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Abstract
The estimated test error of a learned classifier is the most commonly reported measure of classifier
performance. However, constructing a high quality point estimator of the test error has proved to
be very difficult. Furthermore, common interval estimators (e.g. confidence intervals) are based on
the point estimator of the test error and thus inherit all the difficulties associated with the point
estimation problem. As a result, these confidence intervals do not reliably deliver nominal
coverage. In contrast we directly construct the confidence interval by use of smooth data-
dependent upper and lower bounds on the test error. We prove that for linear classifiers, the
proposed confidence interval automatically adapts to the non-smoothness of the test error, is
consistent under fixed and local alternatives, and does not require that the Bayes classifier be
linear. Moreover, the method provides nominal coverage on a suite of test problems using a range
of classification algorithms and sample sizes.

Keywords
Classification; Test Error; Pretesting; Confidence Intervals; Non-Regular Asymptotics

1 Introduction
In classification problems, we observe a training set of (feature, label) pairs, .
The goal is use this sample to construct a classifier, say , so that when presented with a
new feature, X,  will accurately predict the unobserved label, Y . Accurate prediction
corresponds to small test error; recall that the test error is given by  where

 denotes expectation over the distribution P of (X, Y) only, and not
the distribution of the training set. The test error  is a functional of  and thus is a
random quantity. For this reason  is sometimes referred to as the conditional test error
(Efron 1997; Hastie et al. 2009; Chung and Han 2009). Estimation of the test error typically
employs resampling. Most commonly, the leave-one-out or k-fold cross-validated test error
is reported in practice. Bootstrap estimates of the test error were suggested by Efron (1983)
and later refinements were given by Efron and Tibshirani (1995, 1997). There have been a
number of simulation studies comparing these approaches; some references include (Efron
1983; Chernick et al. 1985; Kohavi 1995; Krzanowksi and Hand 1996). A nice survey of
estimators is given by Schiavo and Hand (2000). However many have documented that
estimators of the test error are plagued by bias and high variance across training sets (Zhang
1995; Isaakson 2008; Hastie et al. 2009) and consequently the test error is accepted to be a
difficult quantity to estimate accurately. Two reasons for this problematic behavior are that
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some classification algorithms result in a  that is a non-smooth functional of the training
set, and, even when  is a smooth functional of the training set, the test error is the
expectation of a non-smooth function of .

An alternative to point estimation is interval estimation (e.g. a confidence interval).
However, this approach has also been problematic likely because researchers have followed
what we call the “point estimation paradigm”: as a first step a point estimator of the test
error is constructed, and as a second step, the distribution of this estimator is approximated.
The problem with this approach is that a problematic point estimator of the test error makes
the second step very difficult. The point estimation paradigm was employed by Efron and
Tibshirani (1997) where the standard error of their smoothed leave-one-out estimator was
approximated using the nonparametric delta method. Efron and Tibshirani noted that this
approach would not work, however, for their more refined .632 (or .632+) estimators
because of non-smoothness. Yang (2006) follows this paradigm as well, using a normal
approximation to the repeated split cross-validation estimator. In practice, the point
estimation paradigm is often applied by simply bootstrapping the estimator of the test error
(see Jiang et al., 2008; Chung and Han 2009). These methods, while intuitive, lack
theoretical justification.

We consider interval estimators for linear classifiers constructed from training sets in which
the number of features is less than the training set size (p << n). As will be seen, even in this
simple setting, natural approaches to constructing interval estimators for the test error can
perform poorly. Instead of using the point estimation paradigm, we directly construct the
confidence interval by use of smooth data-dependent upper and lower bounds on the test
error. These bounds are sufficiently smooth so that their bootstrap distribution can be used to
construct valid confidence intervals. Moreover, these bounds are adaptive in the sense that
under certain settings exact coverage is delivered.

The outline of this paper is as follows. In Section 2 we illustrate the small sample problems
that motivate the use of approximations in a non-regular asymptotic framework. Section 3
introduces the Adaptive Confidence Interval (ACI). The ACI is shown to be consistent
under fixed and local alternatives. Section 4 addresses the computational issues involved in
constructing the ACI. A computationally efficient (polynomial time) convex relaxation of
the ACI is developed and shown to provide nearly identical results to exact computation.
Section 5 provides a large experimental study of the ACI and several competitors. A variety
of classifiers and sample sizes are considered on a suite of ten examples. The ACI is shown
to provide correct coverage while being shorter in length than competing methods. Section 6
discusses a number of generalizations and directions for future research. Most proofs are left
to the online supplement.

2 Motivation
Throughout we assume that the training set is an iid sample  drawn from some
unknown joint distribution P. The features X are assumed to take values in  while the
labels are coded . To construct the linear classifier we fit a linear model

 by minimizing a convex criterion function. That is, we construct

 where  is the empirical measure and L(X, Y, β) is a convex
function of β (e.g., hinge loss with an L2 penalty in the case of linear support vector
machines). The classifier is the sign of the linear fit; that is, the predicted label y at input x is

assigned according to  (define sign(0) = 1). Recall that the test error of the
learned classifier is defined as

Laber and Murphy Page 2

J Am Stat Assoc. Author manuscript; available in PMC 2012 February 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where P denotes expectation with respect to X and Y .

As discussed in the introduction, the test error is a non-smooth functional of the training
data. To see this and to gain a clearer understanding of the test error note

(1)

where . Recall that sign(2q(x) − 1) is the Bayes classifier. Then

(2)

where  denotes the expectation over iid training sets of size n drawn from P. The form of
 reveals that there are two scenarios in which  is highly variable. The first

occurs when  is likely to be small relative to  over a large range of x where
q(x) ≠ 1/2. Notice that this might occur when the classifier does well but is subject to

overfitting. The second scenario occurs when  is likely to be small relative to 
over a small range of x where q(x) is far from 1/2. In this scenario there may be little
overfitting but the classifier may be far from the Bayes rule and hence of poor quality. Note
that poor classifier performance and overfitting are hallmarks of small samples. In either
case,  need not concentrate around .

In order to provide good intuition for the small sample case, we require an asymptotic
framework wherein the test error  does not concentrate about , even in large
samples. One way of achieving this is to permit P(Xtβ* = 0) to be positive where

. This ensures that for all  that satisfy xtβ* = 0, the indicator

function  never settles down to a constant but rather converges to a non-
degenerate distribution. Furthermore, if for a non-null subset of these x’s we have q(x) ≠ 1/2,
then  does not converge to zero. Hereafter we refer to this as the non-regular
framework. This language is consistent with that of Bickel et al. (2001). However, unlike the
usual notion of non-regularity the limiting distribution of  depends not only
on the value of β* but also the marginal distribution of X.

To see why it is useful to consider approximations that are valid even in the non-regular
asymptotic framework we consider simulated data, which we call the quadratic example.
Here the generative model satisfies P(Xtβ* = 0) = 0. Data are generated according to the
following mechanism

The working classifier is given by  where  is constructed

using squared error loss . In this example 
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so that the continuity of X1 and X2 ensures that the regularity condition P(Xtβ* = 0) = 0 is
satisfied. Consider two seemingly reasonable, and commonly employed methods for
constructing a confidence set. The first is the centered percentile bootstrap (CPB). The CPB
confidence set is formed by bootstrapping the centered and scaled in-sample error

. Note that  where  is
the in-sample error. More specifically, let  and  be the 1 − γ/2 and γ/2 percentiles of

(3)

where  is the bootstrap empirical measure with weights

 and . Then

the 1 − γ CPB interval is given by . The second approach is
based on the asymptotic approximation

(4)

Thus the normal approximation confidence set is given by  (see
the binomial approximation in Chung and Han 2009). If P(Xtβ* = 0) = 0 then both methods
can be shown to be consistent.

The left hand side of Figure 1 shows the estimated coverage using 1000 Monte Carlo
iterations of the CPB with 1000 bootstrap resamples, and the normal approximation. Both
methods severely undercover in small samples. This is especially troubling since (i) the
problem is low-dimensional, (ii) the linear classifier is of relatively high quality, (for
example if n = 30 the expected test error ) and (iii) the regularity condition
P(Xtβ* = 0) = 0 is satisfied. Why do these methods fail? Neither method correctly captures
the additional variation in the test error across training samples due to the non-smoothness
of the test error. Since the generative model satisfies the condition P(Xtβ* = 0) = 0, the
variation across training sets eventually becomes negligible and the methods deliver the
desired coverage for n large.

To illustrate the effect of non-smoothness on the coverage consider the problem of finding a
confidence interval for the functional , where a is a
positive free parameter. Notice that the size of a varies inversely with the smoothness of

. A value of a > 0 gives the expectation of a sigmoid function and a value of a = ∞
corresponds to ). Coverage for a = 0.1, 1.0, and 10 are given in the right hand side of
Figure 1. Notice that coverage increases with the smoothness of the target . The
dramatic difference in coverage between a = .1 and a = ∞ suggests that a large component
of the anti-conservatism is indeed attributable to non-smoothness.

Operating in the regular framework there is no indication that these methods may not work
well. In the non-regular framework, however, both of these methods are inconsistent. To see
this in the case of the CPB, write

(5)
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The first term on the right hand side of (5) appears because we allow P(Xtβ* = 0) > 0 in the

non-regular framework; conditioned on the data the term  does not have a limit
and consequently the CPB is inconsistent. A detailed proof is omitted (see for example Shao
1994). The inconsistency of the normal approximation can be seen by examining the

limiting distribution of  in the non-regular framework. This limit is given
in Theorem 3.1.

3 Adaptive confidence interval
In this section we introduce our method for constructing a confidence interval for the test
error. This section is organized as follows. We begin by constructing adaptive confidence
interval. Next, we establish the theoretical underpinnings of the method under fixed
alternatives. Following this we provide a (heuristic) justification for our method using local
alternatives. Finally, we discuss the choice of a tuning parameter required by the method.

3.1 Construction of the ACI
We propose an method of constructing a confidence interval that is consistent in the non-
regular framework. We refer to this method as the Adaptive Confidence Interval (ACI)
because, it is adaptive in two ways. First, unlike the CPB, the ACI provides asymptotically
valid confidence intervals regardless of the true parameter values; intuitively the ACI
achieves this by adapting to the amount of non-smoothness in the test error. Second, in
settings (see Corollary 3.4) in which the CPB is consistent, the upper and lower limits of the
ACI are adaptive in that these limits have the same distribution as the upper and lower limits
of the CPB.

The ACI is based on bootstrapping an upper bound of the functional . This
upper bound is constructed by first partitioning the training data  into two groups (i) points
that are far from the boundary xtβ* = 0, and (ii) points that are too close to delineate from
being on the boundary. The upper bound is constructed by taking the supremum over all
possible classifications of the points that we cannot distinguish from lying on the boundary.
More precisely, under the non-regular framework the scaled and centered test error can be
decomposed as

(6)

where . The first term on the right hand side of (6) corresponds to points on
the decision boundary xtβ* = 0, and the second term corresponds to points that are not on
this boundary. That is, the domain of X is partitioned into two-sets. We operationalize this
partitioning using a series of hypothesis tests. For each X = x we test H0 : xtβ* = 0 against a
two-sided alternative. Let Σ denote the asymptotic covariance of  (see below). Then the

test rejects when the statistic  is large. The bounds are obtained by computing the
supremum (infemum) over all classifications of points for which the test fails to reject. In
particular, an upper bound on  is given by

(7)

and an lower bound is given by
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(8)

The choice of an, is discussed at the end of this Section. Put  to see that (7) and (8) are
upper and lower bounds, respectively.

Suppose we want to construct a 1 − δ% confidence interval for the test error. We have that

We approximate the distribution of ,  by bootstrap. The
bootstrap is shown to be consistent later in this section. Denote the 1 − δ/2 percentile of the

bootstrap distribution of  by u1–δ/2 and the δ/2 percentile of the bootstrap

distribution of  by lδ/2. The 1 − δ% ACI is given by

(9)

3.2 Properties of the ACI
In the remainder of the paper we verify that the ACI is asymptotically of the correct size
even if the problem is non-regular (e.g. P(Xtβ* = 0) > 0) and we evaluate the performance of
the ACI in small samples. A method for efficiently approximating the ACI is given and
shown to be almost identical to exact computation on a suite of examples. Most proofs are
deferred to the online supplement.

First we provide the asymptotic distribution of  and .
Throughout we make the following assumptions.

(A1) L(X, Y, β) is convex with respect to β for each fixed .

(A2)  exists and is finite for all .

(A3)  exists and is unique.

(A4) Let g(X, Y, β) be a sub-gradient of L(X, Y, β). Then  for all β
in a neighborhood of β* .

(A5) Q(β) is twice continuously differentiable at β* and  is positive
definite.

(A6) .

These assumptions are quite mild and hold for most commonly used loss functions (e.g.,
exponential loss, squared error loss, hinge loss–if P has a smooth density at 1, logistic loss,
etc.). Recall that a subgradient satisfies  for all

 and, . All convex functions have a measurable subgradient. Let
Ω be the covariance matrix of the sub-gradient of L(x, y, β) at β*. Under (A1)-(A5)
Haberman (1989; see also Niemiro, 1992) proved that  converges with probability one to

β* and  converges in distribution to .
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Let  be a Brownian-Bridge indexed by  with the variance-covariance function

(10)

Furthermore, let  denote a mean zero normal random variable with variance

.

Theorem 3.1. Let  and z∞ be as above. Assume (A1)-(A6). Then

1. ,

2.

.

Note that the limiting distributions of ,  and  have the
same regular component ; the three limits differ only in the non-regular component.
Note also that the form of the covariance function of  given in (10) and the form of the

limiting distribution of  (or ) shows that if the margin

condition P(Xtβ* = 0) = 0 holds, then  and

similarly for . That is, if the margin condition holds, the limiting distribution
of the functional used to construct the ACI is the same as the limiting distribution of the
functional . From a practical point of view this means that for problems where the
regular framework is applicable, for example, if the sample size is large or points are well
separated from the boundary, the ACI is asymptotically exact.

Another scenario in which the limiting distribution of ,  and
 are the same is when the Bayes decision boundary is linear. In this case q(x) = 1/2

if xtβ* = 0 where q(x) = P(Y = 1|X = x). (Here, we assume that the loss function is
classification-calibrated (Bartlett 2005). All loss functions mentioned in this paper are
classification-calibrated.) Then for any fixed  we have

The form of the variance of  and the above series of equalities show that if the Bayes

decision boundary is linear then  for all .
Therefore, if the Bayes decision is linear
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where the first and last equalities follow from Theorem 3.1, and the second and third
equalities follow since  is constant across all indices. We have proved the following result.

Corollary 3.2. Assuming (A1)-(A6) hold then if either (i) the Bayes decision boundary is

sign(Xtβ*) or (ii) P (Xtβ* = 0) = 0 then ,  and  have
the same limiting distribution.

The implication of the above theorem and corollary is that when either of the above
conditions hold the ACI should provide the nominal coverage. When neither event holds
then the ACI may be conservative. In simulations we shall see that the degree of
conservatism is small.

The ACI in (9) utilizes a bootstrap approximation to the distribution of ,

. The next theorem concerns the consistency of the bootstrap distributions.

Let  be a weakly consistent estimator of Σ (e.g. the plug-in estimator). Define  to
be the space of bounded Lipschitz-1 functions on  and let  denote the expectation with
respect to the bootstrap weights.

Theorem 3.3. Assume (A1)-(A6). Then  and

 converge to the same limiting distribution in
probability. That is,

converges in probability to zero.

Thus the ACI provides asymptotically valid confidence intervals. Moreover we have the
following.

Corollary 3.4. Assuming (A1)-(A6) hold then if either (i) the Bayes decision boundary is

sign(Xtβ*) or (ii) P(Xtβ* = 0) = 0 then  and 
converge to the same limiting distribution, in probability.

Thus, the ACI is also adaptive in the sense that in settings where the centered percentile

bootstrap would be consistent, ,  and  have the
same limiting distribution.

3.3 Local Alternatives
In Section 2 we motivated the use of a non-regular asymptotic framework in order to gain
intuition for small samples. An alternative strategy for developing intuition for non-regular

problems is to study the limiting behavior of  under local alternatives. This
strategy has roots in Econometrics.

In econometrics, a common strategy to constructing procedures with good small sample
properties in non-regular settings is to utilize alternatives local to the parameter values that
cause the non-regularity (Andrews 2000; Cheng 2008; Xie 2009). To see this recall that in
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small samples a non-negligible proportion of the inputs x are in a -neighborhood of the
decision boundary xtβ* = 0 which causes the indicator function  to become unstable.
In the prior sections we assumed that there was a non-null probability that an input lies
exactly on the boundary in order to retain the instability of the indicator function even in
large samples. Another way to maintain this instability is by considering local alternatives.

The ACI can be seen as arising as an asymptotic approximation under local alternatives in
the following way. In particular, suppose that a training set  is drawn iid
from distribution Pn for which

(11)

for some . In addition, we assume that P(Xtβ* = 0) > 0 (while Pn(Xtβn* = 0) > 0
may or may not hold). A general tactic is to derive the limiting distribution of an estimator
which will depend on the local parameter Γ and then take a supremum over this parameter to
construct a confidence interval. As a first step in following this approach we might expect
that

under Pn. Note that  is equal to the first term on the right hand

side of (7). Hence,  is the supremum over all local alternatives of the form
given in (11). Also taking the supremum over  we obtain

which is the limiting distribution of  (see Theorem 3.1). Thus, the ACI can be
seen as arising as an asymptotic approximation under local alternatives. This result is
formalized below.

Theorem 3.5. Assume that  is drawn iid from distribution Pn for which:

(B1)  for some ,

(B2) if  is any uniformly bounded Donsker class and  under P,
then ,

(B3)
, (1), where .

Assume (A1)-(A6). Then:

1.

2.

under Pn.
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Thus the limiting distribution of  is unchanged under local alternatives and
hence might be expected to perform well in small samples. A similar result can be proved

for . This result is underscored by the empirical results in Section 5.

3.4 Choice of Tuning Parameter an
Use of the ACI requires the choice of the tuning parameter an. We use a simple heuristic for
choosing the value of this parameter. The method described here performed well on all of
the examples in Section 5. We begin with the presumption that undercoverage is a greater
sin than conservatism. Recall that we can view the ACI as a two step procedure where at the
first stage we test the null hypothesis H0: xtβ* = 0 against a two-sided alternative. The test of

H0 used in constructing the ACI rejects when . The form of  in (7)

shows that  too small (e.g. large Type I error) results in too few points being deemed “near
the boundary.” Consequently the resulting interval may be too small since the supremum

does not affect enough of the training points. Conversely,  too large (e.g. large Type II
error) puts too many points in the region on non-regularity, resulting in an interval that may
be too wide because the supremum affects too many of the training points. Given our
presumption, controlling Type I error is of primary importance. Let . Then let

 and we have for any  and xtβ* = 0

Thus, the suggested an controls the Type I error to be no more than γ. Moreover, it is clear
from the above display that the Type I error decreases to zero as n tends to infinity. In all of
the experiments in this paper we choose, rather arbitrarily, to use γ = .005. Simulations
results, given in Table 5 of the online supplement, show that the performance (measured in
terms of width and coverage) of the ACI appears to be insensitive to choices of γ in the
range .001 to .01 for a sample size of around 30. For larger sample sizes, the choice of γ is

unimportant since  except for extremely small values of γ.

4 Computation
To implement the ACI we need to calculate, for each bootstrap sample, the supremum and

infimum in  and  respectively. The required
optimization, as stated, is a Mixed Integer Program (MIP) because of the discrete nature of
the indicator function. In this section, we develop a convex relaxation that can be solved in
polynomial time. The details for the infimum are provided below; a similar approach is used
to find the supremum by writing  and using the relationship: supz g(z) = −in fz
− g(z). Let (mn1, mn2, … , mnn) be a realization of the bootstrap weights

. For each such realization, construction of
the infemum in the ACI requires computing
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(12)

where . In this form, the optimization is clearly seen to be an MIP.
Reliably solving an MIP requires the use specialized software (we use CPLEX) and quickly
becomes computationally burdensome as the size of the problem grows. The following
convex relaxation of (12) is (i) computationally efficient requiring roughly the same amount
of computation as fitting a linear SVM and (ii) can be solved without specialized software
(e.g. R or matlab).

As the initial step write

Then replace the indicator function  with convex surrogate and upper bound

 where (z)+ denotes the positive part of z. Similarly, replace the function 

with convex surrogate and upper bound . The indicator functions and their
respective surrogates are shown in Figure 2. The relaxed optimization problem is then

(13)

where the −1 in the relaxation of  has been omitted since it does not depend on u.
The optimization problem in (13) can be cast as a linear program and hence solved in
polynomial time. See the next section for an empirical comparison of the relaxed and MIP
solutions to (12).

5 Empirical study
In this section we compare solution quality between the relaxed and MIP solutions to (12);
as will be seen the relaxed solution to (12) can be computed much more quickly while little
is lost in terms of solution quality. Next using the relaxed solution to (12) the empirical
performance of the ACI is compared with two recent methods proposed in the literature. Ten
data sets are used in these comparisons; three are simulated and the remaining seven data
sets are taken from the UCI machine learning repository
(www.ics.uci.edu/~mlearn/MLRepository.html) and thus the true generative model is
unknown. In this case, the empirical distribution function of the data set is treated as the
generative model. A summary of the data sets are given in Table 2.

To assess the difference in solution quality between the relaxed and MIP solutions to (12)
we perform the following procedure for each of the 10 examples listed in Table 2. We
generate 1000 training sets of size n = 30, and for each training set we compute 1000
bootstrap resamples. For each resample we compute (12) exactly using the MIP and
approximately using the convex relaxation described above. Here we illustrate the results
when the loss function used to construct  and  is chosen to be L(X, Y, γ) = (1 − Y Xtγ)2.
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Let  and  denote the MIP and relaxed solution to (12) for the bth bootstrap resample

of the tth training set. Table 1 reports the 50, 75, 95, and 99 percentiles of 
for each example. Notice that for each example we considered, the relaxed and MIP
solutions agree exactly on more than half of the resampled pairs. Moreover, on more than 95

percent of the resampled pairs, we observe that , implying that the two
solutions differed by at most the activation of a single indicator function. Table 1 also
reports the estimated coverage of confidence sets constructed using the MIP and relaxed
formulations. For each of the 10 data sets, estimated coverage using the two methods is not
significantly different. The final bit of information in Table 1 regards computation time. The
last two columns report the average time in seconds that it takes to construct a single
confidence interval using the MIP and relaxed formulations. Computations were performed
using a 3.06 GHz intel processor with 4 GB 1067 MHz DDR3. It is clear that even in the n =
30 case significant computational gain can be made by using the relaxed formulation.
However, this gain becomes more pronounced as sample size increases. Figure 3 compares
the computation time for the ThreePt data set (this data set is decribed in Laber and Murphy
2009) as a function of sample size using squared error loss. As claimed, the computation
time for the relaxed construction scales much more efficiently than the MIP formulation. In
the examples presented in the next section we use the convex relaxation to compute the
confidence interval.

5.1 Competing methods
As competitors we consider a repeated-split normal approximation suggested by (Yang
2006) and the recently proposed Bootstrap Case Cross-Validated Percentile with Bias
Reduction (BCCVP-BR) method of (Jiang 2008). These methods represent the best we
could find in terms of consistent coverage. Both methods substantially outperform standard
approaches like the bootstrap and normal approximation which are discussed in Section 2.
To provide a baseline for comparison, the performance of the Centered Percentile Bootstrap
(CPB) is included in the online supplement.

Briefly, Yang’s method repeatedly partitions the training data  into two equal halves 
and . A classifier is trained on  and then evaluated on . The mean and variance of
the number of misclassified points in  is recorded. This mean and variance are then
aggregated and used in a normal approximation. Jiang’s method can be roughly described as
leave one out cross validation with bootstrap resamples. However, since a bootstrap
resample can have multiple copies of a single training example, leave one out cross-
validation will no longer have disjoint training and testing sets. Instead, for each unique
training example (xi, yi) the bootstrap resample is partitioned into two sets, one with all
copies of (xi, yi) call this , and the second contains the remainder of the resample call this

. The classifier is trained on  and evaluated on . The average error over all sets  is
recorded within each bootstrap resample and the percentiles form the endpoints of a
confidence interval. As a final step Jiang provides a bias correction. A full description of
these methods can be found in the referenced works. While these methods are intuitive, they
lack theoretical justification. Yang’s method was developed for use with a hold-out set;
when such a hold-out set does not exist, the method is inconsistent. Jiang offers no
justification other than intuition.

5.2 Results
We examine the performance of the ACI and competing methods using the following three
metrics (i) coverage (ii) interval width and (iii) computational expense. These metrics are
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recorded using ten data sets, three sample sizes, and three loss functions. Three of the
examples use simulated datasets and hence the test error can be computed exactly. The
remaining seven data sets are taken from the UCI machine learning repository
(www.ics.uci.edu/~mlearn/MLRepository.html) and thus the true generative model is
unknown. In this case, the empirical distribution function of the data set is treated as the
generative model. Results using squared error loss are listed here while the results using
binomial deviance and ridged hinge loss (support vector machines) are given in the online
supplement. A summary of the data sets are given in Table 2.

Coverage results for squared error loss are given in Table 3. The adaptive confidence
interval is the only method to attain at least nominal coverage on all ten test sets. Yang’s
method is either extremely conservative or anti-conservative. Jiang’s interval attains the
nominal coverage on eight of ten data sets in the n = 30 case and nine of ten data sets for
larger sample sizes. Table 4 shows the width of the constructed confidence intervals. When
n = 30 the ACI is smallest in width for eight of the ten data sets. For larger sample sizes
Jiang’s method and the ACI display comparable widths; Yang’s method is always the
widest. Another important factor is computation time. Table 5 shows the average amount of
time required in seconds to construct a single confidence interval. All methods used 1000
resamples. That is, 1000 bootstrap resamples for the ACI and Jiang’s method, and 1000
repeated splits for Yang’s method. Table 5 shows that Yang’s method is the most
computationally efficient. However, it is also clear that Jiang’s method is significantly
slower than the ACI for moderate sample sizes. For the Magic data set Jiang’s method takes
more than 30 times longer than the ACI. It is most important, however, to notice the trend in
computation time across sample sizes. Computation time for Yang’s method and the ACI
grow slowly with sample size while the computational cost of Jiang’s method increases
much more quickly. The reason for this is that Jiang’s method performs leave-one-out cross
validation for each bootstrap resample thus increasing the computation time by a factor of n.
Results for ridged hinge loss and binomial deviance loss are similar and can be found in the
technical report (Laber and Murphy, 2010).

6 Discussion
Many statistical procedures in use today are justified by a combination of asymptotic
approximations and high quality simulation performance. As exemplified here, the choice of
asymptotic framework may be crucial in obtaining reliably good performance in small
samples. In this paper a non-regular asymptotic framework in which the limiting distribution
of the test error changes abruptly with changes in the true, underlying data generating
distribution is used to develop a confidence interval. In particular, asymptotic non-regularity
occurs due to the non-smooth test error in connection with particular combinations of β*
values and the X distribution. It is common practice to “eliminate” this asymptotic non-
regularity by assuming that these problematic combinations of β* values and the X
distribution cannot occur. However, small samples are unable to precisely discriminate
between settings that are close to the problematic β* values/X distribution from settings in
which the β* values/X distribution are exactly problematic. As a result, asymptotic
approximations that depend on assuming away these problematic settings can be of poor
quality; this is the case here.

The validity of proposed adaptive confidence interval presented here does not depend on
assuming away problematic scenarios; instead the ACI detects and then accommodates
settings that are sufficiently close to the problematic β* values/X distribution. In this sense
the ACI adapts to the non-smoothness in the test error. Specifically, in settings in which
standard asymptotic procedures fail, the ACI provides asymptotically valid, albeit
conservative, confidence intervals. Moreover, the ACI delivers exact coverage if either (i)
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the model space is correct or (ii) a margin condition holds. Practically, this means that in a
setting where standard asymptotic procedures (e.g. the bootstrap) are applicable, the ACI is
asymptotically equivalent to these methods. Experimental performance of the ACI is also
quite promising. On a suite of 10 examples, three loss functions and three classification
algorithms, the ACI delivered nominal coverage. In addition, the ACI generally had a
smaller length than competing methods. The ACI can be computed efficiently with
algorithms scaling polynomially in dimension and sample size.

Two important extensions of the ACI are: first, to extend the ACI to construct valid
confidence intervals for the difference in test error between two linear classifiers and,
second, to extend these ideas to the setting in which the number of features is comparable or
larger than the sample size. The former extension is straightforward and can be achieved by
enlarging the set over which the supremum is taken in (7) to include the points on the
classification boundaries of both classifiers. The latter is more difficult. In the estimation of
classifiers in the p >> n setting, it is important to avoid overfitting. A typical approach to
reduce the amount of overfitting is regularization which effectively reduces the space of
available classifiers to choose from. Similarly, the supremum in (7) must be taken over a
restricted set of classifiers to avoid being unnecessarily wide. Extending the theory and
computation to this setting is left to another paper.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Left: Coverage of centered percentile bootstrap and normal approximations for constructing
confidence sets for . Right: Coverage of centered percentile bootstrap with smoothed
target  for varying values of a; a value of a = ∞
corresponds to . Results are based on 1000 Monte Carlo iterations, target coverage is .
950. The performance of the ACI on this example can found in Section 5 under the example
labeled “quad.”
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Figure 2.
Relaxation of the indicator functions. Left panel: indicator function  replaced with

convex surrogate . Right panel: indicator function  replaced with convex

surrogate .
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Figure 3.
Computation time for MIP and relaxed construction of ACI using the ThreePt data set and
squared error loss.

Laber and Murphy Page 18

J Am Stat Assoc. Author manuscript; available in PMC 2012 February 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Laber and Murphy Page 19

Ta
bl

e 
1

C
om

pa
ris

on
 o

f M
IP

 a
nd

 re
la

xe
d 

ve
rs

io
ns

 o
f t

he
 A

C
I. 

Fo
r e

ac
h 

da
ta

 se
t t

he
 ta

bl
e 

w
as

 c
on

st
ru

ct
ed

 u
si

ng
 1

00
0 

tra
in

in
g 

se
ts

 e
ac

h 
w

ith
 1

00
0 

bo
ot

st
ra

p
ite

ra
tio

ns
 fo

r a
 to

ta
l o

f 1
,0

00
,0

00
 c

om
pu

ta
tio

ns
 o

f t
he

 o
pt

im
iz

at
io

n 
pr

ob
le

m
 g

iv
en

 in
 (1

2)

D
at

a 
Se

t

C
ov

er
ag

e
D

iff
er

en
ce

 in
 w

id
th

C
om

pu
ta

tio
n 

tim
e

R
el

ax
ed

M
IP

p .
99

p .
95

p .
75

p .
5

R
el

ax
ed

M
IP

Th
re

eP
t

.9
48

.9
48

.0
33

4
0.

00
0.

00
0.

00
.7

34
3.

11

M
ag

ic
.9

44
.9

45
.0

33
4

.0
33

4
0.

00
0.

00
1.

24
1.

94

M
am

.
.9

57
.9

58
.0

33
4

0.
00

0.
00

0.
00

.9
04

1.
88

Io
n.

.9
54

.9
54

.0
33

4
0.

00
0.

00
0.

00
1.

33
3.

06

D
on

ut
.

.9
67

.9
68

.0
66

7
.0

33
4

.0
33

4
0.

00
.9

17
2.

94

B
al

.
.9

69
.9

69
0.

00
0.

00
0.

00
0.

00
.9

77
1.

69

Li
ve

r
.9

56
.9

56
.0

33
3

.0
33

3
0.

00
0.

00
1.

61
2.

50

Sp
am

.9
84

.9
87

.0
33

3
.0

33
3

0.
00

0.
00

1.
54

3.
01

Q
ua

d
.9

59
.9

62
.0

33
3

0.
00

0.
00

0.
00

.9
83

1.
37

H
ea

rt
.9

60
.9

61
.0

33
3

0.
00

0.
00

0.
00

1.
06

3.
27

J Am Stat Assoc. Author manuscript; available in PMC 2012 February 23.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Laber and Murphy Page 20

Ta
bl

e 
2

Te
st

 d
at

a 
se

ts
 u

se
d 

to
 e

va
lu

at
e 

co
nf

id
en

ce
 in

te
rv

al
 p

er
fo

rm
an

ce
. T

he
 la

st
 th

re
e 

co
lu

m
ns

 re
co

rd
 th

e 
av

er
ag

e 
te

st
 e

rr
or

 fo
r a

 li
ne

ar
 c

la
ss

ifi
er

 tr
ai

ne
d 

us
in

g 
a

tra
in

in
g 

se
t o

f s
iz

e 
n 

= 
10

0 
an

d 
lo

ss
 fu

nc
tio

n:
 sq

ua
re

d 
er

ro
r l

os
s (

SE
), 

bi
no

m
ia

l d
ev

ia
nc

e 
(B

D
), 

an
d 

rid
ge

d 
hi

ng
e 

lo
ss

 (S
V

M
)

N
am

e
Fe

at
ur

es
So

ur
ce

E
τ(
ĉ)
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ĉ)
( S
V
M
)

Th
re

eP
t

2
Si

m
ul

at
ed

.5
00

.5
00

.5
00

Q
ua

d
3

Si
m

ul
at

ed
.0

99
7

.1
09

.1
01

D
on

ut
3

Si
m

ul
at

ed
.2

35
.2

49
.2

32

M
ag

ic
11

U
C

I
.2

64
.2

31
.2

52

M
am

.
6

U
C

I
.1

92
.1

90
.2

03

Io
n.

9
U

C
I

.1
51

.1
47

.1
49

B
al

.
5

U
C

I
.0

54
.0

50
.0

61

Li
ve

r
7

U
C

I
.3

42
.3

42
.3

34

Sp
am

10
U

C
I

.1
90

.1
83

.1
81

H
ea

rt
9

U
C

I
.1

67
.1

73
.1

74

J Am Stat Assoc. Author manuscript; available in PMC 2012 February 23.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Laber and Murphy Page 21

Ta
bl

e 
3

C
ov

er
ag

e 
co

m
pa

ris
on

 b
et

w
ee

n 
AC

I, 
Y

an
g’

s C
V 

an
d 

Ji
an

g’
s B

C
C

V 
P 

– 
BR

 fo
r s

qu
ar

ed
 e

rr
or

 lo
ss

, t
ar

ge
t c

ov
er

ag
e 

is
 .9

50
. C

ov
er

ag
e 

is
 st

ar
re

d 
if 

ob
se

rv
ed

co
ve

ra
ge

 is
 si

gn
ifi

ca
nt

ly
 d

iff
er

en
t f

ro
m

 .9
50

 a
t .

01
 le

ve
l

Sa
m

pl
e 

Si
ze

n 
= 

30
n 

= 
10

0
n 

= 
25

0

D
at

a 
Se

t /
 M

et
ho

d
A

C
I

Y
an

g
Ji

an
g

A
C

I
Y

an
g

Ji
an

g
A

C
I

Y
an

g
Ji

an
g

Th
re

eP
t

.9
48

.9
30

*
.8

63
*

.9
37

.5
37

*
.9

25
*

.9
35

.3
87

*
.9

30
*

M
ag

ic
.9

44
.9

96
*

.9
79

*
.9

73
*

.9
91

*
.9

69
*

.9
62

.9
96

*
.9

74
*

M
am

.
.9

57
.9

89
*

.9
66

.9
37

.9
96

*
.9

64
.9

60
.9

95
*

.9
68

Io
n.

.9
41

.9
96

*
.9

72
*

.9
61

.9
92

*
.9

64
.9

52
.9

96
*

.9
49

D
on

ut
.9

65
.9

67
.9

08
*

.9
70

*
.8

66
*

.9
74

*
.9

74
*

.8
95

*
.9

88
*

B
al

.
.9

76
*

.9
89

*
.9

66
.9

62
.9

95
*

.9
69

*
.9

46
.9

91
*

.9
63

Li
ve

r
.9

56
.9

97
*

.9
70

*
.9

63
.9

92
*

.9
66

.9
71

*
.9

96
*

.9
84

*

Sp
am

.9
84

*
.9

98
*

.9
75

*
.9

67
.9

96
*

.9
67

.9
79

*
.9

96
*

.9
58

Q
ua

d
.9

59
.9

83
*

.9
45

.9
57

.9
89

*
.9

38
.9

65
.9

99
*

.9
40

H
ea

rt
.9

60
.9

95
*

.9
76

*
.9

49
.9

91
*

.9
79

*
.9

71
*

.9
89

*
.9

74
*

J Am Stat Assoc. Author manuscript; available in PMC 2012 February 23.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Laber and Murphy Page 22

Ta
bl

e 
4

C
om

pa
ris

on
 o

f i
nt

er
va

l w
id

th
 b

et
w

ee
n 

AC
I, 

Y
an

g’
s C

V 
an

d 
Ji

an
g’

s B
C

C
V 

P 
– 

BR
 fo

r s
qu

ar
ed

 e
rr

or
 lo

ss
. S

m
al

le
st

 o
bs

er
ve

d 
w

id
th

 is
 st

ar
re

d.
 E

xa
m

pl
es

w
he

re
 a

t l
ea

st
 th

e 
no

m
in

al
 c

ov
er

ag
e 

w
as

 n
ot

 a
tta

in
ed

 a
re

 o
m

itt
ed

Sa
m

pl
e 

Si
ze

n 
= 

30
n 

= 
10

0
n 

= 
25

0

D
at

a 
Se

t /
 M

et
ho

d
A

C
I

Y
an

g
Ji

an
g

A
C

I
Y

an
g

Ji
an

g
A

C
I

Y
an

g
Ji

an
g

Th
re

eP
t

.3
85

*
.1

98
*

.1
93

*

M
ag

ic
.4

98
*

.5
28

.5
01

.2
38

.2
57

.2
14

*
.1

25
.1

57
.1

22
*

M
am

.
.3

74
*

.4
56

.3
83

.1
91

.2
26

.1
78

*
.1

12
.1

40
.1

05
*

Io
n.

.3
13

*
.4

66
.3

88
.1

75
.2

13
.1

72
*

.1
03

.1
27

.1
00

*

D
on

ut
.4

24
*

.4
83

.2
17

*
.2

58
.1

23
*

.2
01

B
al

.
.2

17
*

.3
50

.2
32

.1
01

*
.1

38
.1

03
.0

62
3

.0
77

2
.0

62
0*

Li
ve

r
.5

34
.5

27
.5

00
*

.2
62

.2
74

.2
41

*
.1

52
.1

72
.1

43
*

Sp
am

.4
28

.4
96

.4
18

*
.2

19
.2

29
.1

84
*

.1
25

.1
40

.1
08

*

Q
ua

d
.2

46
*

.3
60

.2
67

.1
42

*
.1

71
.1

44
.0

81
1*

.1
04

.0
88

5

H
ea

rt
.3

67
*

.4
76

.4
04

.1
84

*
.2

19
.1

84
*

.1
06

*
.1

32
.1

10

J Am Stat Assoc. Author manuscript; available in PMC 2012 February 23.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Laber and Murphy Page 23

Ta
bl

e 
5

C
om

pa
ris

on
 o

f c
om

pu
ta

tio
n 

tim
e 

(in
 se

co
nd

s)
 b

et
w

ee
n 

AC
I, 

Y
an

g’
s C

V 
an

d 
Ji

an
g’

s B
C

C
V 

P 
– 

BR
 fo

r s
qu

ar
ed

 e
rr

or
 lo

ss
. E

xa
m

pl
es

 w
he

re
 a

t l
ea

st
 th

e
no

m
in

al
 c

ov
er

ag
e 

w
as

 n
ot

 a
tta

in
ed

 a
re

 o
m

itt
ed

Sa
m

pl
e 

Si
ze

n 
= 

30
n 

= 
10

0
n 

= 
25

0

D
at

a 
Se

t /
 M

et
ho

d
A

C
I

Y
an

g
Ji

an
g

A
C

I
Y

an
g

Ji
an

g
A

C
I

Y
an

g
Ji

an
g

Th
re

eP
t

.7
34

.7
62

1.
37

M
ag

ic
1.

24
.0

39
2

1.
59

1.
40

.0
83

4
11

.1
1.

90
0.

17
8

60
.6

6

M
am

.
1.

37
.0

18
5

.6
97

6.
03

.0
38

3
5.

52
12

.8
.0

80
0

.2
6.

3

Io
n.

2.
13

.0
33

1
1.

32
6.

42
.0

70
2

10
.0

16
.7

.1
47

52
.6

2

D
on

ut
2.

00
.0

09
30

4.
33

2.
16

11
.6

10
.8

4

B
al

.
.9

77
.0

16
0

.5
75

1.
05

.0
31

5
3.

50
1.

23
.0

66
0

20
.9

Li
ve

r
1.

16
.0

22
2

.8
59

1.
44

.0
46

1
6.

25
1.

78
.0

97
8

33
.7

Sp
am

1.
38

.0
34

8
1.

37
1.

53
0.

74
4

10
.5

1.
72

.1
59

57
.9

Q
ua

d
.9

83
.0

09
18

.1
25

1.
11

.0
19

1
1.

43
1.

24
.0

39
8

6.
96

H
ea

rt
1.

06
.0

31
7

1.
25

1.
15

.0
66

0
8.

00
1.

42
.1

39
23

.6

J Am Stat Assoc. Author manuscript; available in PMC 2012 February 23.


