
Active safety monitoring of new medical products using
electronic healthcare data: Selecting alerting rules

Joshua J. Gagne1,3, Jeremy A. Rassen1, Alexander M. Walker2,3, Robert J. Glynn1,3, and
Sebastian Schneeweiss1,3

1Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham
and Women’s Hospital and Harvard Medical School, Boston, MA
2World Health Information Science Consultants, LLC, Newton, MA
3Harvard School of Public Health, Boston, MA

Abstract
BACKGROUND—Active medical-product-safety surveillance systems are being developed to
monitor many products and outcomes simultaneously in routinely collected longitudinal electronic
healthcare data. These systems will rely on algorithms to generate alerts about potential safety
concerns.

METHODS—We compared the performance of five classes of algorithms in simulated data using
a sequential matched-cohort framework, and applied the results to two electronic healthcare
databases to replicate monitoring of cerivastatin-induced rhabdomyolysis. We generated 600,000
simulated scenarios with varying expected event frequency in the unexposed, alerting threshold,
and outcome risk in the exposed, and compared the alerting algorithms in each scenario type using
an event-based performance metric.

RESULTS—We observed substantial variation in algorithm performance across the groups of
scenarios. Relative performance varied by the event frequency and by user-defined preferences for
sensitivity versus specificity. Type I error-based statistical testing procedures achieved higher
event-based performance than other approaches in scenarios with few events, whereas statistical
process control and disproportionality measures performed relatively better with frequent events.
In the empirical data, we observed 6 cases of rhabdomyolysis among 4,294 person-years of
follow-up, with all events occurring among cerivastatin-treated patients. All selected algorithms
generated alerts before the drug was withdrawn from the market.

CONCLUSION—For active medical-product-safety monitoring in a sequential matched cohort
framework, no single algorithm performed best in all scenarios. Alerting algorithm selection
should be tailored to particular features of a product-outcome pair, including the expected event
frequencies and trade-offs between false-positive and false-negative alerting.

The Sentinel Initiative (“Sentinel”) is intended to improve the way in which the U.S. Food
and Drug Administration (FDA) assesses medical product safety, by enabling near real-time
surveillance of medical products and their outcome in routine care.1,2 “Sentinel” will
complement passive safety-monitoring systems, such as FDA’s Adverse Event Reporting
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System, by leveraging electronic healthcare data that are routinely and prospectively
collected3 and that are commonly used for drug-safety research.4,5

The main objective of active medical-product-safety monitoring is to alert stakeholders
about which product-outcome associations warrant further attention. Two broad types of
monitoring activities within electronic healthcare data can generate such alerts. Signal
detection (or “all-by-all”) activities involve mining electronic healthcare data for non-pre-
specified associations among all possible product and outcome combinations. Targeted
safety monitoring involves examining pre-specified product and outcome pairs, typically
shortly after marketing authorization and informed by pre-approval data or by knowledge of
similar compounds. FDA’s Mini-Sentinel pilot has initially focused on the latter approach,3
which FDA refers to as “signal refinement.”

Whether evaluating pre-specified or non-pre-specified outcomes, confounding and other
biases inherent in observational data threaten the validity of monitoring activities.2
However, when evaluating pre-specified outcomes, prospective medical-product monitoring
can resemble ordinary epidemiologic studies,6 enabling the use of various design and
analytic techniques to minimize false-positive and false-negative alerts due to bias.7,8

Automated implementation of these processes will enable rapid and simultaneous
monitoring of many pre-specified pairs.

In addition, automated alerting algorithms will be necessary to guide stakeholders to
particular associations on which to focus subsequent evaluation. Rules to generate
automated alerts must be both sensitive and specific, and should generate true-positive alerts
quickly to facilitate timely public-health decision-making.9 Many such rules have been
proposed for active medical-product safety monitoring.10,11 However, it is not known which
algorithms perform best when coupled with semi-automated design and analytic processes
for prospective drug-safety surveillance in electronic healthcare data.

In this study, we simulated serially accruing matched cohort data and compared the
performance of alerting algorithms from five general classes to determine which are likely to
be most useful for active medical-product monitoring in various scenarios. We then used the
simulation results to select algorithms that we applied to empirical data for monitoring of
rhabdomyolysis among patients newly treated with cerivastatin. Cerivastatin is a cholesterol-
lowering drug that was withdrawn from the US market in 2001 because of its association
with rhabdomyolysis.12 We chose this example because it is a universally recognized drug-
safety issue.

METHODS
Simulation study

Framework—We simulated data as they would accrue prospectively for newly marketed
medical products in an electronic healthcare database. We used a sequential 1:1 matched
cohort design, and simulated data-updating at fixed calendar intervals. In each of 20
sequential calendar intervals, we generated data for 1:1 matched users and nonusers of the
monitored product of interest. The sequential matched cohort approach has previously been
used in retrospective electronic healthcare data for pharmacoepidemiologic research during
the early marketing time-period.13

The matched cohort design can be deployed rapidly in electronic healthcare data7 and was
found in a simulation study to be more efficient than other approaches for safety
surveillance.14 This design can also easily accommodate semi-automated confounding
adjustment strategies that exploit the high-dimensional nature of electronic healthcare
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data.15,16 Such automated variable-selection procedures can inform the construction of
confounder summary scores, such as propensity scores17 or disease risk scores,18 on which
exposed and unexposed patients are matched to balance observed baseline confounders.

The parameters in the simulation study are summarized in a table in eAppendix A
(http://links.lww.com) and the data generating process is summarized in a flow chart in
eAppendix B (http://links.lww.com). We created 60 monitoring scenarios characterized by
15 different expected unexposed event counts {3, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 150,
300, 500, 1000} and by four acceptable relative-risk thresholds (i.e. θ = 1, 1.25, 1.5, 2). The
event counts reflected the expected total number of events among unexposed patients across
the 20 monitoring periods and ranged from extremely rare (i.e. 3) up to relatively common
adverse drug events (i.e. 1,000), with respect to the frequency of the outcomes expected to
be monitored by Sentinel-like systems. Stakeholders in active safety-monitoring systems
may use acceptable risk thresholds if they plan to act only on associations of a certain
magnitude after a thorough benefit-risk assessment. For example, stakeholders may be
interested if an oral hypoglycemic agent increases the relative risk of myocardial infarction
by 50%, but may determine a priori that a 10% increase in risk would not warrant
subsequent action.19 Thus, an alert generated for an association for which the true relative
risk was 1.10 would be a false-positive alert when θ = 1.5. For each of the 60 combinations
of event counts and thresholds, we generated 10,000 sets of 20 sequential cohorts, for a total
of 600,000 simulations.

Data generation—To simulate data for the 600,000 iterations, we first randomly selected
the baseline event risk among the unexposed, R0, from a log-normal distribution, lnN(ln[x],
0.5), where x was the median expected baseline risk, which equaled the expected event
count (e.g. 3, …, 1,000) divided by the total number of unexposed patients in the 20 cohorts.
We used a log-normal distribution so that the median expected total number of events
among the unexposed was equal to the expected event count across all scenarios, and so that
the expected total event count in any given scenario was never non-positive. We used a
variance of 0.5 to regulate the right tail of the distribution.

We then selected a true underlying log risk ratio from a skewed-normal distribution,20 with
location of -0.5, scale of 1, and shape of 5 (the resulting percentiles of the true risk ratio
[RRtrue] distribution were 10%, 0.66; 25%, 0.83; 50%, 1.19; 75%, 1.92; 90%, 3.13). We
used this distribution to reflect our prior belief that the majority of true underlying risk ratios
among scenarios to be monitored in a Sentinel-like system would be just right of unity and
asymmetrically distributed, with skewing to the right.

We multiplied R0 by RRtrue to obtain the underlying event incidence among the exposed,
R1, for a given scenario. In each of the 20 sequential cohorts, we then generated the
observed numbers of unexposed events from a binomial distribution with probability R0 and
number of trials, N, which was the number of exposed patients in the given cohort. We used
a separate binomial distribution, with probability R1 and number of trials N, to generate the
numbers of observed exposed events in each cohort.

We set the numbers of exposed and unexposed patients (N) to 500 in the first monitoring
period and increased N linearly across the 20 periods (to 10,000 in period 20), in order to
model increasing use of the medical product in the early marketing period. We chose a large
number of exposed and unexposed patients so that algorithm performance was driven almost
exclusively by event counts, recognizing that there are multiple ways to accrue a set number
of events (e.g. low event rate in a large population, or high event rate in a smaller
population).
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Alerting rules—We applied 10 groups of alerting rules, comprising 93 algorithm
configurations, from five general classes, to each of the 600,000 individual monitoring
scenarios. The five classes of rules comprised naïve Type I error-based approaches, group-
sequential monitoring methods,21 the maximum-sequential-probability ratio test,10,22,23

statistical-process control rules,24,25 and disproportionality measures.26 The algorithms are
described in eAppendix C (http://links.lww.com) and the specific construction and
parameter values of each of the 93 algorithms are detailed in Table 1.

Performance evaluation—In each scenario, each of the 93 algorithm configurations had
up to 20 opportunities to generate an alert. As described in Table 1, some algorithms used
period-specific data as inputs (i.e. data from individual data cuts), whereas most used
cumulative data. For a particular scenario, the cumulative cohort in any given period
comprised all patients in prior cohorts up to and including the cohort for that period. In each
scenario, we recorded whether each algorithm generated an alert, in which period alerting
first occurred, and whether a true underlying causal relation of interest existed (i.e. RRtrue >
θ). From this, we calculated general operating characteristics, including each algorithm’s
overall sensitivity (i.e. the proportion of scenarios in which RRtrue > θ that the algorithm
signaled) and specificity (i.e. the proportion of scenarios in which RRtrue ≤ θ that the
algorithm did not signal). We plotted overall sensitivity and 1-(overall specificity) on a
receiver-operating-characteristic curve (ROC) for each group of algorithms.

As we have previously argued,14 comparisons of alerting-rule performance in prospective
monitoring should consider time to alerting, because conventional measures of sensitivity
and specificity can misrepresent the public health importance of earlier versus later alerting.2
Therefore, we also computed event-based performance, which is a weighted average of
event-based sensitivity and event-based specificity that accounts for time to alerting and
accommodates a weight (w) reflecting user-specified tradeoffs between the relative costs of
false positives (e.g. patients discontinue needed medication, or effective drugs are
withdrawn from the market) versus false negatives (e.g. patients continue to be exposed to
products that cause serious adverse events). Choosing w is analogous to choosing a cut point
on an ROC curve. We provide a description of the metric in eAppendix D
(http://links.lww.com). Finally, we examined the extent to which the algorithms’ relative
performance varied by selecting different w values, and we examined variation in relative
performance across the range of expected event frequencies.

Application to empirical data
We used the simulation results to select algorithms that we then applied to empirical
monitoring of cerivastatin-induced rhabdomyolysis. Cerivastatin was a cholesterol-lowering
drug that was withdrawn from the US market in 2001 because of its association with
rhabdomyolysis, a severe condition characterized by muscle breakdown.12 We determined
whether and when the selected algorithms would have generated alerts for this association
had it been processed in an active monitoring system based on the sequential matched cohort
design. We summarize the data sources and the methods in eAppendix E
(http://links.lww.com).

RESULTS
Simulations

Among 600,000 scenarios, 370,405 (62%) were scenarios in which a true causal relation
existed (i.e. RRtrue > 1.0); of these, 251,879 (42%) were scenarios in which RRtrue > θ (i.e.
these were scenarios in which the true underlying risk ratio was greater than the signaling
threshold). Figure 1 displays the overall sensitivity and 1-(overall specificity) for each group
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of algorithms across their parameter values. Overall sensitivities ranged from 0.1859 (group
7, X = 11; 11 consecutive period-specific estimates with P-values < 0.1587) to 0.9534
(group 9, X = 2; 2 consecutive cumulative effect estimates above the threshold, θ) and
specificities ranged from 0.5759 (group 9, X = 2) to 0.9999 (group 10; X = 11; 11
consecutive period-specific estimates above the threshold, θ) across all 600,000 scenarios.

After accounting for time to alerting using an event-based performance metric,9 the relative
performance of the algorithms varied by the chosen weight (w), reflecting preference for
sensitivity versus specificity (Figure 2A), by the expected event frequency (Figure 2B), and
by the alerting threshold (eFigure 2, http://links.lww.com). In general, the most sensitive
algorithms in a group (i.e. those at the bottom of each box) did not perform relatively well.
In particular, naïve nominal Type 1 error approaches (group 1) generally performed poorly
when large P-values were used, regardless of the weight (w) assigned. At lower event
frequencies, α-based approaches with relatively large α or P-values tended to perform better
than other approaches (Figure 2B). However, for frequent events, the statistical process
control and disproportionality approaches tended to perform better than α-based algorithms.
To assess empirical power of the algorithms, we compared their overall sensitivities, which
varied widely both between and within groups of algorithms, with a range of 0.13 to 0.77
(eFigure 3, http://links.lww.com).

Simulation results from all 60 scenarios are retrievable through an on-line program at
www.drugepi.org. In Table 2, we present the operating characteristics for the algorithms that
attained highest event-based performance at three weights (w) among scenarios resembling
monitoring of cerivastatin and rhabdomyolysis, where the expected event count was three
and the alerting threshold was θ = 1.0. The top two algorithms were the same at w= 0.05 and
w=0.10. Alpha-based approaches, particularly the nominal Type I error-based algorithms
and group-sequential methods, generally performed best in these scenarios. Overall, these
seven alerting algorithms had very high specificity (range= 0.9696 – 0.9958) — reflecting,
in part, the small weights that were chosen to minimize the likelihood of false-positive
alerting. We applied all seven algorithms to the cerivastatin empirical data.

Application to cerivastatin and rhabdomyolysis
We monitored initiators of cerivastatin from 1998, when prescriptions for the drug began
appearing in the databases, to mid-2001, when the drug was withdrawn from the US market.
During this time, we observed 6 cases of rhabdomyolysis and severe myopathies among
3,530 pairs of propensity-score-matched cerivastatin and atorvastatin initiators, who
contributed a total of 4,294 person-years of follow-up. All 6 events occurred among patients
exposed to cerivastatin (Figure 3). All seven selected algorithms generated alerts by the end
of the 13th monitoring period, corresponding to June 2001 — two months before cerivastatin
was withdrawn from the market. One algorithm generated an alert as early as the close of the
10th monitoring period (September 2000). In Figure 3, we included several milestones in the
history of this example, including the completion of an observational study by cerivastatin’s
manufacturer that failed to detect the association.12 At the end of the entire monitoring
timeframe, the estimated rate difference was 3.0 events (95% confidence interval [CI]= 0.6 –
5.4) per 1,000 person-years.

DISCUSSION
In a simulated, sequential, matched cohort framework we observed substantial variation in
performance of algorithms that could be used to generate safety alerts in prospective medical
product monitoring systems, such as the FDA’s Sentinel System. Relative performance
depended on the frequency of events in each set of simulations, whether an alerting
threshold was used and its magnitude, and the tradeoffs in costs between false-positive and
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false-negative alerting, as reflected by values of a weight in the performance metric. No
single algorithm performed best in all scenarios. Alerting-algorithm selection should be
tailored to certain features of a monitoring scenario, particularly the expected event
frequencies and trade-offs between false-positive and false-negative alerting.

When event frequencies were low, α-based approaches with large α-values tended to
perform relatively better than other algorithms. When the expected event frequencies were
high, statistical-process-control and disproportionality approaches tended to perform better.
This is due, in part, to the built-in delays in alerting, which prevent these algorithms from
generating chance alerts early in the early monitoring period. For example, an algorithm that
requires information from five consecutive monitoring periods to generate an alert, by
definition cannot generate an alert until at least the fifth monitoring period.

The algorithms’ relative performance also depended on whether an alerting threshold was
used and, if so, the value of this threshold. We compared the algorithms across four possible
relative-risk threshold values: 1, 1.25, 1.5, and 2. A threshold of 1 implies that any
indication of harm is of interest, regardless of how small. In some scenarios, stakeholders
may decide that associations below a certain magnitude are not actionable. For example,
stakeholders may decide that up to a 20% increased incidence of cardiovascular events
among users of a particular oral hypoglycemic agent is acceptable.19 By using an alerting
threshold, the monitoring system can be programmed to generate alerts only if the observed
association exceeds the specified acceptable risk threshold. The selection of a threshold
should be based on a thorough benefit-risk assessment that considers, among many inputs,
the severity of the monitoring event, the availability of alternative treatments, the relative
benefit of the monitoring product compared with the alternatives, other safety
considerations, and the background incidence of the monitoring outcome. We cannot
recommend which threshold should be used in a particular monitoring scenario; we have
made the simulated results for all 60 scenario types, defined by 15 expected event
frequencies and by four alerting thresholds, available in an online look-up table
(www.drugepi.org).

We used the simulation results to guide selection of the most appropriate algorithms for
empirical monitoring of cerivastatin-induced rhabdomyolysis in two electronic healthcare
databases. Over the entire monitoring timeframe, we observed a rate difference of 3.0 events
(95% CI= 0.6 – 5.4) per 1,000 person-years, which is consistent with estimates from formal
pharmacoepidemiogic studies.27 Each of the chosen algorithms generated alerts before
cerivastatin was withdrawn from the market. It is important to note that not all algorithms
would have generated alerts in the empirical data. For example, the nominal P-value at the
end of the monitoring timeframe was 0.0114, which was not small enough to generate alerts
for many of the α-based algorithms, including four of the nominal Type 1 error approaches,
seven of the Pocock-like rules, and five of the O’Brien-Fleming-like algorithms. In addition,
several of the algorithms that were not selected (i.e. the three most sensitive
disproportionality measures) would have generated alerts earlier than each of the selected
algorithms. However, the simulation results are intended to guide algorithm selection after
balancing user-specified preferences for sensitivity and specificity. Thus, the more sensitive
algorithms would have generated more timely alerts in this case, but would be more likely to
generate false positives in similar scenarios that lack true safety issues. Of the selected
algorithms, one generated an alert after the addition of data from the third quarter of 2000,
after only three observed events and nearly a year before cerivastatin was withdrawn from
the market. The other algorithms generated alerts based on either four or five observed
events and still before market withdrawal.
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The algorithms we evaluated are not intended to prompt regulatory decisions, but rather to
alert stakeholders to patterns that may warrant closer scrutiny. In a full-scale active-
monitoring system, stakeholders may simultaneously monitor hundreds or thousands of
potential associations, which will be too burdensome for continuous human processing.
However, the features of a monitoring scenario that would prompt a reviewer to take a
closer look at a particular association can be encoded into automated alerting rules. In this
study, we compared 10 groups of rules from five general classes of existing sequential-
monitoring approaches, coupled with four alerting thresholds. Future research should focus
on incorporating other features of a monitoring scenario (e.g. requiring a certain number of
events before alerting) and employing combinations of existing rules. For example, a rule
could be devised such that alerting would occur only if at least four out of five alerting
algorithms fired, the observed risk ratio was greater than a pre-specified threshold, and more
than a pre-specified number of events were observed.

We made many assumptions that may limit the generalizability of our simulation study.
First, we generated data assuming an absence of residual and unmeasured confounding and
an absence of misclassification of exposure and outcomes, which is likely untenable in
electronic healthcare data. However, because all of the alerting algorithms used the same
basic exposure and outcome information as inputs, this assumption is not likely to affect
their relative performance. In addition, an alerting threshold can allow users to incorporate
confounding and misclassification that may bias effect estimates upward. For example, one
may not be interested in relative effects of less than 1.25 because of concerns that they are
confounded. Using an alerting threshold of 1.25 effectively redefines the reference standard
by considering only estimates above this threshold. We allowed algorithms to generate alerts
when their statistical criteria were fulfilled only if the observed relative frequency of
exposed and unexposed events was above a pre-defined threshold. Most of the algorithms
are configured to test the null hypothesis that the observed outcome frequency among the
exposed is equal to that among the unexposed. It is possible that, when a threshold is used,
algorithms may perform better if they are constructed to test the threshold as an alternative
hypothesis. However, Kulldorff and colleagues23 have demonstrated the practical limitations
of alternative hypotheses in sequential monitoring, and the sensitivity of monitoring results
to the choice of alternative hypotheses. While coupling algorithms that test the null
hypothesis with the threshold criterion is one way around this issue, the optimal combination
of alerting algorithms and thresholds for prospective safety monitoring requires further
research.

We also assumed in the simulation study that hypothetical events occurred instantaneously,
such that loss-to-follow-up could not occur and that all outcome information was available
at the time of cohort formation. Many alternative modeling approaches are possible,
including ones that incorporate long induction times, time-varying hazards, and informative
censoring. We chose a much simpler approach as a starting point because active surveillance
systems (such as Sentinel) that rely on electronic healthcare data may not be useful for
identifying certain types of effects, such as long-term carcinogenic effects. However, the
approach we simulated is also consistent with a setting in which the distribution of matched
patients is uniform across the monitoring timeframe but the event risk increases over time.
We simulated the data such that the number of matched exposed and unexposed patients and
the number of events increased linearly across the 20 monitoring periods, to model data as
they would stream through an active monitoring system of a newly marketed product and
with data updates that occur at regular intervals defined by calendar time. It may be possible
that other approaches, such as adding new data at the accrual of a set number of monitoring
events (similar to monitoring approaches in clinical trials) may offer advantages for
statistical efficiency. The relative performance of algorithms in this setting may differ from
the setting that we considered; this should be evaluated in future work. However, across a
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large distributed-data-network in which many exposure and outcome pairs will be
simultaneously monitored, synchronized querying at fixed calendar dates is likely the most
logistically feasible approach.

Finally, we assumed a uniform event rate across the 20 cohorts in each scenario, which
likely favors approaches that rely on cumulative data. Modification by time may occur if
types of patients who use the treatments evolve with time and these characteristics are
effect-measure modifiers. This may result in scenarios in which no true safety issue exists
early in monitoring but arises in subsequent cohorts. Algorithms that use cumulative data
may be insensitive to the late-appearing safety issue because of the prior accumulation of
non-suggestive data. Algorithms that rely on period-specific estimates may be more capable
of identifying the safety issue in a more timely manner, but this issue requires additional
research.

Despite their limitations, the simulation results were useful in guiding the selection of
algorithms that were then able to detect cerivastatin-induced rhabdomyolysis, a well-known
drug-safety issue. A major concern of large-scale active monitoring systems is that they will
generate an intractably large number of false-positive alerts. We plan to expand our
approach to several empirical examples for which a generated alert would be a false-
positive. The biggest threat to false positivity in a Sentinel-like system using electronic
healthcare data is confounding by indication and other biases that arise from observational
data. Our approach relies on a sequential-matched-cohort design, focuses on new users of
the drug of interest, and matches them to users of an active comparator using propensity-
score methods. Propensity-score-matching restricts patients exposed to the monitored drug
to those with values that overlap with the distribution of scores for those exposed to the
comparator drug. Thus, patients at the extremes of the propensity-score distributions may be
excluded from analyses, yet they may be particularly susceptible to the drug-related event of
interest. We suggest exploring event rates among these patients in sensitivity analyses.
However, implicit restriction by matching can increase validity if observations in the tails of
the distribution reflect the presence of unmeasured confounding.28 The propensity-score-
matched cohort approach offers several additional advantages for safety monitoring: (1) it
enables application of many alerting algorithms without further adjustments; (2) it allows for
monitoring of multiple outcomes within the same matched cohorts; and (3) it focuses on
patients who are exchangeable with patients exposed to the active comparator, thereby
reducing confounding and mitigating the burden of false positivity.7 Moreover, for newly
marketed drugs there are usually many more patients exposed to the active comparator,
allowing for near-complete matching of patients exposed to the new drug.

In conclusion, the performance of existing alerting algorithms for prospective medical-
product-safety monitoring vary when applied to a sequential, matched cohort framework for
active surveillance. Algorithm selection for application to empirical monitoring should
consider the expected frequency of the monitoring event, tradeoffs between sensitivity and
specificity, and whether an alerting threshold should be used. Simulation results can help
inform algorithm selection. By applying the results of the simulation study, as one
component of an approach to prospective medical-product monitoring, we detected
rhabdomyolysis associated with cerivastatin before the drug was withdrawn from the
market.
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Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1.
Receiver-operating-characteristic curves based on overall sensitivity and overall specificity
for 10 groups of alerting algorithms across all 600,000 simulated scenarios. Each arc
comprises multiple points representing the various parameter values (e.g. different values of
p, α, etc.) for each alerting algorithm group, as described in Table 1. Overall sensitivity and
overall specificity do not incorporate time to alerting.
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FIGURE 2.
Relative performance of alerting algorithms (A) across various preferences for sensitivity
versus specificity (i.e. different weights [w]) and (B) across each of 15 sets of scenarios
defined by expected event frequencies. Black cells represent relative performance in the top
tertile, gray in the middle tertile, and white in the bottom tertile, using an event-based
evaluation metric. Within each group (i.e. each box), algorithm sensitivity increases moving
down the box (e.g. p increases, α increases, etc). A, The value for the weight defining the
preference between sensitivity versus specificity in the evaluation metric increases from left
to right from 0.02 (indicating very strong preference for specificity) to 0.30 (indicating very
slight preference for specificity). B, The expected event frequency increases from left to
right from 3 to 1000 and the preference weight (w) is held constant at w = 0.10 across all
cells.
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FIGURE 3.
A reproduction of prospective monitoring of cerivastatin and rhabdomyolysis using
retrospective data from two electronic healthcare databases from 1998 to 2001. In each
monitoring period the numbers are updated in a cumulative fashion based on the data that
became available during the corresponding calendar quarter. The black text below the table
shows when each milestone in the history of this example occurred in relation to our
monitoring periods.12
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Table 1

Alerting algorithms evaluated in a sequential matched cohort simulation study

Type Group no. Specific algorithm Parameter values

Naïve, fixed nominal Type I error
levels

1 Alert when the exact P-value for the cumulative
risk ratio < p and the observed cumulative risk
ratioa (RR) > θb

p = {0.000001, 0.00001, 0.0001,
0.001, 0.01, 0.05, 0.10, 0.20,
0.30, 0.40}

Group-sequential-Monitoring
methods based on cumulative α-
spending

2 Alert when the exact P-value, based on cumulative
data, < alpha for that monitoring period as defined
by the Pocock-like spending function based on
cumulative alpha of α and assuming 20 equally-
spaced monitoring periods, and the observed
cumulative RR > θ

α = {0.000001, 0.00001, 0.0001,
0.001, 0.01, 0.05, 0.10, 0.20,
0.30, 0.40}

3 Alert when the exact P-value, based on cumulative
data, < alpha for that monitoring period as defined
by the O’Brien-Fleming-like spending function
based on cumulative alpha of α and assuming 20
equally-spaced monitoring periods, and the
observed cumulative RR > θ

α = {0.000001, 0.00001, 0.0001,
0.001, 0.01, 0.05, 0.10, 0.20,
0.30, 0.40}

Sequential-probability-ratio test 4 Alert when the test statistic for the maximum
sequential-probability-ratio test for binomial data
exceeds the critical value based on α and using the
appropriate matching ratio and the, observed
cumulative RR > θ

α = {0.001, 0.01, 0.05}

Statistical-process-control rulesc

5 Alert when the exact P-value for the period-specific
RR < p and the observed cumulative RR > θ

p = {0.000032, 0.000088,
0.00233, 0.00577, 0.001349,
0.00298, 0.00621, 0.012224,
0.02275, 0.040059}

6 Alert when the exact P-value for X out of Y
consecutive period-specific RRs < 0.02275 and the
observed cumulative RR > θ

X,Y = {(5,5), (4,5), (4,4), (3,5),
(3,4), (3,3), (2,5), (2,4), (2,3),
(2,2)}

7 Alert when the exact P-value for X consecutive
period-specific RRs < 0.1587 and the observed
cumulative RR > θ

X = {11, 10, 9, 8, 7, 6, 5, 4, 3,
2}

8 Alert when the exact P-value for X consecutive
period-specific RRs < 1.0 and the observed
cumulative RR > θ

X = {12, 11, 10, 9, 8, 7, 6, 5, 4,
3}

Disproportionality measures

9 Alert when X consecutive observed cumulative RRs
exceed θ

X = {11, 10, 9, 8, 7, 6, 5, 4, 3,
2}

10 Alert when X consecutive observed period-specific
RRs exceed θ

X = {11, 10, 9, 8, 7, 6, 5, 4, 3,
2}

a
The risk ratio is the observed risk ratio in the simulated data

b
θ is a pre-defined signaling threshold equal to either 1, 1.25, 1.5, or 2, depending on the scenario

c
The observed risk ratio corresponding to the p-values must have been indicative of harm
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