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Abstract
This chapter summarizes the evidence for localized signaling domains in mast cells and basophils,
with a particular focus on the high affinity IgE receptor, FcεRI, and its crosstalk with other
membrane proteins. It is noteworthy that a literature spanning 30 years established the FcεRI as a
model receptor for studying activation-induced changes in receptor diffusion and lipid raft
association. Now a combination of high resolution microscopy methods, including
immunoelectron microscopy and sophisticated fluorescence-based techniques, provide new insight
into the nanoscale spatial and temporal aspects of receptor topography on the mast cell plasma
membrane. Physical crosslinking of FcεRI with multivalent ligands leads to formation of IgE
receptor clusters, termed “signaling patches,” that recruit downstream signaling molecules.
However, classes of receptors that engage solely with monovalent ligands can also form
distinctive signaling patches. The dynamic relationships between receptor diffusion, aggregation
state, clustering, signal initiation and signal strength are discussed in the context of these recent
findings.
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Introduction
Engagement of the high affinity IgE receptor, FcεRI, is the principal physiological stimulus
for mast cell degranulation. This tetrameric receptor is composed of the IgE-binding α
subunit, two γ subunits and a tetraspan β subunit. There are a total of three ITAMs
(immunoreceptor tyrosine-based activation motifs), one in the carboxy terminus of the β
subunit and one in each of the paired γ subunits. Activation occurs when IgE binds to
polyvalent antigens, crosslinking a minimum of two FcεRI-IgE complexes thereby initiating
a tyrosine kinase cascade that triggers histamine release and de novo synthesis of
leukotrienes, prostaglandins1 and an impressive list of cytokines and chemokines.2
Biochemical details of this cascade have been the subject of many reviews, including
Gilfillan and Rivera 3 and other chapters in this volume.

In the 25 yr period spanning from 1975–2000, the FcεRI was the subject of pioneering
studies that measured the mobility and behavior of membrane proteins. Emerging
biophysical techniques, such as fluorescence recovery after photobleaching (FRAP), post-
field relaxation after in situ electromigration and time-resolved phosphorescence anisotropy,
were used to arrive at estimates of lateral diffusion rates of 1.5–4 × 10−10 cm2/s for resting
receptors. 4,5 Rotational correlation values ranged from 23–65 ms 6–8, with slower values
attributable to measurements at low temperatures. In these early studies, incomplete
recovery from photobleaching was already recognized as an indication that a small fraction
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of receptors were immobile in resting cells, with marked increases in the immobile fraction
after antibody-mediated crosslinking and the concomitant observation of microaggregates
and patches visible in the fluorescence microscope.4,9 Rotational mobility was also
markedly restricted after receptor crosslinking.10 These and related studies led to a number
of important hypotheses that are still being vigorously tested today. These include revision
of classical Brownian diffusion models of cell membrane proteins to explain restricted
lateral mobility11 and the widely-held concept that FcεRI immobilization must be necessary
for signal initiation.12,13 Antigen valency and structure, particularly as it relates to the
orientation and distance of FcεRI subunits within aggregates, also continues to be a highly
relevant topic 14 that is strongly linked to both receptor immobilization and signaling
efficiency.

Microdomains, Rafts and Islands
For almost forty years, the fluid mosaic model has provided a conceptual framework for
plasma membrane structure.15 This model, which integrated many studies from the
preceding decade, viewed cellular membranes as two-dimensional solutions composed of
integral membrane proteins within a lipid matrix. It proposed that most membrane
constituents diffuse rapidly and are randomly arranged, but it acknowledged the possibility
of ordered membrane regions based on early EM images of clustered proteins. Variations of
this model arose however, beginning with the terms “lipid rafts” and “liquid ordered and
disordered domains”. 16–18 Seminal studies by several groups working in the mast cell field
provided compelling evidence for the lipid raft hypothesis, based in large part upon the
recovery of FcεRI and its signaling partners or regulators in light fractions of sucrose
gradients after stimulation. 19–22 While the popularity of the lipid raft concept energized the
membrane biology community, artifacts associated with merging of compartments by
detergent treatment may have also led to misconceptions. This is now the prevailing view in
the field, as evidenced by recent reviews stressing the heterogeneity of the membrane and
the likelihood that microdomains are both small, readily exchangeable and complex. 23–26

Clearly, more sophisticated and direct measurements are needed to both refine and correct
this model.

An alternative view has re-emerged for membrane organization, referred to as the “protein
islands” model. 27,28 It is similar to the predictions of Yechiel and Edidin,29 who proposed
that “plasma membranes are organized into protein-rich lipid domains, separated by a
protein-poor lipid continuum.” Importantly, the protein islands model explains membrane
heterogeneity, based upon the strong segregation of distinct protein subpopulations with
islands, and acknowledges rich association with cholesterol and cytoskeletal elements. The
model revives appreciation for the influence of local protein density on diffusivity30, a
concept that is reinforced by evidence that protein-rich confinement zones transiently trap
diffusing membrane proteins on T cells.31

Electron Microscopy Provides a Bird’s Eye View of FcεRI Signaling Patches
Scanning electron microscopy (SEM) provided the first nanoscale resolution images of
immuno-gold labeled FcεRI “patches”, 32 that were hinted at in the early
immunofluorescence experiments. 4 The size of patches, and the time course for their
formation, was shown by SEM to be dependent on antigen dose.33 By 2000, our group had
developed the technology to prepare native membrane sheets ripped from rat basophilic
leukemia (RBL-2H3) cells at various stages of activation.34 With the improved resolution of
transmission electron microscopy (TEM), these preparations could be labeled more
efficiently by smaller nanogold particles and by other novel nanoparticles such as quantum
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dots.35 The sheets also permitted access to the cytoplasmic face of the membrane for
labeling intracellular proteins recruited during signaling.

Figure 1 provides typical views of FcεRI signaling patches before (1A) and after 2 min
stimulation with antigens with different valency (1B,C). Cells in Figure 1B were activated
with DNP24-BSA (0.1 μg/ml) while cells in Figure 1C were stimulated with a PEG-based
flexible trivalent DNP ligand (10 nM). Note that, even in the resting state, receptors are not
completely random (Fig 1A). Small clusters, ranging from 2–5 receptors, are typically found
in addition to singlets. FcεRI clusters generally increase in size after antigen-mediated
crosslinking, 33 although the increase is somewhat smaller in response to ligands of low
valency or even with low concentrations of polyvalent antigens.36 However, comparison of
secretory responses for the two antigen conditions illustrated here (60–70% for DNP24-BSA
versus 10–30% for the PEG-trivalent ligand) makes it clear that cluster size does not predict
signaling output.

To further drive this point home, crosslinking with a panel of divalent antibodies against the
FcεRI α subunit yielded similar, small cluster sizes.37 Importantly, only the signaling-
competent antibodies showed dissociation from Lyn and recruitment of significant amounts
of Syk tyrosine kinase to these receptor clusters.37 Together with other reports,14 these data
support the conclusion that dimerizing agents can activate the FcεRI, provided that
crosslinking induces appropriate orientation or conformational changes in pairs of receptors.

Of note, the large signaling patches induced by multivalent antigen are often bordered by
coated pits poised to internalize receptors (Figure 1B, arrow). This observation is highly
reproducible, despite the fact that depletion of clathrin fails to inhibit FcεRI endocytosis
after activation (ref 38 and our unpublished results). We speculate that, like the BCR,39

compensatory non-clathrin mediated internalization pathways ensure that highly crosslinked
FcεRI are removed from the mast cell surface.

GPCRs Bound to Monovalent Ligands also Form Signaling Patches
The N-formyl peptide receptor (FPR) is naturally co-expressed with the IgE receptor on
human basophils. In a study of RBL-2H3 transfectants stably expressing the FPR, this
GPCR was observed to form large clusters in response to addition of monovalent ligand.40

Ligand-bound FPR cluster rapidly and recruit the heterotrimeric G-protein, Gi. FPR are
slowly endocytosed and, by 5 min, most clusters remaining on the surface contain arrestin
and very little Gi. We also found that, when ligands for both FPR and FcεRI were added
simultaneously, there was a marked increase in colocalization of the two receptor clusters
(Fig. 1E). This study suggested that crosstalk between the tyrosine kinase pathway of the
FcεRI and the G-protein-coupled pathway of the FPR occurs locally. Barisas and colleagues
have proposed that crosstalk between FcεRI and the inhibitory receptor, MAFA, may also
occur in rafts or specialized domains.41 Together with evidence for clustering of growth
factor receptors.42,43 These data also support the notion that receptor clustering is not solely
a property of physical crosslinking by multivalent ligand (as is the case for FcεRI) but a
more generalized architecture for receptors during active signaling.

Signaling Patches as Special Features of the Protein Island Network
Experiments comparing the distributions of all proteins in T cell and RBL membranes shed
some light on the issue of colocalizing receptors.27 When bulk membrane proteins were
labeled for electron microscopy with probes targeted at SH-groups, the gold label
concentrated in dark regions of membrane that also label for cholesterol. Furthermore, non-
raft and raft markers were constructed by expressing tagged versions of N-terminus of Lck
with and without mutation of the palmitoylation sites. Statistical analysis using the Ripley’s
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K function confirmed that the two markers were strongly segregated. These results led us to
propose a new model for membrane organization, where proteins organize into complex,
cholesterol-rich “islands” in a largely lipid sea. This hypothesis was recently supported by
the sophisticated PALM technique (photoactivation localization microscopy).28 We
speculate that signaling patches represent specialized domains within islands that initiate,
amplify and control signal propagation in a spatially restricted manner.

Single Particle Tracking Allows Direct Observation of Diffusing FcεRI
We have recently developed a method to directly observe the diffusive behavior of
individual FcεRI, before and after crosslinking with ligands of different valency. As
described in our recent publications, 35,36 monovalent quantum dot (QD)-labeled IgE can be
reliably prepared and used to “prime” FcεRI at sparse densities that allow for identification
and tracking of individual QD-IgE-receptor complexes diffusing on the surface of live cells.
The use of QDs provides several advantages. Their high brightness and photostability allows
for long-term single molecule imaging. QDs have broad excitation, yet narrow emission,
spectra allowing for simultaneous excitation and detection of spectrally distinct QDs using a
single excitation wavelength and filter-based detection. The use of two- or four-color
emission beam splitters and sensitive emCCD cameras permits fast and well-resolved
collection of fluorescence from 2–4 spectrally distinct probes simultaneously at the single
QD level.

Using single particle tracking, we have characterized the diffusive behavior of FcεRI (Figure
2A), which ranges from highly mobile to confined to immobile. Temperature plays a
significant role, with ~ 2 fold faster diffusion and larger corral sizes measured at
physiological temperature (35–37°C) as compared to room temperature.35 Even in the
resting state, a small fraction of receptors are found to be at least transiently immobile
(classified by a diffusion coefficient < 0.001μm2/s). Individual receptors can switch rapidly
and apparently randomly between these diffusion states (see movies in ref 35).

The ability to distinguish two or more QD colors was a critical factor in determining
whether resting FcεRI, observed by EM to be distributed in small clusters, interact with each
other sufficiently strongly to drive the clustering. The best evidence for this possibility
would be the detection of “correlated motion” over a significant period of time. As shown in
Figure 2C–D, we often observe QD-labeled IgE receptors in close proximity. Figure 2C
illustrates a case of two receptors which remain close (<500 nm) for several seconds.
However, the plot at the right shows that their movements remain uncorrelated. In Figure
2D, two receptors move close to each other for a short time then separate, moving over 2
microns apart before reversing directions and crossing paths again. Analysis of >1,000
close-approach events imaged at 100 frames/sec revealed that correlated motion was not
occurring, indicating that the resting receptors do not form a stable complex.35 Thus, the
most obvious interpretation is that resting FcεRI can briefly share residency in the same
microdomain, but that their associations (if any) during this residency period are very weak.
This is consistent with time-resolved phosphorescence polarization studies, which concluded
that the rotational mobility of resting receptors is neither hindered by direct association with
the cytoskeleton or by aggregation.10

Modeling the Ins and Outs of Resting Receptor Clusters
We have used stochastic modeling approaches to test the possibility that transient residency
of resting receptors in islands or rafts provides a plausible explanation for their non-random
distribution. For these simulations, the 2-D membrane is represented by a Cartesian plane
with a periodic boundary such that receptors that leave the plane re-enter on the opposite
side of the membrane. Species in the simulation are considered as individual particles or
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agents that move at each time step under a Constrained Brownian Motion algorithm.44 The
membrane can be further subdivided into domains that are lipid-rich (fast diffusion for
proteins) and protein-rich (2-fold slower diffusion for proteins in the simulation) (Figure
2E). Although we first applied this technique to the EGFR, the approach is applicable to
virtually any resting membrane receptor (including FcεRI) provided diffusion rates are
experimentally defined. Even if membrane proteins begin the simulation at random
locations, a pattern of clustering will form that closely matches that observed by
immunoelectron microscopy and similarly passes the Hopkins test (Figure 2F). We conclude
that, even when receptors are in constant motion, short duration trapping in protein-rich
microdomains (islands) can result in clustering.

Consistent with this hypothesis is prior evidence that FcεRI diffusion is profoundly
influenced by protein crowding. Thomas et al30 found that FcεRI slowed significantly within
densely populated poles that developed on RBL cells exposed to electric fields. In that
study, significant effects were revealed only on membranes of osmotically shocked RBL
cells, which released constraints of the cortical cytoskeleton. Other experiments during the
early 1990s demonstrated that crowding slows diffusion of membrane receptors in artificial
bilayers.45,46 Of course, an intact cytoskeleton also exerts a strong influence on receptor
diffusion, by serving as physical barriers or corrals35 and by anchoring protein islands.27

The cytoskeleton will be further discussed in sections below.

Immobilization of Crosslinked FcεRI is Dependent on Dose and Antigen
Valency

Tracking of QD-IgE bound receptors permitted us, for the first time, to observe the
transition from resting to crosslinked receptors in real time (Figure 3A). As predicted, based
upon prior reports of FcεRI immobilization after crosslinking,4,12,47 we observed that
stimulation with modest to high doses of highly polyvalent antigen (DNP24-BSA, 0.1–10
μg/ml) resulted in rapid immobilization (Figure 3A). Our real-time assay was directly able to
determine the kinetics of this change in mobility, found to occur in less than 20 s. Somewhat
unexpectedly, we found that low doses of the same highly multivalent antigen failed to
induce immobilization despite robust stimulation of degranulation.36 We similarly found
that even high doses of low valency antigens (DNP2-BSA, DNP4-BSA), also shown to
induce degranulation, did not cause receptor immobilization (Figure 3B).

These results firmly lead to the conclusion that immobilization is not a requisite event for
signal initiation from the crosslinked FcεRI. However, it is intriguing to consider this in the
broader context of previous work using structurally defined ligands and dimerizing
antibodies for FcεRI stimulation (reviewed in ref 14). There are strong correlations between
signaling potency and the predicted oligomeric state of crosslinked receptors. Dimerizing
reagents, including both divalent ligands and antibodies directed at either the FcεRI α
subunit or at IgE, exhibit a wide range of stimulatory capacity. It is possible for such
reagents to induce immobilization in the absence of signaling, at least as measured by
degranulation and Ca2+ mobilization.48 Bivalent ligands with flexible PEG-based spacers
fail to stimulate measurable secretion49 and can even be inhibitory.50 In general, higher
oligomers induced by higher valency antigens – or further crosslinking of antibody-bound
complexes – generate better signaling from the RBL-2H3 cell line over a broad dose
response range. A number of factors have been implicated, including overriding constraints
imposed by cyclic dimers as well as the improved geometry, spacing and orientation of
receptors in large aggregates (see discussion in ref 14). Lateral forces may also be a factor,
based upon observations that liposomes or lipid bilayers bearing haptens for IgE can recruit
large numbers of receptors to the adhesive surface and can induce weak but measurable
secretory responses.51–53 IgE-FcεRI complexes engaged by lipid-conjugated monovalent
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hapten form a “synapse” and induce degranulation while remaining highly mobile, further
demonstrating that immobilization is not required for signal initiation.53

We note that maximal secretory responses of bone marrow derived mast cells (BMMC) and
human basophils occur over a much narrower range even for the highly polyvalent
antigens,36,54 often abruptly dropping off at modest concentrations of crosslinking reagents.
This phenomenon has been referred to as “high dose inhibition” and may be attributed to
active negative regulatory mechanisms that dominate in FcεRI-bearing primary cells. In
support of this, we found that receptor immobilization can trigger internalization even in the
absence of signaling.36

The Influence of the Cortical Cytoskeleton
The actin cytoskeleton has long been proposed to form “corrals” or “picket fences” capable
of restricting movements of membrane proteins.56–58 By coupling QD-IgE single particle
tracking with TIRF (total internal reflection microscopy), we were able to directly test this
widely-held theory.35 To perform this series of experiments, RBL cells were selected that
stably express GFP-actin. The movements of resting QD-labeled IgE receptors were then
tracked relative to actin filaments at the lightly adherent surface of live cells settled on
coverslips. Images were captured at a rate of 35–100 frames/second. As illustrated in Figure
3C, QD-labeled receptors were shown to be markedly restricted by the network of actin
cables juxtaposed to the inner membrane. Moreover, because the actin network is dynamic,
the shapes of the corrals were shown to be constantly changing and therefore frequently
permit QD-labeled receptors to “slip” between openings to previously inaccessible
compartments.

The GFP-actin cables, seen by TIRF, span distances of several microns. We have used high
resolution microscopy techniques to capture fine details of cortical cytoskeletal elements
that are too fine to resolve in the fluorescence microscope, even in TIRF mode that helps to
eliminate out-of-focus light.59,60 The image in Figure 3D shows the topographic detail of the
cytoplasmic face of a hydrated membrane sheet prepared from an RBL cell. It was acquired
on the AFM (Atomic Force Microscope) of our collaborator, Alan Burns, at Sandia National
Laboratory. The image is pseudo-colored to indicate heights ranging from 5–6 nm (dark red,
the width of a lipid bilayer) to 30 nm (hot yellow) above the substrate. Raised domains dot
the landscape and are connected by many thin filaments. This image, and others obtained on
the transmission electron microscope (see cables in the images in Figure 1), led us to
conclude that the cortical cytoskeleton links protein islands in the RBL membrane. We
found that labels for actin and myosin do not uniformly label the fine meshwork. 59 Instead
actin and myosin are usually concentrated at junctions in the network. This leads us to
speculate that actin bundles are only a minor fraction of the network, providing an
explanation for the fact that latrunculin treatment only modestly enhances the mobility of
molecules in single particle tracking experiments.61,35 Lillemeier and colleagues27 found
that protein islands are smaller but persistent in T cell membranes when their cytoskeletal
tethers are disrupted by latrunculin treatment. Dense cytoskeletal networks or direct
associations with crosslinked FcεRI may actually limit the signaling process, as suggested
by the work of Seagrave and Oliver33 and Holowka and Baird.62 Seagrave and Oliver63

noted that cytochalasin treatment reduced the size of FcεRI aggregates observed by SEM,
leading to the hypothesis that very large aggregates signal poorly.
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Intracellular Protein-Protein Interactions Provide an Additional Mechanism
to Stabilize Signaling Patches: the Case of LAT

Like other immunoreceptors, signal propagation following FcεRI crosslinking involves the
recruitment of a large number of proteins that contain binding motifs, such as SH2 (src
homology 2), SH3 (src homology 3), PH domains, PTB domains and others.3,64 Large
macromolecular complexes can form based on these interactions, with the potential to
induce aggregation and stabilize clusters of receptors and other signaling proteins. Goldstein
and colleagues have used mathematical modeling to validate intracellular cross-bridging as a
mechanism for growth and stabilization of large clusters of the scaffolding protein, Linker
for Activation of T cells (LAT).65 The model is based upon the ability of Grb2 to bind via
its SH2 domain to phosphorylated LAT and to two molecules of SOS through its two SH3
domains.66,67 Thus multivalent, cooperative protein-protein interactions that propagate at
the cytoplasm-membrane interface may explain, in large part, the observation that LAT
clusters markedly increase in size following FcεRI crosslinking59 or TCR activation.28,67 It
seems likely that this paradigm will be broadly applicable to other transmembrane proteins
that participate in complex signaling cascades.

What about Lipids?
The local lipid environment of immunoreceptors remains enigmatic. In 2002, Jacobson and
Anderson proposed that membrane proteins might be surrounded by a lipid shell.68 Proof for
this attractive concept has eluded investigators to date, mostly because of technical
limitations. However, evidence for strong lipid association with FcεRI dates back to the
work of Rivnay, Metzger and colleagues.69,70 The addition of lipids to detergent micelles
delayed the slow dissociation of FcεRI subunits, with the best protection provided by
dipalmitoylglycerol and cholesterol.71

If a lipid shell envelopes FcεRI, cholesterol is perhaps our best candidate. However, results
from multiple laboratories remain complex and, in our opinion, controversial. For example,
RBL cells depleted of cholesterol after mBCD treatment show profound defects in
membrane topography, including widespread “flat” clathrin arrays and reduced overall
height of all membrane domains.60 These broad effects make it difficult to interpret differing
reports that cholesterol depletion either inhibits the entire FcεRI tyrosine kinase cascade72 or
has little effect on FcεRI-induced phosphorylation but differential effects on calcium
mobilization and degranulation. 73,74

We have focused on alternative approaches to evaluate the lipid environment of FcεRI in
resting and activated states. We previously made use of the capabilities of X-ray spectral
electron microsopy,75 where specific elements in the sample emit characteristic X-rays when
excited by the electron beam and the intensity of the signal relates to its concentration. Data
can be acquired in scanning mode on STEM instruments, reporting pixel-by-pixel values for
specific elements at nanometer resolution; operating in TEM mode, one also can acquire a
more traditional image of the sample that is based on contrast. We focused on the
distribution of osmium, a contrast agent commonly used in electron microscopy due to its
ability to react with double bonds in lipids. As shown in Fig. 4A, this method revealed that
membranes concentrate osmium in patches on the membrane; and this observation strongly
suggested that lipids with double bonds (a category that includes cholesterol) were
unequally distributed.

Our next approach was to isolate plasma membrane-derived vesicles for lipidomics analysis
in collaboration with Robert Murphy (Univ. of Colorado), with a primary goal of avoiding
detergent expected to disrupt native structure. Our strategy was to crosslink IgE receptors or
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GPI-anchored Thy-1 on the surface of RBL cells with specific antibodies, forming large
patches enriched in either activated receptors or aggregated Thy-1.76 Cells were rapidly
chilled and mechanically disrupted to vesiculate the plasma membrane. After a series of
steps to reduce contamination from unbroken cells, etc, we then used immunomagnetic bead
isolation to isolate right-side-out vesicles containing IgE receptors or Thy-1. Enrichment
was confirmed by 2-D gel electrophoresis (to evaluate the protein content) and then samples
were prepared and sent to Denver. This process was repeated over several years for an in
depth analysis of the levels of fatty acid saturation, cholesterol levels and lipid composition.
This study generated several significant findings: 1) Both vesicle preparations contained a
complex set of plasma membrane phospholipids, as analyzed by mass spec analysis; 2)
Lipid content in vesicles immuno-isolated with anti-IgE was 50% cholesterol, compared to
less than 25% in Thy-1 vesicles (Fig. 4B); 3) Less than 50% of the fatty acids in either
domain were saturated, inconsistent with the concept of liquid ordered domains; and 4) IgE
receptor-containing vesicles contained 2–3 times more sphingomyelin and plasmalogens
than the Thy-1 domains. The plasmalogen finding is particularly intriguing, since the vinyl
ether linkage at the sn-1 position introduces a double bond that is very near the lipid head
group. Plasmalogens were also found to be enriched in lipid raft fractions containing the
EGFR.77 Although plasmalogens are widely distributed in nature, roles for these lipids
remain poorly defined. Remarkably, new mouse models with ether lipid deficiencies have
severe defects, including arrest of spermatogenesis, cataracts and deficiencies in CNS
myelination. These problems have been linked to impaired intracellular cholesterol
distribution, plasma membrane function and ER/Golgi structural changes (reviewed in ref
78). On an interesting note, mast cells from cholesterol-deficient SLOS mice exhibit
hyperdegranulation and constitutive cytokine production, which may be linked to down
regulation of Lyn acting in its negative regulatory role.79

Recently we employed new strategies to allow us to track cholesterol in live cells. Working
with Jeri Timlin at Sandia National Laboratories, we have tested several fluorescent
cholesterol derivatives in RBL-2H3 cells. Our best success is with cholesterol-18 FITC that
has a long linker for the chromophore (Figure 4C). This probe is easily tracked when
imaging in TIRF mode and forms patches that markedly travel and colocalize with FcεRI
recruited to lipid bilayers presenting monovalent, mobile ligands.53 These patches are
remarkably similar to the microclusters of TCR and BCR that travel to the well described
synapses of T cells80 and B cells.81 This was the first evidence that microclusters of
immunoreceptors are enriched in cholesterol as they move to the synapse.

It remains to be determined which of cholesterol’s biochemical and biophysical properties
predominate in the regulation of membrane architecture: its ability to influence membrane
rigidity and fluidity; its affinity for sphingolipids and disaturated phosphatidylserine;82 its
ability to bind directly to specific proteins;83,84 or its importance for membrane curvature.85

For the FcεRI, we are struck by the enigma of its association with mobile, but not immobile,
receptors at the immune synapse.53 If cholesterol comprises part of the lipid shell around
FcεRI, it must be sufficiently weak that dissociation occurs if receptors become trapped by
binding to an immobile ligand. Since receptors trapped in this way cause massive
degranulation, it also appears that cholesterol is not an absolute requirement for signal
transduction to commence.

Concluding Remarks and Future Directions
As the entry point for signaling input, the plasma membrane continues to be the focus of
intense study. Its constituents occupy a surprisingly complex 2-D environment, where
interactions are dependent on encounters in confined and constantly rearranging spaces.
Perhaps the greatest next challenge is to capture the subsecond temporal details of signal

Wilson et al. Page 8

Adv Exp Med Biol. Author manuscript; available in PMC 2012 February 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



transducers recruited to FcεRI oligomers stimulated with defined ligands, as well as to
downstream signaling scaffolds such as LAT. This will be an important goal, since
population readouts such as phosphorylation patterns of FcεRI β, Syk and LAT fail to
correlate well with downstream responses such as degranulation.86

We anticipate the development of such measurements in the near future, since innovation
has been a hallmark of the mast cell imaging community, often leading the way for the
entire field of receptor biology. Examples include the development of GFP/SH2 and GFP-
PH domain fusion proteins as reporters of protein translocation to the plasma membrane
probes in response to FcεRI activation.87 Fluorescence correlation spectroscopy (FCS) has
been creatively applied by the collaborative team of Webb, Baird and Holowka88 to measure
association between FcεRI and Lyn tyrosine kinase on live cells following antigen
stimulation. This important subject deserves revisiting, since the authors’ choice of room
temperature measurements (to slow internalization and membrane ruffling) likely also
delayed the apparent time course of Lyn recruitment (5–6 min after antigen addition). Our
group has developed multi-color quantum dot probes to directly observe the formation of
FcεRI aggregates, to track the correlated motion of small aggregates and to observe the
abrupt immobilization of larger aggregates.35,36 FCS and SPT represent powerful
technologies for measuring the dynamics of protein-protein interactions. In addition,
emerging super-resolution and correlation imaging technologies hold much promise for the
quantitative measurement of protein-protein interactions in living cells (reviewed in ref 89).
Such advances in imaging techniques will allow us to take the next step - beyond the plasma
membrane - to look at the cytoplasmic protein dynamics and interactions that propagate the
message initiated by FcεRI aggregation.
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Figure 1. Electron microscopy reveals the spatial distribution of membrane receptors
A) RBL membrane sheets labeled with immunogold as in ref 34 to show that resting FcεRI
are found as singlets and in small clusters. Arrow marks a clathrin-coated pit. (B) Two min
after stimulation with 0.1 μg/ml DNP24-BSA, larger clusters are seen to form. (C) Cells
stimulated with a PEG-based flexible trivalent DNP ligand (10 nM) also demonstrate
extensive FcεRI aggregation. (D) Simultaneous activation FcεRI (10 nm gold) and FPR (5
nm gold) leads to co-clustering of the receptors. Scale bars = 100 nm.
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Figure 2. Characterizing FcεRI diffusion
(A) Example trajectories of individual FcεRI motion as determined by single quantum dot
tracking. The expected four modes of motion are observed: free, restricted, directed and
immobile (see Andrews et al., 2008). (B) Distribution of the modes of motion under
different conditions. (C,D) Two-color imaging allows us to simultaneously track receptors
labeled with QD655-IgE and QD585-IgE. Note that receptors often maintain close
proximity but do not demonstrate correlated motion, indicating that the close proximity is
due to co-confinement in a microdomain, not receptor interactions.35 (E) Example
simulation from the Constrained Brownian Motion algorithm. Proteins in the simulation are
considered as individual particles or agents that move at each time step (see ref 44). The
membrane can be further subdivided into domains that are lipid-rich (fast diffusion for
proteins, white space) and protein-rich (2-fold slower diffusion for proteins in the
simulation, grey regions). Slower movement of receptors through the protein-rich domains
leads to clustering of resting receptors (F) similar to that seen in electron microscopy images
(Fig 1).
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Figure 3.
(A) Plot of the average displacement of QD-IgE-FcεRI complexes between subsequent
frames over the time course of a single movie. After addition of 1 μg/ml DNP24-BSA, the
displacement is seen to rapidly decrease, indicating a slow-down in receptor mobility (see
ref 35). Red line is 10 frame averaging. Green line is exponential fit to the decay. (B)
Cumulative Probability Analysis plot comparing the diffusion coefficients (D) of QD-IgE-
FcεRI before and after crosslinking with antigens of different valency. Note that with DNP2-
BSA (red) receptor mobility did not change from resting (black) even though degranulation
was seen under these conditions. Higher valencies did cause receptor slow-down,
presumably due to the formation of larger aggregates (see ref 36). (C) Tracking of QD-IgE-
FcεRI on cells expressing GFP-actin (green) shows that the receptor trajectory (red line) is
confined by the actin cytoskeleton (green). Here, cells were treated with PMA that stabilized
the actin filaments (see ref 35). Scale bar, 1um. (D) AFM image revealing the topography of
the cytoplasmic face of an RBL membrane sheet. The image is pseudo-colored to indicate
heights ranging from 5–6 nm (dark red, the width of a lipid bilayer) to 30 nm (hot yellow)
above the substrate. Raised domains dot the landscape and are connected by many thin
filaments.60
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Figure 4.
(A) Pseudo-colored X-ray spectral electron microscopy image, where arrows point to “hot
spots” for osmium staining over a region of a membrane sheet. Images were captured on a
Phillips FEI Tecnai F30-ST equipped with an EDAX r-TEM SUTW energy dispersive x-ray
detector (from ref 75). (B) Results from lipid analysis of IgE-containing vesicles (red)
compared to Thy-1-containing vesicles (blue). Lipid content in IgE-vesicles was 50%
cholesterol, compared to less than 25% in Thy-1 vesicles. (C) Simultaneous imaging of
cholesterol-18 FITC (green) and IgE-FcεRI (red) in the membrane of an RBL cells as it
contacts a lipid bilayer containing monovalent DNP. Cholesterol and FcεRI are seen to
colocalize in patches that travel together during synapse formation (Carroll-Portillo et al.,
2010).
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