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Reward Value-Based Gain Control: Divisive Normalization in
Parietal Cortex

Kenway Louie, Lauren E. Grattan, and Paul W. Glimcher
Center for Neural Science and Center for Neuroeconomics, New York University, New York, New York 10003

The representation of value is a critical component of decision making. Rational choice theory assumes that options are assigned
absolute values, independent of the value or existence of other alternatives. However, context-dependent choice behavior in both
animals and humans violates this assumption, suggesting that biological decision processes rely on comparative evaluation. Here
we show that neurons in the monkey lateral intraparietal cortex encode a relative form of saccadic value, explicitly dependent on
the values of the other available alternatives. Analogous to extra-classical receptive field effects in visual cortex, this relative
representation incorporates target values outside the response field and is observed in both stimulus-driven activity and baseline
firing rates. This context-dependent modulation is precisely described by divisive normalization, indicating that this standard
form of sensory gain control may be a general mechanism of cortical computation. Such normalization in decision circuits
effectively implements an adaptive gain control for value coding and provides a possible mechanistic basis for behavioral context-

dependent violations of rationality.

Introduction

Efficient decision-making systems must represent the values of
possible actions in some form. Many normative models of choice,
such as expected utility theory and foraging theory, assume that
each option is evaluated in an absolute manner, without regard to
the other alternatives (Von Neumann and Morgenstern, 1944;
Luce, 1959; Stephens and Krebs, 1986). However, increasing be-
havioral evidence suggests that valuation depends on the compo-
sition of the choice set. Under larger choice sets, human decision
makers report greater difficulty choosing and lower outcome sat-
isfaction, and they often choose the default option or opt not to
choose atall (Iyengar and Lepper, 2000). Examined directly, both
animals and humans display context-dependent preferences that
vary as additional alternatives are added to the choice set (Tver-
sky and Simonson, 1993; Shafir et al., 2002; Bateson et al., 2003).
However, the neural basis of such context-dependent valuation is
unknown.

Neurophysiological experiments have demonstrated reward-
related activity that appears to encode action value in a number of
brain areas linked to decision making. In monkey area lateral
intraparietal cortex (LIP), a parietal region responsive to both
visual stimuli and saccadic eye movements, neurons are strongly
modulated by the value associated with a saccade. This value
modulation appears to be a general aspect of LIP activity, consis-
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tently observed whether value is determined by explicit manipu-
lation of reward magnitude and probability of reinforcement
(Platt and Glimcher, 1999), recent reward history in a foraging
paradigm (Sugrue et al., 2004), or strategic valuation in a behav-
ioral game (Dorris and Glimcher, 2004; Seo et al., 2009); further-
more, dynamic encoding of expected action value may underlie
the representation of evolving likelihood information in sen-
sory discrimination tasks (Roitman and Shadlen, 2002; Huk
and Shadlen, 2005).

How is value encoded in LIP? Current evidence suggests that
parietal neurons are modulated by the value of their associated
saccade, but the specific form of value representation and how it
arises out of cortical circuit interactions remains primarily unex-
plored. We hypothesize here that value coding in parietal cortex is
shaped by the same cortical gain control mechanisms that oper-
ate in sensory cortices, resulting in a relative rather than absolute
representation of value that reflects the context defined by the
choice set.

LIP neurons, like those in visual cortex, respond to stimulus
presentation in a circumscribed region of visual space termed the
response field (RF); many of these neurons also possess a similarly
tuned response to upcoming saccade amplitude and direction. Sac-
cadic value is represented via a modulation of this spatially tuned
activity. In sensory cortices, stimuli outside the classical receptive
field can nonetheless significantly modulate neuronal activity. Many
of these extra-classical effects are well described by models in which
response is specified by the sensory properties of the stimulus inside
the receptive field, divided by the weighted sum of the sensory prop-
erties of stimuli both outside and inside the receptive field (Heeger,
1992; Carandini et al., 1997; Cavanaugh et al., 2002). If parietal cor-
tex uses an analogous functional architecture, then a similar form of
divisive normalization may underlie the relative representation of
saccadic value in LIP.
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Materials and Methods

Subjects and task. Three male rhesus monkeys (Macaca mulatta) were
used as subjects. Two animals (monkey D, ~8.6 kg; monkey W, ~6.0 kg)
participated in the two-target task, and two animals (monkey W; monkey
B, ~12.0 kg) participated in the three-target task. All experimental pro-
cedures were performed in accordance with the United States Public
Health Service’s Guide for the Care and Use of Laboratory Animals and
approved by the New York University Institutional Use and Care
Committee.

Experiments were conducted in a dimly lit, sound-attenuated room
using standard techniques (Platt and Glimcher, 1997). Briefly, the mon-
keys were head restrained and seated in a Plexiglas enclosure that permit-
ted arm and leg movements. Visual stimuli were generated using an array
of tri-state light-emitting diodes (LEDs) situated on a tangent screen 145
cm from the eyes of the monkey. The LEDs formed a grid with points
spaced at 2° intervals, spanning 40° horizontally and 40° vertically. Eye
movements were monitored using the scleral search coil technique, with
horizontal and vertical eye position sampled at 500 Hz using a quadra-
ture phase detector (Riverbend Electronics). Presentation of visual stim-
uli and water reinforcement delivery were controlled with an integrated
software and hardware system (Gramalkn; Ryklin Software).

In the two-target task (see Fig. 1 A), each trial began with the monkey
fixating a central fixation target. Two peripheral targets were then pre-
sented (1000 ms): one target (green) was placed in the previously iden-
tified RF, and one target (red) was placed in the contralateral hemifield,
typically an equal distance from fixation. The central fixation cue then
changed color to indicate which peripheral saccade target would be re-
warded (500 ms). Finally, the fixation target was extinguished, and the
monkey was rewarded for a saccade to the correct peripheral target. Each
session was conducted in blocks of 40 trials with the instructed target
location determined randomly and with equal probability (instructed
trials were followed by 20 free choice trials; these data are not presented
here). To examine the effect of extra-RF target value on LIP activity, RF
reward magnitude was fixed (V;, = 260 ul) and extra-RF reward mag-
nitude was varied across blocks in randomized order (V,, = 130, 163,
195,228, or 260 ul). RF target value modulation was examined in blocks
with extra-RF magnitude fixed (V,, = 130 ul) and RF magnitude varied
in randomized order (V;, = 65, 195, 260, or 390 ul).

After fixation in the three-target task (see Fig. 2A), monkeys were
presented with a target array consisting of one, two, or three peripheral
saccade targets (1000 ms). After target presentation, all target stimuli
except one were extinguished (500 ms); the fixation target was then
extinguished, and the monkey received the associated reward for a sac-
cade to the remaining target. On a given trial, the monkey was presented
with one of the seven possible target configurations (three single-target,
three dual-target, one triple-target) selected in a randomized fashion; the
final saccade target was selected from the presented targets with equal
probability. One target associated with a fixed reward magnitude was
located within the identified RF of the individual neuron (RF target).
Two additional targets associated with different reward magnitudes were
located at sites where no visually evoked activity was observed (extra-RF
targets). For LIP neurons with lateralized RFs (peak firing >6° away from
the vertical meridian), the two extra-RF targets were placed in the oppo-
site horizontal hemifield, symmetrically oriented above and below the
horizontal meridian and a minimum of 8° from the vertical meridian.
For the few neurons with RF centers near the vertical meridian, the two
extra-RF targets were positioned in the opposite vertical hemifield, sym-
metrically oriented across the vertical meridian.

Target locations and rewards assigned to those targets were fixed
across an individual session. In the MED-RF condition, the RF target was
always associated with a 130 ul reward, and the two extra-RF targets were
associated with rewards of 65 and 260 ul. The identical behavioral pro-
cedure was conducted with different reward magnitudes for the
HIGH-RF condition (RF target, 260 ul; extra-RF targets, 65, 130 ul) and
two LOW-RF conditions (RF target, 65 ul; extra-RF targets, 130 and 260
ul; RF target, 65 ul; extra-RF targets, 325 and 325 ul). The reward mag-
nitudes and number of neurons recorded under the different value con-
ditions are summarized in Table 1.
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Table 1. Three-target task value conditions

Condition  Tar 1 (RF) value (wl) Tar2value (wl) Tar3value (wl) Numberof neurons
MED-RF 130 260 65 62
LOW-RF 65 130 260 20
65 325 325 21
HIGH-RF 260 65 130 17

Data are reward magnitudes assigned to RF (Tar 1) and extra-RF (Tar 2, Tar 3) targets in the MED-RF, LOW-RF, and
HIGH-RF three-target task conditions and the total number of neurons recorded under each condition.

Electrophysiological recording. Monkeys were implanted with a Cilux
recording chamber (Crist Instrument) targeting the lateral bank of the
intraparietal sulcus, centered 3 mm caudal and 12 mm lateral to the
intersection of the midsagittal and interaural planes in either the left
hemisphere (monkey D) or the right hemisphere (monkeys W and B).
Chamber location was verified using anatomical magnetic resonance
imaging (3T Allegra; Siemens). At the start of each recording session, a 23
gauge guide tube was positioned in a support grid (1 mm spacing; Crist
Instrument) and inserted through intact dura. A tungsten steel electrode
(8—10 MQ); FHC) was lowered through the guide tube using a computer-
controlled micropositioner (EPS; Alpha-Omega). Electrophysiological
signals were amplified, bandpass filtered, and digitized, and individual
neurons were isolated based on waveform characteristics (MAP; Plexon).

Within a given session, recording was initiated once stable electro-
physiological signals were obtained from a depth corresponding to LIP
according to the magnetic resonance images. Single intraparietal neurons
were identified and selected only for visual response to target presenta-
tion, and response fields were characterized with single-target saccade
trials for a standard reward. Once a stable response field was estimated,
the monkey was run in either the two-target or three-target task. We
recorded 27 neurons from two monkeys in the two-target task (monkey
D, n = 17; monkey W, n = 10); all 27 neurons were recorded while the
extra-RF value was varied, and a subset of neurons (1 = 16) was recorded
with the RF value varied as well. Neural activity was recorded while
monkeys performed five to eight blocks of the two-target task, with
extra-RF value modulation blocks completed before RF value modula-
tion blocks were presented.

We recorded an additional 62 neurons from two monkeys in the three-
target task (monkey W, n = 31; monkey B, n = 31) under the primary
MED-RF condition. Finally, we recorded from 45 neurons (9 neurons
also run under the medium condition and an additional 36 neurons)
under either the LOW-RF or HIGH-RF condition versions of the three-
target task. Some of these neurons (n = 18) were run in more than one
value condition: 14 neurons in two conditions (seven both LOW-RF
conditions, three LOW-RF and MED-RF, one LOW-RF and HIGH-RF,
and three MED-RF and HIGH-RF) and 4 neurons in three conditions
(three LOW-RF, MED-RF, and HIGH-RF; one both LOW-RF condi-
tions and HIGH-RF). Given the relatively small number of neurons re-
corded in multiple V;, conditions, we restricted analyses across all value
conditions to the population responses. In the three-target task, neural
data was recorded during a single session of interleaved choice-context
trials as described above (minimum of 140 trials).

Data analysis. The primary analyses presented here examine the influ-
ence of the reward associated with extra-RF saccade targets on neuronal
firing rates. For both tasks, the initial 10 trials in a block were discarded to
avoid learning effects. Activity was primarily examined in the 1000 ms
epoch immediately following peripheral target presentation in both the
two-target and three-target tasks. This epoch represents the entire period
of target array presentation before the signal identifying the saccade tar-
get; the general results presented here are not sensitive to the exact defi-
nition of this epoch. Because this period precedes the presentation of the
saccade instruction signal in both the two- and three-target tasks, analysis
of neural data included all trials regardless of the ultimate direction of the
saccade. For population analyses, individual neuron firing rates were
normalized by the peak neural firing rate observed in the single-target RF
mapping trials. Because neurons are normalized to activity in identical
trial types, this method of normalization allows comparison of relative
levels of activity across neurons recorded under different value condi-
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tions; note that activity normalized in this manner is not constrained to
be between 0 and 1.

In the three-target task, the influence of extra-RF target value and
relative position (distance from RF target) on LIP activity was examined
using analysis of covariance (ANCOVA). For every neuron, we calculated
a suppression index (SI) for each extra-RF target:

Riy i ou — Rin

SE= Rin+out + Rin’

(1)
where R;, is the average firing rate (0—1000 ms after stimulus onset)
when the RF target is presented alone, and R, ., is the average firing
rate in dual target trials when the RF target is presented in conjunction
with a single extra-RF target. Thus, two SI values were quantified for each
neuron, corresponding to the influence of either the small or large
extra-RF target. To examine the influence of both visuospatial distance
and value on LIP activity, we used ANCOVA with SI as the dependent
variable, relative target position (distance between RF and extra-RF tar-
gets) as a continuous independent variable, and value (small, large) as a
categorical independent variable.

In the three-target task, we examined how well LIP activity was char-
acterized by two previously proposed models of LIP value representation
(fractional and difference) and two novel models (simple and full divisive
normalization). The fractional model predicts that LIP activity (R) is a
simple linear function of the RF target value normalized by the total sum
of target values available:

R=a+by " (2)

where V, is the RF target value, V is the sum of extra-RF target values,
and a and b are fit parameters. The difference model predicts that LIP
activity is a simple linear function of the difference between RF target

value and summed extra-RF target values:

R =a + b(vin - Vout)- (3)

The simple divisive normalization model, analogous to the cortical nor-
malization algorithm proposed for sensory cortex, predicts that activity is
a two-parameter, nonlinear function of RF and extra-RF target values:

\/il]
R = Rmax o + ‘/in + VO‘II' (4)
The full divisive normalization model replicates the simple normaliza-
tion model but includes an additional baseline parameter:

R =R Vo + B 5

- max o + ‘/in + Vom. ( )
Each of the models was fit to individual LIP neuron firing data in the 1000
ms target array epoch by either simple linear regression or nonlinear
regression. In addition, the four different models of LIP value represen-
tation were also fit to the mean normalized population activity. To com-
pare the goodness of fit of the various models, we used Akaike’s
information criterion (AIC):

AIC = 2k — 2In(L), (6)

where k is the number of parameters and L is the likelihood, estimated
from the residual sum of squares.

Leave-one-out cross-validation was used to examine the performance
of the different value representation models in out-of-sample prediction
for the three-target task data. For cross-validation of the MED-RF con-
dition data set, the mean responses of a single neuron in the seven differ-
ent value context conditions were used as test data, whereas the mean
responses of the remaining neurons were used as training data; this anal-
ysis was repeated so that each neuron was used as test data exactly once.
For cross-validation of the entire data set (LOW-RF, MED-RF, and
HIGH-RF conditions together), the mean responses of a single neuron
under all value conditions in which it was recorded were used as test data,
with the responses of the remaining neurons comprising the training
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data. The accuracy of the different models was quantified as the mean
squared error across all test analyses.

Results

Two-alternative neural data

We first examined the response of LIP neurons during a two-
target saccade task, in which monkeys were instructed to make a
saccade to one of two targets with equal probability. One target
was always placed inside the RF of the isolated LIP neuron, and
the other target was placed in the opposite hemifield. In a given
block of trials, reward magnitudes were fixed; across blocks, re-
ward magnitudes associated with targets within the response field
(Vin) and outside the response field (V) were independently
varied (Fig. 1 A). The value of a given target was equated with the
associated reward magnitude. Here we use the term “context” to
refer to the values associated with any available extra-RF targets
in a given trial.

To confirm that LIP neurons are modulated by the value of the
target located in the RF, we examined LIP activity as a function of
Vi, while V_, was held constant. Consistent with previous re-
ports, we found that LIP activity was strongly modulated by RF
target value, as shown for an example neuron and the population
response (Fig. 1B). Activity in the majority of studied neurons
was significantly positively correlated to V;, (p < 0.05, Pearson’s
correlation; n = 12 of 16; 75.0%), an effect that was significant
across the population (mean correlation, 0.33; p = 1.6 X 10 7, ¢
test) and evident in the mean firing rates (Fig. 1C).

How do intraparietal neurons respond to the value of targets
that lie outside the classical RF? Previous studies have framed LIP
activity in terms of gain ratio (Platt and Glimcher, 1999) or frac-
tional income (Sugrue et al., 2004; Corrado et al., 2005), both of
which assume a fractional reward representation based on V. /
(Vin T Vou), but no study has isolated the effect of manipulating
extra-RF target value alone. We found that when the value of the
target outside the RF was explicitly varied (with RF target value
fixed), LIP activity was negatively modulated by V,,, shown for
both an example neuron and the population activity (Fig. 1 D).
Correlation analysis showed that this suppressive modulation
was significantly negative for the majority of LIP neurons (p <
0.05, Pearson’s correlation; n = 18 of 27; 66.7%) and
significant across the population (mean correlation, —0.21; p =
1.2 X 10 >, t test). Additionally, we performed multiple regres-
sion analysis for each individual neuron using both V_, and
latency to saccade as regressors. Of the recorded neurons, firing
rate was significantly dependent on only value in 16 neurons and
on only latency in 1 neuron, suggesting that the observed modu-
lation of LIP activity was primarily driven by the value context
and not motivational or motor factors. This negative relationship
between activity and extra-RF target value is evident in the mean
population firing rates, plotted for the initial 1000 ms after target
presentation (Fig. 1E). Thus, activity was both an increasing
function of V, and a decreasing function of V,,, suggesting that
LIP value representation is relative rather than absolute; we ex-
plore the specific algorithm underlying this relative representa-
tion below.

We also examined whether behavior varied in some general
way as a function of extra-RF target value, as such differences in
behavior could explain context-dependent neural modulation.
However, examination of fixation break frequencies, saccade er-
ror rates, and saccadic reaction times revealed no consistent de-
pendence of behavior on V.. Fixation break frequencies were
low in both monkeys (monkey D, 9.2%; monkey W, 1.6%); in
monkey W, these frequencies did not differ across V,, condi-
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Figure 1.

Relative representation of value in area LIP. A, Two-target task sequence. Monkeys were presented a target in the individual neuron RF and an extra-RF target in the contralateral

hemifield. A change in the central cue color indicated the saccade target on a given trial, and monkeys were rewarded for a saccade to the instructed target. Reward magnitudes were manipulated
inablock design, with either RF (V,,) or extra-RF (V) target value varied across blocks. B, RF target value positively modulates LIP firing rates. Example single-neuron (left) and population average
(right) activity, shown for trials with saccades to the RF, are shown. Data are segregated by RF target value; extra-RF target value was identical across conditions (V. = 130 ul). The shaded region
indicates the data window used for analysis (0 —1000 ms after target presentation). €, Average population activity as a function of RF target value. D, Extra-RF target value negatively modulates LIP

activity. Example single-neuron (left) and population average (right) activity, segregated by extra-RF target value, are shown; RF target value was identical across conditions (V,, = 260 ). E, Average

population activity as a function of extra-RF target value.

tions [x*(4) = 5.6; p = 0.23], whereas in monkey D, these fre-
quencies differed across conditions [y*(4) = 20.6; p = 0.0004]
but were not significantly correlated with V_, magnitudes (r =
—0.87; p = 0.06). Similarly, the rate of incorrect saccadic choices
did not vary consistently with V; both monkeys exhibited high
success rates (>90%), with error rates independent of V, con-
dition in monkey W [y*(4) = 4.5; p = 0.34] and dependent but
not significantly related to V,, in monkey D [x*(4) = 14.4,p =
0.006; r = —0.40, p = 0.51]. Finally, reaction times for saccades
toward the RF target across the different value contexts did not
differ across different V_,, conditions in either monkey (monkey
D, p = 0.97; monkey W, p = 0.20; one-way ANOVA). Notably,
saccade latencies toward the RF target did depend on the value of
the RF target (p < 0.005 in both monkeys, one-way ANOVA) and
became smaller as V;, increased (monkey D: r = —0.11, p =
0.026; monkey W: r = —0.30, p = 2.11 X 10 ~'®), indicating that
the animals were sensitive to the reward volumes used in the task.

Three-alternative neural data
These data identify a relative rather than absolute representation
of value in area LIP, combining value information about a saccade

into the RF with information about an alternative, extra-RF eye
movement. To more fully characterize parietal value coding, we
studied 62 additional LIP neurons from two monkeys while they
performed a three-target saccade task. Monkeys fixated a central cue
and were presented with one, two, or three targets, each of which was
associated with a different magnitude of water reward (Fig. 2A).
After target presentation (1000 ms), monkeys were subsequently
instructed to select one of the presented targets. During recording
sessions in the MED-RF condition, the medium reward (130 ul)
target was placed in the RF, and the small (65 ul) and large (260 ul)
reward targets were placed outside the RF, typically in the opposite
hemifield; targetlocations and reward associations were fixed during
an individual session, but identical reward values were used across
sessions. Each trial in a session thus consisted of one of seven possible
target arrays, presented randomly and with equal probability (three
single-target, three double-target, and one triple-target trials). Note
that each target array entails a unique combination of value, or value
context, associated with the target in the RF (V;,)) and values avail-
able outside the RF (V).

As in the two-target task, analysis of fixation break frequen-
cies, saccade error rates, and saccadic reaction times revealed no
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Choice context modulates both target-driven and baseline LIP activity. A, Three-target task sequence. Monkeys were presented with a target array of one, two, or three peripheral

targets associated with different reward magnitudes. The target array on any given trial was randomly selected from the seven possible target configurations (bottom). All but one of the targets were
then extinguished, and monkeys were rewarded the designated amount for a saccade to the remaining target. Target locations and reward assignments were fixed for the duration of an individual
session. B, Example single-neuron activity. Firing rate histograms are aligned to target onset and segregated by target array condition, shown for trials to the RF. Colors correspond to conditions
shown in A. €, Population average activity. Both target-driven (black-yellow) and baseline (cyan-purple) activity exhibit suppression by the presence of extra-RF targets.

consistent dependence of behavior on the configuration of tar-
gets. Both monkeys had low fixation break frequencies during
cue presentation (monkey W, 2.8%; monkey B, 4.0%) that were
uncorrelated with total value in both monkeys individually
(monkey W: r = —0.36, p = 0.42; monkey B: = 0.28, p = 0.54)
and combined across animals (r = 0.04; p = 0.90). Because only
the target cue remained visible after saccade instruction, both
monkeys made very few errors (average error rates: monkey W,
2.1%; monkey B, 0.2%). For both animals, saccade errors rates to
the medium and large targets were independent of target config-
uration (p > 0.1, X test). For saccades to the small target, error
rates varied by target configuration [monkey B: x*(3) = 13.4,p =
0.004; monkey W: x*(3) = 17.2, p = 0.0006] but were correlated
with total value in only one monkey (monkey B: r = 0.83, p =

0.167; monkey W: r = 0.95, p = 0.047) and uncorrelated across
the combined data (r = 0.35; p = 0.401). Unlike in the two-target
task, reaction times varied by value context (each saccade target
value condition in each monkey; p < 0.05, one-way ANOVA);
however, mean reaction times were significantly correlated with
the value of the target configuration earlier in the trial for only one
target value in one monkey (monkey B: low: r = —0.363, p = 0.637;
medium: r = —0.934, p = 0.066; high: r = —0.301, p = 0.699;
monkey W: low: —0.907, p = 0.093; medium: r = —0.990, p =
0.010; high: r = —0.573, p = 0.428). Together, these measures indi-
cate that behavioral factors such as motivation or vigilance remained
relatively constant across different value context conditions.

How does the composition of target values outside the RF
affect LIP firing rates? We observed that stimulus-driven activity,
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elicited by the appearance of the target in
the RF, was a consistent function of the
total amount of reward available, despite
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tion: n = 33 of 62, 53.2%; suppression:

Early visual

Saccade

"

n =30 0f33,90.9%); furthermore, suppres-
sion was significant across the population
of neurons (mean correlation, —0.155;
p = 2.6 X 1075, ttest) and evident in the
mean population activity (Fig. 2C). To
examine whether this modulation of
stimulus-driven activity might reflect moti-
vational or motor factors, we performed
multiple regression analysis for each indi-
vidual neuron using both V,, and latency
to saccade as regressors. Of the recorded
neurons, firing rate was significantly depen-
dent on only value in 29 neurons, on both
value and latency in 3 neurons, and on only
latency in 1 neuron, suggesting that the ob-
served modulation of LIP activity was pri-
marily driven by the value context.

Existing research on value coding in LIP has focused on the
modulation of RF stimulus-driven activity. However, we also ob-
served a novel effect of total reward on firing rates in the absence
of RF-driven activity, relative to the non-zero baseline firing rates
(where baseline refers to the level of activity during fixation). As
shown for the example neuron in Figure 2 B, activity in trials
without a target in the RF also varied as a function of V, (r =
—0.161; p = 0.037). This value modulation in the absence of RF
stimulation was significant for a large fraction of LIP neurons
(modulation: n = 27 of 62, 43.6%; suppression: n = 21 of 27,
77.8%) and significant across the population (mean correlation,
—0.087; p = 0.0019, t test). Examination of the population-
averaged firing rates shows that suppression below baseline levels
follows a similar time course to value modulation of stimulus-
driven activity, emerging soon after target onset and persisting
until the saccadic instruction signal (Fig. 2C). As in the trials in
which a target appeared in the RF, multiple regression analyses
showed that activity in the absence of an RF target was primarily
dependent on value and not latency to saccade (significant for
value in 23 neurons, for value and latency in 3 neurons, and for
latency in 6 neurons).

Number of neurons

Figure 3.
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Time course of value context modulation. A, Temporal analysis of value modulation in the three-target task, con-
ducted in nonoverlapping adjacent 100 ms windows. For each neuron, spiking activity in each interval was correlated against
extra-RF value; analysis was done separately for RF target-present (red) and RF target-absent (blue) trials. Top, Mean correlation
coefficient (=SEM, shaded) across the population of LIP neurons; asterisks denote significance at p << 0.05 (¢ test). Bottom,
Number of positively (dashed) and negatively (solid) significantly modulated neurons. B, Value modulation in three separate
intervals: early visual (100 — 400 ms after cue onset), late visual (700 —1000 ms after cue onset), and saccade (300 — 0 ms before
saccade). Histograms show individual neuron correlation coefficients in RF target-present (red) and RF target-absent (blue) trials,
with solid bars indicating significant neurons (p << 0.05).

To further analyze the time course and extent of activity sup-
pression both in the presence and in the absence of an RF target,
we examined neural activity in 100 ms bins aligned to either
peripheral target onset or saccade initiation. For each neuron,
spiking activity was correlated with V_; separate correlation
analyses were conducted for trials with and without an RF target.
For time points from peripheral target onset to saccade instruc-
tion cue, spiking data were aligned to time of target onset and
included all trials. Our primary interest lay in this interval, in
which we could examine how the number and value of alterna-
tives modulated LIP activity before explicit saccade cueing and
motor preparatory activity. As shown in Figure 3, the population
of LIP neurons displayed V ,-dependent suppression in both RF
target-present and RF target-absent conditions across much of
the trial, with peak modulation occurring ~200-300 ms after
peripheral target onset. Across the population of neurons, the
average correlation coefficient was significantly negative for most
of the cue presentation interval in both RF target-present and RF
target-absent conditions (p < 0.05, ¢ test). Furthermore, of the
neurons significantly modulated by total value, the large majority
was suppressed by increasing extra-RF value in both conditions
across the cue interval (Fig. 3) (at 300 ms; target present: 95.7%,
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22 of 23 neurons; target absent: 78.3%, 18 of 23 neurons). For
clarity (Fig. 3B), we plot histograms of correlation coefficients for
two distinct windows (early visual, 100—400 ms; late visual, 700—
1000 ms); the mean correlation coefficient in both these windows
is significant and negative for both RF target-present (early vi-
sual: mean, r = —0.157;p = 6.0 X 10 ' late visual: mean, r =
—0.092; p = 1.4 X 10™*) and RF target-absent (early visual:
mean, r = —0.090; p = 0.001; late visual: mean, r = —0.045; p =
0.047) conditions.

Consistent with previous reports, many LIP neurons in this
task possessed motor-related activity: a presaccadic increase in
firing rate selective for saccades into the RF. To examine the
extent of value-based modulation independent of this motor-
related activity in this interval after saccade instruction, we re-
stricted analyses to RF target-present trials requiring a saccade to
the RF target; all RF target-absent trials were included. For time
points after saccade instruction (disappearance of other targets),
data were aligned to the time of saccade initiation. Initial exami-
nation of the population firing rate data (Fig. 2C) suggested a
possible inversion in value modulation in trials with a saccade to
the RF target, with higher activity in larger total value conditions;
consistent with this finding, the number of neurons positively
correlated with V, increased slightly after the saccade cue is
given (Fig. 3A, red dashed line). However, this increase was small
and coexists with neurons suppressed by Vs as a result, the
average correlation coefficient across the population was not sig-
nificant for any time point in the presaccadic interval (Fig. 3A)
(p > 0.05, t test). In contrast, the average correlation coefficient
in RF target-absent trials remained significantly negative. Figure
3B plots histograms for correlation coefficients in the 300 ms
window preceding saccade initiation; consistent with the time-
point analysis, average LIP activity is suppressed by V in RF
target-absent conditions (mean, r = — 0.071; p = 3.7 X 10 %)
and unmodulated in RF target-present conditions (mean, r =
0.024; p = 0.302). Notably, activity positively related to V, was
absent in the two-target task (Fig. 1C), suggesting that such ac-
tivity may be a salience effect related to the instructional offset of
the peripheral targets that only occurred in the three-target task.

Together, these results suggest that LIP encodes a context-
dependent value representation, where the value configuration of
the entire choice set controls both stimulus-driven and target-
absent activity early in the valuation process. To ensure that these
effects were driven by reward value rather than stimulus config-
uration, we examined the influence of visuospatial target location
on LIP firing rates. One concern is that the differential modula-
tion associated with small- and large-value extra-RF targets could
have been driven by asymmetric target location relative to the
location of the RF rather than by context-dependent value cod-
ing. However, examination of the relative target positions (dis-
tance from RF target) of small- and large-value alternative targets
showed no discernible difference in the average relative position
(distancey,,,, = 35.43°% distancey,,,. = 35.10% p = 0.77, t test) or
the relative position distributions (p = 0.98, two-sample Kolm-
ogorov—Smirnov test) (Fig. 4, inset). To quantify the influence of
both target value and location on firing rate, we examined the
suppression of RF activity in dual target trials as a function of V ,,
(small or large) and relative target position (distance between RF
and extra-RF targets). We found that suppression of RF-driven
activity depended on extra-RF target value but on neither relative
target distance nor the interaction of distance and value (value,
p = 0.004; distance, p = 0.058; interaction, p = 0.793, ANCOVA). In
other words, suppression was a function of V,, even when rela-
tive target positions were equivalent (Fig. 4). These results suggest
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Figure 4. Value modulation independent of relative spatial location. The effect of extra-RF
target value and distance to the RF target on LIP activity during dual-target trials in the MED-RF
condition three-target task. Sl is defined as (R.,, . oue — Rin)/(Rin4 out T Rin), Where more neg-
ative Sl values indicate greater suppression of RF activity. Data points represent the mean S| ==
SEM as a function of distance, plotted separately for high-value (filled) and low-value (unfilled)
alternative targets. Regression slopes were fit independently for the high- and low-value tar-
gets (solid and dashed lines, respectively). Inset, Distribution of distances from the RF for high-
and low-value extra-RF targets; there was no significant difference in either the mean distance
ordistribution of distances. ANCOVA shows that suppression s significantly dependent on value
(distance between lines) but not on relative distance (slope of lines) or the interaction between
value and distance.

that, as in the two-target data, the suppressive modulation ob-
served in the three-target task was primarily controlled by the
value of the alternative, extra-RF targets.

This effect of value context is clear when population activity is
examined as a function of the combined V;, and V,,,, magnitude
(Vior)> as shown in Figure 5. Despite constant V;, levels, activity in
trials with a target in the RF (Fig. 5, solid red symbols) was sup-
pressed as V, increased. Similarly, in trials without a target in
the RF (Fig. 5, solid blue symbols), activity decreased as a func-
tion of alternative target values. Because an essential feature of a
relative value code is that it combines information about both the
RF value (V,,) and the value context (V_,,), we also recorded
under different Vi, conditions in 45 LIP neurons: one condition
with a high-value target in the RF (HIGH-RF, n = 17 neurons; RF
target, 260 ul; extra-RF targets, 65 and 130 pl) and two condi-
tions with a low-value target in the RF (LOW-RF 1, n = 20
neurons; RF target, 65 ul; extra-RF targets, 130 and 260 ul;
LOW-RF 2, n = 21 neurons; RF target, 65 ul; both extra-RF
targets, 325 ul). Some neurons in this additional data set were run
in more than one condition; see Table 1 for a summary of the
different value conditions. As shown in Figure 5, population ac-
tivity in the three-target task also depended on the value of the RF
target, with progressively higher firing rates at larger levels of V..
Below, we explore the specific computational algorithm underly-
ing the coding of both V;,, and V,, in this context-dependent,
relative value representation.

Divisive normalization and value coding

What computational representation mediates this integration of
all relevant value information? Initial studies of value coding in
LIP (Platt and Glimcher, 1999; Sugrue et al., 2004) focused on a
fractional representation of value because of its association with
classic matching law behavior (Herrnstein, 1961). More recently,
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Figure 5.  Population activity depends on the value of the entire choice set. Normalized
population LIP responses decrease as a function of total value (V). Filled circles represent
mean == SEM LIP activity in the 0—1000 ms after peripheral target onset in the MED-RF condi-
tion (V;, = 130 wl) three-target task, for conditions with (red) and without (blue) a target
present in the RF. Open symbols represent data from the HIGH-RF condition (V;, = 260 ul;
squares) and LOW-RF condition (V;, = 65 wl; inverted triangles, condition 1; triangles, condi-
tion 2) experiments; blue symbols indicate RF target-absent conditions.

motivated by computational models of two-alternative choice
behavior, some researchers have suggested that the difference in
option values may better describe LIP activity (Corrado et al.,
2005). However, whereas both the fractional and difference mod-
els are consistent with LIP value modulation, neither theoretical
proposal is directly based on the structure and function of cortical
circuits. To examine whether context-dependent value represen-
tation could arise from known characteristics of cortical func-
tion, we evaluated LIP activity in terms of value-based divisive
normalization.

Early models of striate cortex described visual neuron func-
tion as a linear operation, producing responses that are weighted
sums of relevant inputs (Hubel and Wiesel, 1962, 1968; Movshon
et al., 1978). Although such linear models accurately character-
ized basic visual neuron responses such as orientation and direc-
tion selectivity, they could not explain more complicated,
nonlinear phenomena such as contrast saturation and nonspe-
cific suppression. To address these issues, Heeger (1992) pro-
posed that visual cortical function involves a normalization stage,
where a given cell’s response is divided by a quantity representing
the pooled activity of a large number of other similar neurons.
This divisive normalization model explains a number of nonlin-
ear phenomena in striate and extrastriate cortex (Carandini et al.,
1997; Britten and Heuer, 1999; Cavanaugh et al., 2002; Heuer and
Britten, 2002) as well as responses in the ventral visual stream
(Zoccolan etal., 2005). Furthermore, normalization-style models
yield efficient coding of natural signal statistics in both visual and
auditory modalities (Schwartz and Simoncelli, 2001; Valerio and
Navarro, 2003) and may play a role in attentional processing
(Reynolds et al., 1999; Reynolds and Heeger, 2009), suggesting
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that divisive normalization may serve as a canonical computa-
tional algorithm in cortical circuits.

To examine whether divisive normalization can explain LIP
value modulation, we compared how well the fractional, differ-
ence, and divisive normalization value representations predicted
LIP activity in the three-target task. We focused on activity during
peripheral target presentation (0—1000 ms after target onset),
before the delivery of the instruction cue. For each neuron and RF
value condition, the individual models were fit to the observed
firing rates across the seven value context conditions. In trials
with less than three presented targets, absent targets were as-
signed a value of zero. For the fractional representation, firing
rates (R) were modeled as a linear function of the fractional value:

p i
R =a + Vo v (7)

out

For the difference representation, firing rates were modeled as a
linear function of the difference between RF value and the sum of
extra-RF target values:

R =a + b(vin - Vout)' (8)

The essential component of the normalization model is a divisive
stage, wherein a single neuron’s response is divided by a quantity
dependent on pooled responses. For the simple normalization
representation, firing rates were modeled as a nonlinear function
of Viyand V.

R =R i 9
- max o+ Vvin + Vom, ( )
where V, is the RF target value, V_ is the sum of extra-RF target
values, and R,,,, and o are gain and semisaturation terms, respec-
tively. In addition, we examined a full normalization model:

Vi + B

R N Rmaxo + ‘/in + Vout,

(10)
where B is a constant representing a non-zero baseline firing rate
(Reynolds and Heeger, 2009). The term (3 controls the theoretical
level of activity when no peripheral targets are presented and the
animals fixate through the duration of the trial (a quantity pre-
dicted to be R, *B /0). Both these models are analogous to
established sensory coding models, modified to represent target
value rather than visual stimulus characteristics.

We first examined how well the different value coding models
predicted individual neural responses. Figure 6 (left column)
plots the predicted versus observed activity for each of the differ-
ent value representation models, with each point denoting a sin-
gle neuron in a particular value condition; these data represent all
neural data in the MED-RF, HIGH-RF, and LOW-RF conditions.
Compared with the fractional (Fig. 6 A) and difference (Fig. 6 B)
models, the divisive normalization models (Fig. 6C,D) more ac-
curately predicted activity when a target appeared inside the RF.
However, the simple normalization model failed to predict the
suppression below baseline levels observed in the absence of RF
stimulation; only the full normalization model fully predicted the
modulation of both RF-driven and baseline activity. To quantify
the relative performance of the different models, we calculated
the AIC for each neuron under every model; the AIC provides an
information theoretic basis for model comparison that considers
both goodness of fit and parsimony (Akaike, 1974). Examination
of the AIC values confirmed that the full divisive normalization
model was the most likely of these underlying value representa-
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point represents predicted and observed data under a specific choice set condition.

tions in the vast majority of LIP neurons (MED-RF condition:
n = 53 of 62, 85.5%; HIGH-RF condition: n = 16 of 17, 94.1%j;
LOW-RF conditions: n = 26 of 41, 61.9%).

To examine the population responses, we fit each value model
to the firing rate data; Figure 6 (middle column) shows the pre-
dicted mean population response from each model as a function
of observed firing rates in the MED-RF condition data set (V;,, =
130 ul). The fractional and simple normalization models failed to
account for suppression in the absence of an RF target; because
both models incorporate only the quantity V;, in the numerator,
they predicted constant levels of activity in all RF target absent
conditions (simple normalization, r = 0; fractional, r = a). In
contrast, the difference model predicted suppression even in RF
target-absent conditions; however, it could not adequately model
both the RF target-driven and RF target-absent effects simulta-
neously. As seen in Figure 7, the full normalization equation
(Rax = 3.86; 0 = 1541 pl; B = 87.6 ul) characterized LIP re-
sponses in both conditions, which is evident when the best-fit
normalization model (black lines) is compared with the popula-
tion responses (red and blue points). Examination of AIC values
confirmed that the full normalization model best explained the
MED-RF condition data (AIC;,., = —31.8; AICy¢ = —26.5;
AIC = —21.9; AIC —70.9). Thus, like the in-

norm_simp norm_full —

Divisive normalization predicts value modulation. Shown is predicted versus observed firing rate data under different
proposed value coding algorithms: 4, fractional; B, difference; C, simple divisive normalization; D, full divisive normalization. Left
column, Predictions when model parameters were fit separately for each individual neuron, for all neurons across the LOW-RF,
MED-RF, and HIGH-RF conditions. Middle column, Predictions when model parameters were fit to the population data in the
MED-RF condition. Right column, Predictions when model parameters were fit to the population data across all conditions. Each
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dividual neuron data, the population LIP
response was best characterized by the full
divisive normalization model. To exam-
ine the predictive power of the models, we
performed leave-one-out cross-validation
(see Materials and Methods); of the four
different models, full divisive normalization
produced the lowest mean squared error
in out-of-sample prediction (MSEg; =
0.0483; MSEyoc; = 0.0439; MSE,1mm simp =
0.055% MSE, o = 0.0401), with the
next best model (fractional) generating
~10% higher mean squared error. To-
gether, these results indicate that full divisive
normalization outperformed the alternative
models in terms of both response character-
ization and predictive power.

If normalization provides a general
framework for relative value coding, it
should also describe how LIP activity re-
sponds to the value of targets within the
RF. To explore the robustness of the divi-
sive normalization model directly, we
next fit the different value models to neu-
ral data combined across the different
value conditions (MED-RF, HIGH-RF,
and two LOW-RF conditions). The pre-
dictions of the best-fit models are shown
in Figure 7 (full divisive normalization
model) and Figure 8 (fractional, differ-
ence, and simple normalization models).
Note that activity is plotted against the
quantity 1/(V;, + V) to emphasize the
behavior of the fractional model: at con-
stant V,,,, the fractional model predicts a
linear response, whereas the normaliza-
tion models predict a saturating response
where the degree of curvature is con-
trolled by the parameter 0. When exam-
ined across all data conditions, the full
divisive normalization model explained the full data set (R* =
0.961) far better than the fractional (R? = 0.730), difference (R* =
0.601), or simple normalization (R* = 0.219) models (Fig. 6,
right column). As shown in Figure 7, the full divisive normaliza-
tion model (gray lines; R, = 2.96; 0 = 1161 ul; B = 92.6 ul)
accurately predicted population activity changes induced by both
changing context outside the RF (changes along the curves) and
changing value within the RF (changes between the curves). The
failure of the alternative models is evident in Figure 8, which plots
the observed data and the best-fit fractional, difference, and sim-
ple normalization models examined across all conditions, in the
same coordinates used in Figure 7. As noted previously, the frac-
tional model failed to account for background suppression in the
absence of an RF target, evident as a horizontal line in predicted
activity (Fig. 6A); furthermore, the predicted linear responses
correspond poorly to the observed nonlinear activity. The differ-
ence model predicted some RF target-absent suppression but
performed particularly poorly in characterizing the range of re-
sponses to different V;,, conditions. In the simple normalization
model, the constraint requiring zero activity in RF target-absent
conditions prevented the model from accurately predicting re-
sponses at other V;,, magnitudes. Examination of AIC values con-
firmed that, of the examined models, the full normalization model

Fractional
model

Difference
model

Simple
normalization
model

Full
normalization
model
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wl; fit parameters for all V,, value conditions together are as follows: R ., = 2.96, o = 1161
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max

best characterized the population data, even when accounting for
the additional parameter (AIC;,. = —131.3; AIC;; = —120.4;
AIC, i _simp = —101.5; AIC, 1, g = —183.0). Finally, in cross-
validation analysis of the combined neural data, the full divi-
sive normalization model performed with the highest accuracy in
out-of-sample prediction (MSEg;¢ = 0.0482; MSEg,,.. = 0.0440;
MSE, o0 simmp = 0:0593; MSE, o1, g = 0.0393).

To examine the implications of different value representa-
tions, we plot in Figure 9 the predicted activity of the fractional
and full divisive normalization models as a function of both V,
and V_; for comparison, we also show an absolute value repre-
sentation (FR o« V). Although both the fractional and normal-
ization models predict saturating responses as RF value increases,
under normalization the system shifts between representing ab-
solute and relative value due to the presence of the semisaturation
term o in the denominator. Specifically, the normalization model
predicts that activity will primarily reflect RF reward when total
value (V,, + V) is small (V << ), and the term o dominates
the denominator. This coding approximates an absolute value
code, where the value of extra-RF targets exerts little control over
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Figure8. Model comparison of alternative value representations. Symbols plot average LIP
population activity as a function of the quantity 1/(V;, + V,,); each point represents a specific
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simultaneously. For visualization, the model predictions for different RF target values are plot-
ted as separate lines, as shown in the legend; colors are matched to the corresponding observed

data points.

activity (Fig. 9, vertical shading and vertical contour lines). How-
ever, at intermediate total values (V ~ o), the denominator in the
normalization model depends on both total value and o, and
activity grows increasingly sensitive to choice context, similar to a
fractional model (Fig. 9, angled shading and angled contour
lines). At much larger values (V >> o), the divisive normalization
model approaches pure fractional value coding as o becomes
negligible. Thus, divisive normalization implements an adaptive
form of gain control, adjusting the input—output function from
absolute to relative value as total value increases.

Discussion

We show here that LIP encodes value in a context-dependent
manner, incorporating the values of both a saccade to the RF and
other alternative saccades. In a two-target task explicitly manip-
ulating V;, or V_,, LIP activity encoded a relative rather than
absolute function of saccade value; in a three-target task spanning
a more complete sample of value space, model comparison re-
vealed an underlying divisive normalization computation. Thus,
individual parietal neurons integrate information from RF-
driven activity with that involving surrounding regions of visual
space, a contextual effect analogous to phenomena in early visual
cortex associated with extra-classical receptive field effects.
Across the network of neurons in LIP, suppression of RF target
activity by extra-RF targets implements a value-based scaling
of the most active neurons, a form of adaptive gain control.
Whereas the functional implications of background activity sup-
pression in the absence of an RF target are less clear, given the low
firing rates, such suppression suggests that the inhibitory mech-
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scales parietal activity. In a covert visual
1.0 search task, LIP neurons show graded ac-
tivity that declines with the number of
presented distractors (Balan et al., 2008).
Similarly, in a motion-discrimination task
with varying numbers of alternatives,
LIP activity is lower when four choices
o are presented rather than two choices

(Churchland et al., 2008). The strongest
effect of choice set size in the latter task
occurs at the beginning of the decision
process, both before and during motion

stimulus viewing, but eventually activity
reaches a similar threshold level before
choice. These temporal dynamics are con-
sistent with the timing of value represen-
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Figure9. Functionalimplications of divisive normalization on value coding. Predicted LIP population activity as a function of I,

and V. in absolute value (left), full divisive normalization (middle), and fractional value (right) models. Model parameters were
obtained from the best-fit to the three-target neural data, in all conditions (divisive normalization parameters: R
1161 ul, B = 92.6 ). Note that the absolute value model (FR = a + b X V/;,) was excluded from the primary analyses because
it cannot explain contextual value effects butis included here for comparison with the normalization representation. The scale bar
represents normalized population activity. When values are low relative to o, activity approximates an absolute value code,
evident as near-vertical lines in the contour plots (bottom left). When values are higher, value coding becomes more relative
similar to the fractional representation, evident as angled shading in the contour plots (bottom right).

anism underlying normalization is not limited to stimulus-
driven neurons but functions throughout the entire parietal
network.

These results show that the value of targets situated far from
the RF can modulate both stimulus-driven activity and activity
in the absence of direct feed-forward RF drive. In the three-target
task, extra-RF targets were far from the RF center (average, 35°)
and located primarily in the opposite visual hemifield. Targets at
these locations did not activate the recorded neuron when pre-
sented alone, consistent with a contralateral visual bias in LIP
(Ben Hamed et al., 2001; Patel et al., 2010). Across the popula-
tion, suppression was independent of the relative spatial location
of the extra-RF target, supporting a modulation driven primarily
by target value rather than spatial location. This is consistent with
the two-target task results, where different values in the same
extra-RF location differentially modulated LIP activity. However,
visuospatial parameters may influence suppressive interactions
when alternative targets are situated very close to the RF (analo-
gous to stimulus presentation in the suppressive surround of
visual cortical neurons). In our spatial analysis, alternative targets
closer to the RF yielded slightly higher suppression effects that did
not reach significance (p = 0.058), leaving open the possibility
that such interactions may become important at nearer distances
than those examined here. Such an effect would be expected if
divisive inhibition is mediated by lateral connections as suggested
for other cortical regions, but further study is required to deter-
mine the source of this normalization.

By applying a specific algorithmic model to value coding, our
results extend previous findings about the influence of both rel-
ative value and number of choice options on parietal activity.
Initial results demonstrating LIP modulation by RF target value
were consistent with a relative reward code; suggested represen-
tations included fractional (Platt and Glimcher, 1999; Sugrue et
al., 2004) or differential (Corrado etal., 2005) value, but previous
studies did not examine this issue directly by explicitly manipu-
lating the value of alternative saccadic options. A separate line of
evidence suggests that the number of alternatives (choice set size)

tation in LIP, which predominates early in
the decision process but is eventually out-
weighed by the representation of choice
(Platt and Glimcher, 1999; Louie and
Glimcher, 2010). One important predic-
tion of the normalization model is that
modulation by the number of alternatives
should reflect not simple set size but the
underlying effect of target uncertainty on
value; such a relationship exists in the su-
perior colliculus, where target uncertainty mediates the inverse
relationship between the number of alternatives and activity
(Basso and Wurtz, 1998). A normalized value representation pro-
vides a single integrated mechanism for the dependence of
decision-related neural activity on both relative value and set size.

The implementation of relative value coding via divisive nor-
malization rather than strict fractional value has implications in
several domains. First, a divisive normalization representation
produces a value coding that is functionally distinct from frac-
tional value (Fig. 9). As a result of nonlinearity introduced by the
semisaturation term (o), the divisive normalization representa-
tion can produce responses on a continuum between absolute
and relative value coding; this form of adaptive gain control de-
pends on the relative balance between total value and o. This
behavior parallels the dependence of response amplitude on
stimulus contrast in normalization models of V1, where the over-
all level of contrast determines between a monotonic or saturat-
ing response (Carandini et al., 1997). The value of o derived from
the present study is ~1000 ul, a quantity large enough at normal
volumes of reward to significantly shift value coding away from a
strict fractional representation and toward a richer function of
value context. Note that the biophysical implementation of o
remains unknown and it is possible that the circuits underlying
value representation may also modulate o to tune adaptive gain
control. Second, these results link value coding in parietal cortex
to a well characterized phenomenon in visual cortex. Divisive
normalization was initially proposed to explain a number of non-
linear responses in striate cortex, including cross-orientation
suppression, surround suppression, and contrast saturation.
However, it has been suggested that normalization might be fun-
damental in other sensory as well as nonsensory brain areas
(Heeger, 1992). Normalization characterizes stimulus interac-
tion within the V1 RF (Carandini and Heeger, 1994; Carandini et
al., 1997), as well as interactions between the RF center and non-
classical suppressive surround (Cavanaugh et al., 2002), and gov-
erns both single neuron and population responses (Busse et al.,
2009; MacEvoy et al., 2009). Furthermore, stimulus interactions
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in visual areas beyond V1 are also governed by normalization,
such as the responses to multiple motion stimuli in area MT
(Britten and Heuer, 1999; Heuer and Britten, 2002) and multiple
object stimuli in inferotemporal cortex (Zoccolan et al., 2005).
Our results provide the first example of normalization outside a
strictly sensory area and the most anterior extension of divisive
normalization coding in the dorsal stream. Unlike previous elec-
trophysiological studies, these findings support a normalization
based not on stimulus characteristics, such as contrast or orien-
tation, but on value. From a computational perspective, divisive
inhibition has been shown to increase the independence of neural
responses and allow for efficient encoding of sensory signals
(Schwartz and Simoncelli, 2001) and to enhance the stability of
recurrent neural networks (Chance and Abbott, 2000), leading to
the idea that divisive normalization may be a canonical compu-
tation of cortical circuits. Whereas our findings are consistent
with an algorithmic implementation of divisive normalization in
value coding, the circuit mechanisms generating this representa-
tion remain unknown; such computations may emerge from fun-
damental properties of the neural circuit architecture (Kouh and
Poggio, 2008), and identifying the underlying mechanism re-
mains a critical direction for future work.

One important issue is the relationship between the observed
value-guided normalization effects and attentional allocation. In
addition to responses related to target selection and action value,
LIP neurons also show activity associated with the allocation of
covert attention, driven by intrinsic visual salience or task rele-
vance (Bisley and Goldberg, 2003, 2010; Oristaglio et al., 2006).
One intriguing possibility is that relative reward representation
may be related to attentional processing through a common un-
derlying divisive circuit mechanism. In addition to sensory pro-
cessing, the divisive normalization model has been used to
characterize attentional effects in visual cortex (Reynolds and
Heeger, 2009). In their model, Reynolds and Heeger (2009)
showed that a normalization computation combining stimulus
and attentional activity with a divisive suppression explains a
diverse array of experimental results and reconciles alternative
models of attention. A critical feature of their model is the imple-
mentation of divisive suppression after the combined effect of
stimulus and attentional drive, suggesting that attention may op-
erate by tuning inputs to existing divisive normalization cir-
cuitry. This idea is supported by recent recordings in V4, in which
attention modulates the gain of existing center-surround inter-
actions, with increased suppression of RF activity when attention
is directed toward stimuli in the RF surround (Sundberg et al.,
2009). An attractive unifying hypothesis is that both reward and
attention modulate neuronal activity by modulating the inputs to
the normalization circuit, before divisive suppression. Although
value and attention may function in a similar manner by tuning
normalization inputs, this does not necessarily imply that they
always function simultaneously and identically. For example, ac-
tion value modulation may be important primarily in decision-
related areas like LIP, whereas attentional modulation may need
to function along the entire range of sensory areas (V1, MT, V4).
Nevertheless, divisive normalization appears to serve as a com-
mon computational algorithm that implements the effects of
both processes on neuronal activity.

Reward- and attention-based effects on neural activity are dif-
ficult to dissociate (Maunsell, 2004), raising the possibility that
value-guided normalization may be itself mediated by attentional
processes, with less attention allocated to the RF location as alter-
native values increase. However, several aspects of the current
results are not easily reconcilable with a simple attentional effect.
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First, we find a monotonic relationship between the value of the
target in the RF and LIP activity, as well as a parametric suppres-
sion related to the value of extra-RF targets. Most studies of at-
tentional modulation in visual cortices instead show a binary
change in modulation when spatial attention is cued either to the
RF or outside the RF (Motter, 1993; McAdams and Maunsell,
1999; Bisley and Goldberg, 2003), consistent with a stepwise ef-
fect of attentional allocation on neuronal responses. Although
there exists some evidence from tasks varying task difficulty that
attentional modulation may be graded (Spitzer et al., 1988; Chen
et al., 2008), no previous evidence exists for such a continuous,
parametric effect of attention on neuronal responses. Second, we
find that LIP activity in the absence of an RF target is differentially
suppressed according to the value of a single extra-RF target,
despite the fact that spatial attention is presumably localized to
the extra-RF target in both cases. Whereas we cannot exclude a
more complicated model of attention generating these results,
such a model would require both a divided attentional allocation
across at least three locations and an additional motivational or
vigilance component to account for single extra-RF target results.
Finally, when attention and parietal activity are examined to-
gether, LIP appears to specify the locus of attention rather than
vary parametrically with the behavioral attentional advantage
(Bisley and Goldberg, 2003, 2006). These results suggest that LIP
activity, rather than mirroring the level of spatial attention, serves
as a priority map to guide the attentional allocation process itself
(Bisley and Goldberg, 2010).

The causal role of normalized value coding in generating
context-dependent choice behavior remains to be explored, but
these results suggest a possible explanation based on the inherent
noise in cortical population codes. Cortical neurons exhibit con-
siderable variability in their spiking activity, and information is
likely represented by distributions of neurons and spiking rates
(Tolhurst et al., 1983; Shadlen and Newsome, 1998; Pouget et al.,
2003). In a normalized value system, the mean firing rates repre-
senting option values decrease as the number of alternatives (or
the value of an irrelevant option) increases. Although the rank
ordering of option desirability would not change, uncompen-
sated variability (e.g., additive noise or correlated activity) could
decrease the discriminability between the options as the distribu-
tions are normalized, leading to stochastic choice behavior that is
dependent on the composition of the choice set (Tversky and
Simonson, 1993; Shafir et al., 2002; Bateson et al., 2003). These
results suggest that a fuller understanding of the neural mecha-
nism of normalized value representation may provide new in-
sights into decision making in complicated choice situations.
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