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Abstract

Precise determination of the baseline levels of mass spectra is critical for identification and
quantification of analytes. Herein, we present a practical approach for determination of the
baselines of mass spectra acquired under differential conditions. The baseline determined by this
approach was the sum of baseline drift and noise level. The baseline drift was determined by
averaging a number of lowest ion intensities. The noise level was determined based on the fact
that an accelerated intensity change exists from noise to signal. This change was best revealed by
the established accumulative layer thickness curve that was derived from the thicknesses of
individual deducted layers. Deductions were performed sequentially layer by layer each of which
has a thickness of averaged lowest ion intensities from existing spectral data. The layer where the
accelerated intensity change occurred was defined as a transition layer which was determined from
the polynomial regression in the sixth order of the accumulative layer thickness curve followed by
resolving the roots of its fourth derivative. We validated the presence of this transition layer
through determination of its convergence from various accumulative layer thickness curves
generated by varying either the ending or the fineness of the sequential layer deductions. This
simple, practical, program-based baseline determination approach should greatly increase the
accuracy and consistency of identification and quantification by mass spectrometry, and facilitate
the automation of data processing, thereby increasing the power of any high throughput
methodology in general and of shotgun lipidomics in particular.
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Introduction

Determination of a baseline is apparently critical for identification of analytes by mass
spectrometry through properly discriminating noises and signals. It is also essential for
accurate quantification of the mass content of each analyte through correcting the baseline
contribution to the individual peak intensities of a mass spectrum, particularly when a
shotgun lipidomics approach is employed where quantification of analytes is performed
through direct comparison of their ion intensities with that of selected internal standard(s)
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[1] and when the species is in low abundance (e.g., signal/noise < 10). Baseline correction is
also important for precise display of mass spectra, for example, in tissue mapping [2].

Two major factors contribute to the values of a baseline of a mass spectrum, i.e., detector
drift (i.e., baseline drift) and chemical noise (i.e., noise level). The baseline drift represents a
shift of a mass spectrum from the origin (i.e., zero) and can be tuned to a linear, minimal
increase with increase in m/z for a mass spectrometer with a quadrupole as an analyzer. The
chemical noise, the actual noise level of a spectrum after deduction of the baseline drift, is
composed of background signals resulting from residual chemicals. In particular, inorganic
salts presented in the sample matrix are largely responsible for this noise.

Many different approaches, based on a variety of algorithms, have previously been
developed and been applied for different purposes [2-4]. However, most of these approaches
have been limited to their particular utilities (e.g., correction for matrix-induced baseline in
matrix-assisted laser desorption/ionization mass spectrometry; correction for mobile phase
components-contributed baseline; etc.). Herein, we present a simple, practical approach for a
general determination of the baseline of a mass spectrum. This approach includes the
corrections for both the baseline drift and the noise level of a mass spectrum. The principles
of this practical approach are discussed and the procedures to determine the baseline are
described in detail. We compared many of the baselines determined using either this
program-based approach or a manual approach and found that the baselines determined by
these two approaches were very consistent. We specifically pointed out that although the
new approach was derived largely from the spectra acquired by the Xcalibur operation
system, it could be readily modified for the application for other operation systems as we
practiced for the mass spectra acquired by ABI 4800 mass analyzer. We believe that the
development of this simple, practical, program-based approach should greatly facilitate the
automation and increase the power of high throughput methodology.

Experimental

Determination of the Baseline Drift of a Mass Spectrum

In theory, the baseline drift of a single spectral peak acquired in the profile mode can be
corrected by deduction of the lowest intensity of its data points. The baseline drift of a mass
spectrum in a certain mass range can thus be corrected by averaging the lowest intensities of
individual peaks of the mass spectrum (Scheme 1A). In practice, we first determined the
number of peaks (N) of the mass spectrum and then averaged the N lowest intensities from
the spectral data. This averaged intensity was defined as the baseline drift of the spectrum
and deducted from the spectral data (Scheme 1B). The detailed procedures were described
below.

Each of the mass spectra processed in the current work were acquired in the profile mode by
the Xcalibur operation system. By using the Xcalibur Qual Browser, each spectrum was
averaged from the acquired individual scans and smoothed with a Gaussian function. A full
list of the spectral data points within a user-specified mass range was generated in the Qual
Browser with the display option specified for “All peaks”. In this data list, the m/z difference
between every two neighboring data points was one tenth of the Peak Width (FWHM). For
example, when a unit resolution spectrum was acquired at a Peak Width setting of 0.7 Th [5,
6], the m/z difference between two neighboring data points was 0.07 Th. Each single peak in
a unit resolution spectrum was then composed of 14-15 data points (i.e., 1/0.07 = 14.3). Ifa
spectrum was acquired at a Peak Width setting of 0.35 Th, the m/z difference between two
neighboring data points was 0.035 Th and the spectrum was a half unit resolution spectrum
each peak of which occupied a half mass unit and was also composed of 14-15 data points
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(i.e., 0.5/0.035 = 14.3). Accordingly, we determined the number of peaks of a mass
spectrum from the number of raw spectral data points by the following equation:

Number of peaks (N) of a spectrum =The total number of raw data points of the spectrum/14.3

=The total number of raw data points of the spectrum * 0%

For example, a unit resolution spectrum of a full list of 1430 data points contained 100 peaks
(i.e., N =1430 * 0.07 = 100). If, within the same mass range, a half unit resolution spectrum
was acquired, a full list of 2860 spectral data points would be generated because the mass
difference (i.e., 0.035) between every two neighboring data points was half of that from unit
resolution spectrum. The number of peaks of the spectrum would therefore be doubled (i.e.,
N = 2860 * 0.07 = 200).

Next, we sorted the data in an ascending order of the intensities, and then averaged the N
lowest intensity data. This averaged intensity was defined as the baseline drift of the mass
spectrum in the mass region. For example, the baseline drift of the unit mass spectrum
exemplified above was obtained by averaging the 100 lowest intensities after sorting the
intensity data while the baseline drift of the exemplified half unit mass spectrum was
obtained by averaging the 200 lowest intensities. Finally, the baseline drift was subtracted
from each of the raw spectral intensity data points. Those data points that had intensities of
either zero or negative after the baseline drift deduction were discarded. The remaining data
points were re-sorted in an m/z order and termed as Data Set 0 which represented the
baseline drift-deducted data set. A mass spectrum reconstructed from the baseline drift-
deducted data set (i.e., Data Set 0) had baseline drift deducted but still had background noise
present (Figures S1 to S4).

Determination of the Noise Level of a Mass Spectrum

The baseline drift-deducted data points (i.e., Data Set 0) of a mass spectrum were next used
for determination of the noise level of the spectrum. In theory, the same procedure as the
baseline drift deduction described above could be repeated on Data Set 0, which in turn
generates a new data set (i.e., Data Set 1). If this type of deduction procedure is repeated
over and over, many Data Sets could be generated from their previous ones (e.g., Data Set
M from Data Set M-1) where each Data Set has less data points compared to its previous
one. The mass spectrum reconstructed from Data Set 1 could be imagined as a spectrum
with a thin “layer” wiped off from the bottom of the baseline drift-deducted spectrum
(reconstructed from Data Set 0) while the thickness of the “layer” is the average of N
(calculated by Equation 1) lowest intensities from Data Set 0. The mass spectrum
reconstructed by Data Set M could be imagined as a spectrum with a “layer” wiped off from
the bottom of the spectrum reconstructed from Data Set M-1 while the thickness of the
“layer” is the average of N lowest intensities from Data Set M-1.

The thickness of each “layer” may vary. A “layer” wiped off to generate a very early Data
Set (e.g., Data Set 1) from its previous Data Set (i.e., Data Set 0) is usually thin, while the
“layer” wiped off to generate a later Data Set from its previous Data Set could be much
thicker. One of the reasons is that each peak contains the same number of data points (i.e.,
14-15) equally distributed in m/z dimension (i.e., x-axis), thus the higher the intensity of the
peak, the bigger the intensity difference between its two neighboring data points (Scheme
1A). Since the spectral peaks are Gaussian smoothed and of Gaussian distribution, this
intensity difference increases with the data point moving towards the top of the peak in
comparison to the difference between two points near the bottom of the peak (Scheme 1A).
Another reason is that the same number (N, calculated by Equation 1) of lowest intensities is
averaged from each Data Set to generate next Data Set. Accordingly, the very early layer by
layer deductions would not lead to a significantly-varied thickness of each layer since the N
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lowest intensities in each Data Set are almost exclusively from the low intensity peaks (i.e.,
noise peaks) and the intensity differences between neighboring data points of the low
intensity peaks are small. When low intense peaks are wiped off after a few times of
deduction, the data points from high intensity peaks (or signals) are then picked up in the N
lowest intensities whose average is the layer thickness for deduction from the current Data
Set to generate next Data Set. Therefore, a significant increase in layer thickness would
occur at this point. We defined this layer as the Transition Layer. The sum of the deducted
intensities (or the layer thicknesses) of individual layers from the first layer to the transition
layer was designated as the noise level of the spectrum, which was deducted from Data Set
0 to obtain the spectrum with both baseline drift and noise corrected.

In reality, when working on complex mass spectra, searching for the transition layer might
not be as straightforward as described above. We performed the following steps to
practically search for this transition layer from the baseline drift-deducted spectral data
points (i.e., Data Set 0).

1. Calculation of the thickness of a layer

To calculate the thickness of each layer, we repeated the steps for determining the baseline
drift described above on every new Data Set except that the number (N) of lowest intensity
data points was replaced with a new number (n) which was calculated by the following
equation:

n=The total number of raw data points of a spectrum * Step Length )

where the Step Length determined how finely each layer deduction would be processed and
is defined by the user. This number (n) could be different from the number (N). If a step
length of 0.07 was defined, the number (n) calculated by Equation 2 was identical to the
number (N) by Equation 1. If a step length of < 0.07 was defined, a smaller number of
lowest intensity data points from the current Data Set were used for deduction to yield the
next Data Set. The average of a smaller number (e.g., p) of lowest intensity data points (e.g.,
intensity 1, intensity 2, ..., intensity p in an ascending order) was smaller than the average of
a bigger number (e.g., q, g > p) of lowest intensity data points (e.g., intensity 1, intensity

2, ..., intensity p, intensity p+1, ..., intensity q in an ascending order). Accordingly, this
represented a finer sequential layer deduction because more layers of deduction would
necessarily be performed to wipe off the entire spectral data points if a smaller averaged
intensity was used for deduction of each layer. In contrast, the defined step length of > 0.07
led to a rougher layer deduction represented by a bigger averaged intensity for deduction of
each layer and less layers of deduction for the entire spectrum. The significance of varying
the number (n) for deduction of each layer was discussed in detail in the Discussion section.

In practice, we first sorted the data points from the baseline drift deducted spectral data
(Data Set 0) in the order of ascending intensity and averaged the n lowest intensity data
points (n was calculated by Equation 2 with a user-defined Step Length). Then we deducted
this averaged intensity from the intensities of individual data points in Data Set 0 and
discarded the data points whose intensities were zero or negative after deduction. The
remaining data points yielded Data Set 1. The mass spectrum reconstructed from the newly
generated Data Set 1 could be viewed as the baseline drift-deducted spectrum (reconstructed
from Data Set 0) was wiped a layer off from the bottom of the spectrum whose thickness
was the average of the n lowest intensities from Data Set 0. This averaged intensity was
designated as the Thickness of Layer 1 (TL,). This procedure was repeated to calculate the
thicknesses of sequential layers. In general, the calculation of the Thickness of Layer i (TL;)
could be represented by the following equation:

J Am Soc Mass Spectrom. Author manuscript; available in PMC 2012 May 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Yang etal.

Page 5

TL;=Average (Intensity 1,Intensity 2,...,Intensity n of Data Set i—1) (3)

where TL; is the Thickness of Layer i, and Intensity 1, Intensity 2, ..., Intensity n are the n
lowest intensities of Data Set i-1. The deduction of TL; from the data points of Data Set i-1
yielded Data Set i. For example, Data Set 2 was generated from Data Set 1 by wiping from
Data Set 1 one layer off with a thickness of TL, which was calculated from averaging the n
lowest intensities of Data Set 1. The procedure was repeated until the number of the
remaining spectral data points was smaller than n. A series of the thicknesses of layers: TL;,
TL,, ..., TL, were generated accordingly where TL, was the thickness of the last Layer m,
whose deduction generated the last Data Set m from Data Set m-1 while one-step further
deduction on Data Set m would have generated a Data Set that contained less than n
remaining spectral data points.

2. Generation of the accumulative thickness of a layer

In reality, it was difficult to directly determine the transition layer from the generated series
of the layer thicknesses (i.e., TLq, TLy, ..., TLyy, for layer 1, layer 2, ..., and last layer m,
respectively). One of the reasons was that the curve of layer thickness (TL) vs. layer mostly
had irregular trends for which no regression method worked consistently for different mass
spectra with satisfactory correlation coefficients. To resolve this issue, we derived the
Accumulative Thickness of a Layer (ATL) from the individual Thickness of the Layer
(TL) by the following equation:

ATL;= Z TL, @)

where TL; was the Thickness of Layer i (1 <i < m) and was calculated by Equation 3, and
ATL; was the Accumulative Thickness of Layer i. The curve of the Accumulative Thickness
of Layer (ATL) vs. layer was termed as the accumulative layer thickness curve, which was
used for determining the transition layer in the following steps.

3. Automated determination of the transition layer

Next, we fitted the accumulative layer thickness curve by regression to determine the
transition layer. The first point (1, ATL,) of the curve was not included for the curve fitting
because the thickness of the very first layer (i.e, TL; or ATL4) was lack of stability and the
first layer impossible to be the transition layer. We determined the transition layer from the
accumulative layer thickness curve by the following procedures:

i. Fitted these accumulative layer thickness data points by polynomial regression in
the order of 6 by using MATLAB function polyval as follows:

y=a+bx+cx2+dx3 +ex*t+x’ +gx6 (5)

where “x” was the layer number (1 < x < m-1); “y” was the accumulative layer
thickness (ATL) of the layer x, which is calculated from Equation 4; a, b, ..., and g
were the regression coefficients. To specify, the first data point (X1, y1) for the
regression is the second point (2, ATL,) of the original accumulative layer
thickness curve due to elimination of the first layer for regression, and the last data
point (Xm.1, Ym-1) is the last point (m, ATL,,) of the original curve.

ii. Calculated the derivatives of the obtained polynomial regression up to the fourth
derivative. The fourth derivative was as follows:
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Y =24e+120fx+360gx> )

where e, f and g were regression coefficients from Equation 5.

iii. Found zeros of y’”’” by solving the following single-variable quadratic equation by
using MATLAB function polyder:

y=0 or 15gx>+5fx+e=0 @)

where e, f and g were regression coefficients from Equation 5. There were two
possibilities for the roots of Equation 7: the two roots were real numbers x; and X,
when 5f2 — 12eg > 0 or the two roots were complex numbers when 52 — 12eg < 0.
When two real-number roots were obtained and x; # X, the bigger number was
taken as the transition layer and the smaller number was discarded. When two
complex-number roots were obtained, the algorithm redid steps (i), (ii) and (iii)
with the narrowed accumulative layer thickness curves by eliminating the last data
point until real number roots were found from Equation 7.

4. Determination of the accumulative layer thickness corresponding to the determined
transition layer

After the transition layer (e.g., the x; from step 3) was determined, we calculated the
accumulative layer thickness y; corresponding to x;. If x; was an integer number, the y, from
the data point (x,, y|) of the accumulative layer thickness curve was then taken as the
accumulative layer thickness corresponding to the transition layer x,. If x; was not an integer
number, the “y”s from the two adjacent data points that were neighbors to the determined
transition layer x (i.e., data points (Xs, Ys) and (Xs+1, Ys+1) Where Xg < X| < Xg+1) Were used to
calculate the y; corresponding to x; by the following equation:

Vi=Ys " (Ker1 — X)) +¥sa1 © (X — Xs) ®)

where X is the determined transition layer; y, is the accumulative layer thickness
corresponding to x,; X5 and Xs4+1 are the two adjacent layers from the accumulative layer
thickness curve that meet X < X; < Xq+1; Vs and yg41 are accumulative layer thicknesses
corresponding to Xs and Xg+1, respectively.

5. Self-check and determination of the spectral noise level

In theory, the determined accumulative layer thickness y, corresponding to the determined
transition layer x; could be considered as the noise level of the spectrum. In practice, to self
check the stability of the determined transition layer and eliminate any potential uncertainty
from single time polynomial regression on selected data points, we determined more
transition layers from narrower regions of the accumulative layer thickness curve.
Specifically, we first repeated the procedures (i) (ii) and (iii) of Step 3 to individually
determine the transition layers (e.g., X%, x,2, ...) from a series of narrowed regions of the
accumulative layer thickness curve (i.e., x=1tom-2,x =1tom-3, ..., and x = 1 to 7) which
were yielded by eliminating the last data point of the curve sequentially until minimal
number (i.e., seven) of data required for determination of the regression coefficients by
Equation 5 reached. Then, the accumulative layer thicknesses y;1, y|2, ..., corresponding to
the newly determined transition layers x;1, x2, ..., respectively, were determined by
repeating Step 4. We discarded the values from the determined y;1, y}2, ... that were either
larger than y; or less than y; * 70% and averaged the rest of the values. This averaged
accumulative layer thickness was defined as the noise level of a mass spectrum. The overall
baseline of a mass spectrum was corrected by the sum of the determined baseline drift and
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the determined noise level of the spectrum. Meanwhile, the signal-to-noise ratio of an ion
peak can be calculated as:

S/N =the signal of an ion peak/the noise level of the spectrum
=baseline—corrected peak intensity/the noise level of the spectrum
= (ion peak intensity — the overall baseline) /the noise level of the spectrum

Results and Discussion

Correction for Baseline Drift of a Mass Spectrum

The baseline drift of a mass spectrum is a constant shift of the peak intensities from their
original values to the apparently determined values and consistently occurs for the entire
spectrum. This drift is different from the noise background of the spectrum. The baseline
drift of a mass spectrum could be either mass independent or mass dependent. However,
when the mass range of interest is narrow, the baseline drift usually becomes minimally
mass dependent within the mass range. In the current study, we focused on the correction of
the mass independent baseline drift of a mass spectrum. When the mass range of interest is
wide and the mass dependence of baseline drift has to be addressed, one can segment the
entire widely ranged mass spectrum into a few narrowly ranged spectra [7] and then employ
the current approach to correct the baseline drift individually for each of the segmented mass
spectra.

The baseline drift of a Gaussian-smoothed single spectral peak acquired in the profile mode
can be represented by its lowest intensity which is usually the intensity from either the first
data point or the last data point of the peak. The baseline drift of a mass spectrum acquired
in the profile mode containing N Gaussian-smoothed single peaks, in theory, can be
represented by the line connecting each lowest intensity data point of each of the N single
peaks in the spectrum in the order of m/z. If the baseline drift is considered mass-
independent within the mass range, the baseline drift can be simplified by averaging the N
individual lowest intensities, each of which is the lowest intensity for one of the N peaks of
the mass spectrum. The baseline drift was determined in our approach by averaging the N
lowest intensities of the entire spectrum while the N lowest intensities were selected through
sorting the entire spectral data points in an ascending order. Therefore, among the N lowest
intensities, instead of one from each peak, more than one might come from the data points of
one peak, or none from another peak. However, the advantage of our approach for baseline
drift determination is its simplicity with practically sufficient accuracy. Its simplicity results
from the one-time sorting in an ascending order of the peak intensities that fishes out all the
N lowest intensities simultaneously from the full data list. Its sufficient accuracy is due to
that the average of a large number (N, generally in hundreds or more) of lowest intensities
can very likely represent the trend of the baseline shift of the entire spectrum (Scheme 1B).
Additional examples of the determined baseline drifts are demonstrated in the
Supplementary Materials (Figures S1-S4).

Generation of the Accumulative Layer Thickness Curve from the Baseline Drift Corrected
Mass Spectrum

Correction for noise levels was next conducted on the baseline drift-corrected mass
spectrum. An identical procedure to the baseline drift deduction but with a number of n
lowest intensities for deduction (as described in Experimental) was repeated on the baseline
drift-corrected data points (i.e., Data Set 0), which yielded Data Set 1. The spectrum
reconstructed from Data Set 1 could be visualized as a spectrum with one layer (Layer 1)
wiped off from the bottom of the baseline drift-corrected spectrum. The thickness of Layer
1, TL4, was the average of the n lowest intensities from Data Set 0. In general, Data Set i (1
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<i<m, misthe last Data Set containing > n spectral data points) were generated by
deduction of a layer (Layer i; having a thickness of TL; by Equation 3) from Data Set i-1.
When these layers (Layer 1, Layer 2, ..., Layer m) were laid along the y-axis of the
spectrum, they were unequally distributed by varied thicknesses of individual layers (TL;,
TLy, ..., TLy, respectively) (Figure 1). Only small changes existed in the thickness of the
first few deducted layers due to the dominant contribution of the low intense peaks to these
layer deductions (see Experimental) (Figures 1B and 2A). When the low intensity peaks
were just deducted completely from the Data Set, the following layer deduction then picked
the data points from the remaining high intensity peaks present in the Data Set. This would
subsequently result in a significant increase in the thickness of the layer which we defined as
the transition layer (Figure 2A).

Before the transition, the thickness of each layer did not change significantly from layer to
layer (Figure 1B) because the n lowest intensity data points in the current Data Set and in its
previous Data Set were both from low intensity peaks that had small intensity differences
between the neighboring data points (Scheme 1A). After the transition, the thickness of each
layer increased significantly from layer to layer (Figure 1A) because the n lowest intensity
data points in the current Data Set and in its previous Data Set were both from high intensity
peaks that had big intensity changes (Scheme 1A). During the transition, the n lowest
intensity data points in the current Data Set were, at least partially, from high intensity peaks
while the n lowest intensity data points in its previous Data Set were exclusively from low
intensity peaks. Therefore, the average of the n lowest intensities from the current Data Set
increased significantly compared to that from the previous Data Set at the occurrence of the
transition, and the rate of the increase at the transition should be differentiable from that
before the transition (where the increase if any would be slight) and after the transition
(where the increase would be dramatic) (Figure 2).

It was noted that the trends of these determined layer thicknesses were varied irregularly
(Inset in Figure 2A). This irregulation made the curve regression difficult while a precise
curve regression is essential to automatically locate the transition layer mathematically by an
algorithm. We found that employing an accumulative layer thickness curve yielded from the
TL; data (i.e., a curve of ATL;vs. layer i (Figure 2B), where ATL; was calculated by
Equation 4) successfully bypassed this difficulty.

Determination of the Transition Layer from the Accumulative Layer Thickness Curve

The accumulative layer thickness curve with the first layer data point eliminated was used
for the curve fitting as described in Experimental (Figure 2B, Table 1). The curve was fitted
by polynomial regression in the order of 6, by which all the examined mass spectra thus far
were well fitted. Next, the derivatives of the regression equation were performed, including
the first derivative to the fourth derivative. Among these derivatives, the first derivative
represents the rate of change of the accumulative layer thickness with layer (i.e., y’ =
d(ATL,)/dx); the second derivative represents the rate of change of the accumulative layer
thickness change rate or the acceleration of the accumulative layer thickness with layer (i.e.,
y”’ = d(y’)/dx); and the third derivative represents the rate of change of the acceleration of
the accumulative layer thickness with layer (i.e., y’’” = d(y’’)/dx). The roots of Equation 6
(i.e., the fourth derivative = 0) represent the layers that correspond to the extrema of the rate
of change of the acceleration of the accumulative layer thickness (i.e., the extrema of the
curve of y*’” vs. x). Since the fourth derivative of a sixth order polynomial is in the order of
2, Equation 6 has two roots. We observed that the lower value of the two roots generally
located within the first few layers which might indicate a type of transition of which we did
not yet know the meaning while the higher value of the two roots best represents the
transition layer.
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It should be pointed out that although the sixth order polynomial regression followed by
finding the zeros of the fourth derivative of this polynomial regression to determine the
transition layer worked best thus far among the regressions we tested, we would leave the
possibility open that the regression with any other formula to fit the curve might achieve a
similar result or even more precise determination of the transition layer.

Determination of the Noise Level of a Mass Spectrum

Since polynomial regression on experimental data points is not a mechanism based
modeling of data, it is necessary to assure that any potential uncertainty from single time
polynomial regression is eliminated and the transition layer determined from the regression
is stable. Ideally, if a regression equation that displays a precise fitting of the experimental
data points could reflect a true understanding of the relationship underlying the data, this
regression equation should be independent of the number of data points employed for the
regression. In practice, a similar regression equation would be obtained when the same
regression were performed on selected, less data points from the curve. Accordingly, we
determined the transition layers from the narrowed accumulative layer thickness curves
covering different numbers of data points from the curve, i.e., x =1tom-2,x = 1tom-3, ...,
and x = 1 to 7 (which is the minimal number of data points required for a sixth order
polynomial regression). An example was tabulated (Table 1 where m = 24).

Intriguingly, we found that the determined transition layers and noise levels were minimally
affected by reducing the number of the data points from the curve used for the regression if
the transition layer was within the employed data points (the highlighted data in Table 1).
These results indicated that the determination of the transition layer was independent of how
many data points from the accumulative layer thickness curve were used for the regression
analysis. It is important to implement these procedures to self check the stability and
improve the liability of the determined transition layer. In addition, this stability validated
the precise fitting of the accumulative layer thickness curve by the obtained polynomial
regression equation and consequently the accurate determination of the transition layer from
the regression. The accumulative layer thickness corresponding to each of the determined
transition layers was calculated by Equation 8, and those that were consistent (within 30%
deviation as described in Experimental) were averaged and designated as the noise level of
the mass spectrum. A few examples of mass spectra demonstrating the baseline drifts and
noise levels were provided in the Supplementary Materials (Figures S1-S4).

The Effects of the Step Length Setting on Determination of the Transition Layer

To further examine the stability of a determined transition layer, we generated a variety of
accumulative layer thickness curves using different step lengths varied from 0.01 to 0.4,
where the step length setting at 0.01 represents the finest process while the step length
setting at 0.4 represents the roughest process for generating the curve (Figure 3) as described
in Experimental. It is apparent that the bigger the step length is, the bigger the jump could be
from one layer to the next. It is not surprising that a big jump may either overpass the
transition layer or diminish the transition on the curve or both, which in turn may result in
inaccurate determination of the transition layer. We found that if a step length (L) employed
was in the range of > 0.15, a very short transition was present or there was no transition at
all; if the step length fell into the range of 0.04 < L < 0.15, a short, but steady transition was
present; and if the step length was < 0.04, a long transition was present (Figure 3). It should
be pointed out that a very long transition might not be beneficial since the transition might
be smoothed out. Accordingly, in practice, we employed a step length in the range of 0.04 <
L < 0.15. Specifically, we employed L = 0.07 as a default setting in the program and
routinely performed our data analysis with this step length.
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We observed that the transition layer and corresponding noise level determined from each of
the accumulative layer thickness curves generated by using step lengths in the range of 0.04
<L <0.15 were minimally varied (Table 2). This also validated the accurate determination
of the transition layer from the regression of the accumulative layer thickness curve whose
generation was independent of the step length within a certain range (i.e., 0.04 < L < 0.15)
(i.e., independent of how finely each layer deduction was processed).

Examples of Improved Reproducibility of Quantification under Varied Analyte
Concentrations with Baseline Correction

Accurate quantification requires sufficient reproducibility under various alterations on
experimental conditions (e.g., varied analyte concentrations due to differential analyte
recovery, and varied chemical residues due to differential carry-over during sample
preparation). Those alterations on experimental conditions, which are inevitable but may not
be noticeable in most cases, can affect spectral baseline. To determine the effect of baseline
correction on accurate quantification under varied analyte concentrations, we performed the
baseline correction for a series of mass spectra acquired from sequentially diluted lipid
solutions of a mouse myocardial lipid extract (Table 3 and Figure S5). The results indicate
that the absolute noise levels are reduced at higher dilution rates likely due to the decrease in
concentration of residual chemicals while the relative noise levels increase with dilution
because of the decreased S/N from the increased proportion of baseline in peak intensity
(Table 3). Importantly, it was demonstrated that the variation of the peak intensity ratio of a
lipid species vs. the selected internal standard (i.e., ratiometric comparison) is substantially
reduced with baseline correction (Table 3). This reduced variation represents improved
reproducibility and therefore more accurate quantification. For example, the peak at m/z
758.6 (as indicated with arrows in Figure S5) represents a modestly low intense ion in the
spectra. The variation of the ratio of its peak intensity relative to the internal standard at m/z
674.6 is reduced from 12.2% without baseline correction to 5.6% with baseline correction
(Table 3). To those ions in much lower abundance, it is anticipated that baseline correction
can improve the reproducibility of quantification even more dramatically due to the low S/N
ratios of the low abundance peaks. These results further validate the powerful utility of our
newly-developed baseline correction approach and clearly demonstrate the importance of
baseline correction for accurate quantification.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1.

Illustration of the baseline drift as well as intensity difference between neighboring data
points. The solid symbols in a three-peak imitated mass spectrum (Panel A) indicate the 3
least intensity points which were averaged to determine the baseline drift. The arrows
indicate the intensity differences between neighboring data points in either a low or high
intensity peak (Panel A). The broken line in a mass spectrum acquired from a lipid extract
(Panel B) indicates the determined levels of baseline drift.
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Figure 1.

Illustration of the layer thicknesses of a mass spectrum. Panel A displays a mass spectrum of
mouse myocardial lipid extract acquired by negative-ion ESI-MS as described previously [6]
and in supplementary materials. Panel B shows the amplified section of the mass spectrum
displayed in panel A and illustrates the physical meaning of the baseline drift and the
thickness of layer (TL). TLq, TLy, TLs, TL4, TLsg, TLy3 and TLy4 representatively indicate
the thickness of layer corresponding to layers 1, 2, 3, 4, 5, 23, and 24 (the last layer),
respectively.
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Representative layer thickness curve and accumulative layer thickness curve. The layer
thickness curve (Panel A) and accumulative layer thickness curve (Panel B) were derived
from the mass spectrum in Figure 1A. The closed symbols indicate the region of the
determined transition layer (12.1398, see Table 1).
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Figure 3.

The effects of the step length (L) on the generation of accumulative layer thickness curve of
a mass spectrum. Each accumulative layer thickness curve corresponding to an individual
step length (0.01 < L < 0.4) was constructed on the mass spectrum in Figure 1A as described
under the section Experimental except the layer deduction procedure was repeated until no
more spectral data points remained after deduction to generate an extended accumulative
layer thickness curve for a clear demonstration purpose. The results indicate that if a large
step length was employed (e.g., L > 0.15), a very short transition was present or there was
no transition at all; if the modest step length was used (e.g., 0.04 < L < 0.15), a short, but
stable transition was present; and if the small step length was applied (e.g., L <0.04), a long
transition was present. For clarification, only a few indicated accumulative layer thickness
curves are displayed for demonstration.
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Examples of the constancy of the determined noise levels of mass spectra for lipid analysis as varied with the
step length of the accumulative layer thickness curves

Step length Determined baseline level Determined baseline level Determined baseline level

(Example 1) (lon counts) (Example I1) (lon counts) (Example 111) (lon counts)
0.05 3527.7 1717.4 411164.1
0.06 3435.6 1622.2 404535.6
0.07 3350.6 1562.8 402887.7
0.08 3477.1 1555.6 402625.4
0.09 3358.2 1497.6 404002.9
0.10 3245.1 1542.4 401291.8
0.11 3234.3 1506.6 398201.2
0.12 3294.3 1505.9 398957.1

Mean + SEM)(ReIative 3365.4 + 38.0 (1.1%) 1563.8 + 26.2 (1.7%) 402958.2 + 1417.0 (0.4%)

error
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