA; in human atherosclerosis remain indirect and confounded by species
differences in physiology and actions. Lp-PLA; circulates in blood, bound to lipoproteins
which modulate its actions. In rodents Lp-PLA; is carried mostly on high-density
lipoprotein (HDL) particles whereas in human the enzyme is bound to low-density
lipoprotein (LDL) particles. Thus, confounding may be particularly marked for plasma Lp-
PLA, relative to other inflammatory markers, as regulation of atherogenic lipoproteins is a
major influence on circulating Lp-PLA; levels and activity (8). Indeed, whether circulating
Lp-PLA, is associated with CHD beyond a complete assessment of atherogenic lipoproteins
remains uncertain (9).

Avrterial Lp-PLA, biosynthesis by macrophages and foam cells, rather than circulating levels
or activity, may determine its atherogenicity (10). Lp-PLA, expression within the necrotic
core and surrounding macrophages of vulnerable and ruptured plaques is increased
compared with less-advanced lesions (11), suggesting a potential role in promoting plaque
instability. The extent to which human Lp-PLA, is regulated in circulation by systemic
inflammation, however, versus locally controlled in arterial macrophage-foam cells is
uncertain. Further, lesion biosynthesis is difficult to measure in human limiting our ability to
monitor Lp-PLA, activity in disease-relevant tissue and to assess vascular efficacy of
pharmacological inhibition.

In this report, we examined inflammatory regulation of circulating Lp-PLA, during
experimental endotoxemia in human, probed the source of Lp-PLA, in human leukocytes
under inflammatory conditions, and determined the relationship of genetic variation in
phospholipase A2, group VII (PLA2G7), the gene encoding Lp-PLA,, to coronary artery
calcification (CAC) as well as plasma levels of Lp-PLA, mass and activity. We found that,
unlike blood tumor necrosis factor alpha (TNFa) and C-reactive protein (CRP), circulating
Lp-PLA, did not increase during the acute phase response in human, that inflammatory
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macrophages and foam cells, but not circulating or ex vivo monocytes, are primary leukocyte
sources of Lp-PLA,, and that common genetic variation in PLA2G7 is associated with sub-
clinical coronary atherosclerosis. These data link Lp-PLA, to atherosclerosis in human
while providing a human physiological context for the difficulty in using circulating Lp-
PLA, as a biomarker of disease or pharmacological efficacy in atherosclerosis.

Clinical Studies

Human endotoxemia—Healthy volunteers on no medications and no significant medical
history (N=32, 50% female; mean age 25.7+3.90) were studied as described previously
(12,13) and in the supplement. Serial blood samples were collected before and after
intravenous bolus infusion of 3 ng/kg US standard reference endotoxin and were prepared
for plasma, whole-blood RNA and monocyte RNA (12).

Genetic association studies—The Penn Coronary Artery Calcification (PennCAC)
resource included European-ancestry subjects recruited to three separate studies at U.Penn:
the Study of Inherited Risk of Coronary Atherosclerosis (SIRCA; N=799), the Penn
Diabetes Heart Study (PDHS; N=782), and the Philadelphia Area Metabolic Syndrome
Network (PAMSyYN; N=480). These studies are described in detail previously (14,15) and in
the supplement. In each study, subjects with clinical atherosclerotic CVD were excluded.
PLA2G7 SNPs were genotyped in all three studies. Plasma Lp-PLA, mass and activity data
were available in SIRCA and PDHS. Global CAC scores were determined by electron beam
tomography (Imatron, San Francisco, CA) according to the method of Agatston(16). For all
human studies described, the University of Pennsylvania (U.Penn) Institutional Review
Board (IRB) approved each study and written informed consent was provided by all
participants.

Laboratory Methods

Human monocyte, macrophage and foam cell studies—Human moncoyte
isolation, macrophage (“M1” and “M2” phenotype) differentiation (17) and “foam cell”
preparation was performed as described (12) and in supplement. Experiments were
performed in batches using freshly-isolated monocytes, macrophages and foam cells derived
from the same human volunteer.

Plasma LpPLAZ2, inflammatory and metabolic markers—Plasma and cell-media
levels of Lp-PLA, mass and activity, TNFa, and CRP, as well as lipid and biochemical
markers were measured as described (13,14,18) and in supplement.

Real-time quantitative PCR and expression quantitative trait locus analysis—
Whole-blood, isolated circulating monocyte, and human cultured monocyte, macrophage
and foam cell MRNA was subjected to quantitative PCR (qPCR) using primers and probes
(Applied Biosystems 7300 Real-Time PCR System, Foster City, CA) as described (12) for
measurement of Lp-PLA,, TNFa, and B-actin mRNA (supplement). The relative
quantitation 2~(AACY method was used to determine fold-change from baseline (19).
Exploratory expression Quantitative Trait Locus (eQTL) analysis is described in the
supplement.

Genotyping—As described previously (20) and in the supplement, PennCAC participants
were genotyped using the ITMAT Broad Care (IBC) CVD candidate gene array, which
surveys ~50,000 SNPs in ~2,000 candidate genes (21). SNP data for PLA2G7 (N=19) and
CRP (N=16) were selected for current analysis.
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Statistical analysis

RESULTS

The effect of endotoxemia on plasma Lp-PLA, mass and activity, TNFa, and CRP as well
as whole-blood and monocyte mMRNA was tested by repeated-measures analysis of variance
(ANOVA). ANOVA was applied also to in vitro cell data. Post hoc t-tests were used to
compare specific time-points and treatments. We observed heterogeneity of variance in
several variables following LPS challenge, which was to be expected given the known
variation in responses to endotoxin. We tested for homogeneity of variance using Levene’s
test, and in cases where the assumption of homogeneity of variance was violated, we
confirmed whether the group differences were significant using Tamhane’s post-hoc test.

In PennCAC, CAC scores were transformed by the natural log after adding 1 (Ln(CAC+1)),
to correct for skewed distribution. This variable was used as the outcome in a linear
regression model, with PLA2G7 and CRP SNPs, adjusting for age, gender and age-gender
interaction. For linear regression analysis of SNP associations with plasma proteins, Lp-
PLA, mass and activity were normally distributed, and therefore used as outcomes while
CRP was log-transformed. The linear regression model included adjustments for age,
gender, and smoking. Analysis used PLINK v 1.06. Analyses of CAC and plasma proteins
were performed separately in each sample and then subjected to meta-analysis. Meta-
analysis applied a weighted Z-score method using METAL(22)
(http://www.sph.umich.edu/csg/abecasis/Metal) as we applied in (23), described in
supplement. In analysis of SNP data, we corrected for the number of independent tests
within each gene (10 tests for 19 PLA2G7 SNPs, unadjusted P value threshold of 0.005, and
15 tests for 15 CRP SNPs, unadjusted P value threshold of 0.0033) using the method of
Nyholt (24).

Lp-PLA; is not induced in a human model of acute phase response

As we described (13,25) endotoxemia produced an acute, febrile illness associated with a
marked, transient induction of plasma TNFa (P <0.001), followed by a delayed ~100-fold
induction of plasma CRP at 24 hours (P<0.001) (Figure 1A). In contrast, plasma Lp-PLA,
mass and activity did not increase following LPS (Figure 1B). Indeed, levels of Lp-PLA,
mass tended to decline (by 18% at 6hours, P<0.01). The mMRNA response to LPS in whole-
blood for TNFa (Figure 1C) and Lp-PLA, (Figure 1D) as well as in circulating monocytes
for TNFo (Figure 1E) and Lp-PLA, (Figure 1F) was similar to that of plasma proteins. The
MRNA levels of Lp-PLA; in circulating monocytes were low but detectable (baseline
CTs~30, varying from CTs of 28-32 post-LPS).

Lp-PLA, expression is induced in inflammatory human macrophages and foam cells

Lp-PLA, mRNA levels were low (CTs ~30) in freshly-isolated human monocytes but
increased markedly (CTs ~20) following six-days of differentiation to mature macrophages
(P<0.0001) (Figure 2A) and increased modestly during further polarization to M1
(P<0.0001) but not M2 macrophages (Figure 2B). Lp-PLAZ2 protein mass also was induced
during differentiation to macrophages, with increases in both the cell-associated protein
(P<0.0001) and the secreted protein (P=0.0004) (Figure 2C). Following loading of human
monocyte-derived macrophages with acetylated LDL-C for 48hrs, cholesterol ester (128 vs.
0.6 ug CE/mg protein) and total cholesterol (422 vs. 316 ug chol/mg protein) were
significantly higher in loaded versus unloaded cells consistent with findings for in vivo foam
cells (26). Lp-PLA, mRNA levels were significantly greater in foam cells compared with
mature macrophages (P<0.01) (Figure 3A). Similarly, cell-associated (P=0.05) and secreted
(P=0.008) Lp-PLA2 protein levels were higher in foam cells than in macrophages (Figure
3B). There was no Lp-PLA2 protein detectable in the media or acLDL used to treat cells.
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Overall, these data are consistent with lack of in vivo increase in plasma or monocyte levels
of Lp-PLA, during the acute phase and suggest that, in human atherosclerosis, Lp-PLA»
may be generated by macrophages and foam cells rather than circulating leukocytes.

Exploratory interrogation of PLA2G7 SNP eQTLs for Lp-PLA, mRNA expression in
publicly-available data revealed nominal associations of several SNPs in the PLA2G7 region
with exon probe levels in PBMCs (best P=0.0059, rs12181971) and brain (best P=0.008,
rs12195701) (27), as well as skin (best P=0.021, rs16874962), fat (best P=0.019,
rs16874962) and lymphoblastoid cells (best P=0.037, rs7745519) (MuTHER twin2 study
resource (28)). These modest associations, however, were not significant after correction for
multiple testing (Supplement). Macrophage and foam cell expression datasets were not
available for testing a more atherosclerosis-relevant cell type.

Common polymorphisms in PLA2G7 are associated with coronary calcification but only
weakly with plasma Lp-PLA, mass or activity

Individually in SIRCA or PDHS samples, there were no significant associations between
PLA2G7 SNPs and Lp-PLA, mass or activity. In the combined meta-analysis, only one SNP
(rs1805017) had nominal association with Lp-PLA, mass (P=0.02; P=0.2 after Bonferroni
correction) (Table 1A). As a positive control, we performed similar analysis of plasma CRP
using common CRP SNPs. In contrast to findings for PLA2G7-Lp-PLA,, there were
significant associations between numerous CRP SNPs and plasma CRP in the SIRCA and
PDHS samples and in the overall meta-analysis (Table 1B). Nine of sixteen CRP SNPs had
nominal (P<0.05) associations with CRP levels and eight of these SNPs had significant
associations after Bonferroni correction.

Association of PLA2G7 SNPs with CAC was assessed initially in SIRCA&PAMSYN
together with follow-up in PDHS. Multiple PLA2G7 SNPs had nominal associations with
CAC in SIRCA&PAMSYN (eleven with P<0.05; lowest P<0.0001 for rs1421378).
Replication signals in PDHS were modest (strongest rs10948300 P=0.02) likely due to
limited power; however, in PDHS sixteen of nineteen SNPs had effects in the same direction
as in SIRCA/PAMSYN (x2=8.9, P=0.003). Meta-analysis of the combined sample found
several SNP associations with CAC (rs9349373, P=0.002; rs2216465, P=0.002;
rs12195701, P=0.004) that were significant after Bonferroni correction (Table 2A).
Including plasma Lp-PLA, mass or activity in the model did not attenuate the association
between PLA2G7 SNPs and CAC. These findings support recent associations of variation in
PLA2G7 with CHD (29-31).

As an expected negative control (14,32,33), we examined CRP variant associations with
CAC in the same sample and found minimal signal, with one SNP having nominal
association in SIRCA&PAMSYN (rs3093068, P=0.04); however there were no associations
in PDHS nor in combined meta-analysis.

DISCUSSION

We provide novel insight into the pathophysiology of Lp-PLA, in human. First, we show
that unlike TNFa and CRP, circulating Lp-PLA, does not increase during experimental
endotoxemia and therefore does not contribute to human acute phase response. Second, we
found that inflammatory macrophages and foam cells, but not circulating monocytes or
cultured primary monocytes, generate significant Lp-PLA,. This is consistent with the
concept that the majority of Lp-PLA, in atherosclerotic plaque is derived from local
biosynthesis by inflammatory macrophage and foam cells rather than from circulating
leukocytes. Third, we found that common variants in PLA2G7 are associated with CAC but
had limited relation to circulating Lp-PLA, mass or activity. This supports an atherogenic
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role for PLA2G7-Lp-PLA, in human that may be independent of circulating LpPLA2 mass
or activity.

Lp-PLA, does not contribute to human acute phasee response

We demonstrate that Lp-PLA; is not an acute phase protein in humans. This is in contrast to
rodent models where LPS challenge was shown to induce a rapid increase in plasma and
tissue levels of Lp-PLA, (34). This provides further evidence of fundamental differences
between humans and rodents in the physiology and action of Lp-PLA, (35). Lack of
induction in blood and circulating monocytes by endotoxemia in vivo also suggests limited,
if any, role for circulating leukocyte production of Lp-PLA2 in atherosclerosis. In contrast,
marked in vitro up-regulation in macrophages and foam cells is consistent with a specific
role for local vascular production of Lp-PLA, in atherosclerosis. While it is possible that
local macrophage Lp-PLA, production in plaque may contribute to a portion of circulating
Lp-PLA,, it is unlikely to render circulating levels useful as independent biomarkers of Lp-
PLAZ2 actions in atherosclerosis because published data show that circulating Lp-PLA2 mass
and activity do not correlate with plaque Lp-PLAZ2 in patients undergoing elective carotid
endarterectomy (36) and because there is substantial confounding of plasma Lp-PLA2 by
circulating lipoproteins regardless of tissue source. Overall, these data suggest that levels of
Lp-PLA, mRNA and protein in blood may be poor surrogates of PLA2G7 actions in arterial
plaque.

Pro-inflammatory macrophages and foam cells, but not monocytes, generate significant

Lp-PLA,

We found that Lp-PLA, expression was markedly increased during the differentiation of
monocytes to macrophages, and further induced in vitro in “foam cell”-like macrophages.
This is consistent with constitutive expression and activity in inflammatory macrophages
(37) and foam cells in atherosclerosis. Indeed, Lp-PLA, expression is increased in
atherosclerotic lesions in humans (10). In this environment, secreted Lp-PLA, can hydrolyze
oxidized phospholipids and fatty acids on atherogenic lipoproteins, generating reactive lipid
mediators thought to promote plaque instability. Inhibition of Lp-PLA, suppressed oxidized-
LDL-induced macrophage apoptosis (38), a feature of inflammatory plaque. Further, in a
porcine model of complex atherosclerosis, suppression of Lp-PLA, retarded atherosclerosis
progression and decreased plaque inflammation, necrosis and fibrous cap erosion (7).
Compared to placebo, short-term Lp-PLA; inhibition in human also reduced several markers
of plaque inflammation in carotid lesions examined ex vivo (5,6). Overall, these data provide
indirect evidence for atherogenic actions of Lp-PLA, in vascular lesions. Indeed, Lp-PLA,
inhibition is currently being tested in large phase-111 clinical trials of CHD in high risk
patients (NCT0100072, clinicaltrials.gov).

Genetic variation in PLA2G7 may relate to CHD independent of circulating Lp-PLA,

Several epidemiological studies revealed an association of higher plasma Lp-PLA; mass and
activity levels with risk of CHD (9,39-41). Meta-analyses support a modest CHD
relationship independent of traditional risk factors and plasma CRP (39,42,43). Published
studies, however, may underestimate the degree of confounding because of incomplete
measurement and control for all atherogenic lipoproteins (9). In circulation, Lp-PLA,
associates with both apoB lipoproteins and HDL with the majority found on LDL particles.
Since Lp-PLA; protein and activity are closely linked to circulating apoB lipoproteins
(35,44), it is not surprising that genetic factors (e.g. APOC1, PSRC1, ZNF259) that regulate
plasma apoB lipoproteins are also associated with plasma Lp-PLA, (45). Parenthetically, we
found modest association of lipid-related genes (e.g., LRP2, LPL, APOA2) with plasma Lp-
PLA; likely reflecting this indirect post-translational influence (Supplemental Table S1A
and B). Interpretation of studies of plasma Lp-PLA, in CHD is challenging partly because
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circulating lipoproteins may grossly confound the association of plasma Lp-PLA, with CHD
(8) and further because lesion macrophage production may be more relevant to the disease
than circulating protein.

While we failed to detect significant association between plasma Lp-PLA, and common
SNPs in PLA2G7, the same PLA2G7 variants were associated with CAC within our study
samples. Our preliminary exploration also revealed only nominal associations of PLA2G7
SNPs with Lp-PLA, mRNA levels in multiple cells and tissues. These eQTL findings
should be interpreted cautiously because of limited power, relatively low levels of Lp-PLA,
expression in tested cells, and (unlike CRP) well-characterized cis-acting SNPs for PLA2G7
are lacking. Further, appropriately powered studies are needed to determine whether
PLA2G7 SNPs are related to expression of Lp-PLA, in inflammatory macrophages and
foam cells, sources that may be most relevant to atherosclerosis. However, our data suggest
caution in using circulating leukocyte Lp-PLA, mRNA levels as surrogates for effects of
PLA2G7 variation on arterial pathology. Overall, our findings support the concept that
PLA2G7 may relate to atherosclerosis independent of circulating Lp-PLA, mRNA and
protein.

Published studies of PLA2G7 in CHD are conflicting. In a meta-analysis of individuals of
European ancestry, PLA2G7 SNPs did not associate with risk of CHD (N~5,000) (41),
although there was a relationship between Lp-PLA, activity and CHD, and between
PLA2G7 SNPs and Lp-PLA; activity. However in a meta-analysis of over 13,000 Asians, a
common non-synonymous PLA2G7 SNP showed evidence of association with CHD (30).
Additional non-synonymous SNPs have been associated with carotid plaque in Japanese
(31) and recently a loss-of-function variant in PLA2G7 was shown to protect against CHD in
Koreans (29). Due to the absence in Caucasian samples of the functional PLA2G7 SNP
found in Asians (rs76863441 or V279F), we were not able to evaluate the effect of this
functional variant in our samples. However, common variation in PLA2G7 is well covered
on the IBC array platform (tag SNP-coverage r2>0.8 for alleles with MAF>2% in the gene
+5KB). (21). Therefore, we are confident that we achieved excellent coverage of common
variation in this gene region in Caucasians. While ethnic difference in the presence of allelic
variation may exist,, most published data suggest a relationship of PLA2G7 with clinical
CHD supporting our CAC findings.

Findings for CRP in our samples are consistent with published data and contrast with that
observed for PLA2G7-Lp-PLA,. Thus, while a number of SNPs in CRP had strong
associations with circulating CRP levels, there was no relationship between these same
SNPs and CAC. These data are in line with hallmark Mendelian randomization studies of
clinical CHD outcomes (32,33) and support a model of confounding or reverse causation for
CRP associations with CAC and CHD.

Limitations of the present study, and future outlook

Our study has several limitations. First, our studies are correlative and do not define
causality. We have not studied loss-of-function or gain-of-function variants in PLA2G7 for
their relation to CAC or CHD and therefore cannot infer Lp-PLAZ2 directional actions in
atherosclerosis. However, expression data in inflammatory macrophages and foam cells
coupled to preliminary studies of Lp-PLA; inhibition in human atherosclerosis support an
atherogenic role for human PLA2G7. Second, recent studies have shown stronger
associations of PLA2G7 with circulating Lp-PLA, measures than in our sample. This may
relate to our smaller sample size, heterogeneity in the SIRCA and PDHS study samples, or
differences in Lp-PLA, assays used across studies. The PLA2G7-Lp-PLA; system,
however, may be a poor target for Mendelian randomization studies for several reasons
including heterogeneous environmental and genetic influences on circulating levels,
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PLA2G7 actions in atherosclerosis are likely independent of circulating Lp-PLAy, and well-
characterized cis-acting SNPs to use as instrumental variables for PLA2G7 are lacking.
Finally, although not a direct measure of coronary atherosclerosis, studies show that CAC
provides a quantitative estimate of coronary atherosclerosis (46) and is a useful predictor of
CHD events (47).

In conclusion, we have demonstrated that Lp-PLA,, in contrast to CRP, is not an acute
phase protein in humans. Lp-PLA> has limited expression in circulating leukocytes or
unstimulated monocytes ex vivo but is induced during differentiation to macrophages and in
foam cells. Thus, robust biomarkers of Lp-PLA, action in atherosclerosis and of its
pharmacological modulation in vascular tissues are lacking. Common variation in PLA2G7,
but not in CRP, is related to the burden of CAC, suggesting that PLA2G7 may indeed
modulate human atherosclerosis. Our data provide support for the atherogenicity of Lp-
PLA, in human while highlighting the challenges in using plasma Lp-PLA, as a biomarker
of CHD and in determining drug-dosing and therapeutic efficacy in atherosclerosis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Human endotoxemia does not induce circulating Lp-PLA, protein or leukocyte Lp-
PLA> mRNA in vivo

Endotoxemia (3ng/Kg LPS intravenously) markedly increased plasma levels of (A) TNFa
and CRP (P<0.001) but not (B) Lp-PLA, mass or activity which declined transiently
(P<0.01). Following LPS, whole-blood (C) TNFa mRNA was markedly induced but (D)
Lp-PLA, mRNA is not. Similarly, LPS increased circulating monocyte mRNA levels of (E)
TNFo but not (F) Lp-PLA,.
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Lp-PLA,
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Figure 2. Lp-PLA> mRNA and protein increase during differentiation of human monocytes to
macrophages in vitro

Lp-PLA, mRNA levels increased markedly during differentiation from monocytes to mature
macrophages (P<0.0001) (A) and increased modestly during further polarization to M1
macrophages (P<0.001) but fell during M2-polarization (P<0.001) (B). Lp-PLAZ2 protein
mass also increased significantly during differentiation to macrophages, with increases in
both the cell-associated protein (P<0.0001) and the secreted protein (P=0.0004) T (C).
(ANOVA and Bonferroni post-hoc tests).

T As monocytes were grown in suspension, protein levels were measured in monocyte cell
lysates but could not be measured in media.
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Figure 3. Lp-PLA> mRNA and protein are upregulated in human foam-like cells in vitro
Lp-PLA, mRNA was significantly greater (P<0.01) in foam cells than in mature
macrophages (A). Similarly, cell-associated (P=0.05) and secreted (P=0.008) Lp-PLA2
protein levels were higher in foam cells than in macrophages T (B). (ANOVA and
Bonferroni post-hoc tests). T As monocytes were grown in suspension, protein levels were
measured in monocyte cell lysates but could not be measured in media.
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