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Abstract
The field of genomics has entered a new era in which the ability to identify genetic variants that
impact complex human traits and disease in an unbiased fashion using genome-wide approaches is
widely accessible. To date, the workhorse of these efforts has been the genome-wide association
study (GWAS), which has quickly moved from novel to routine, and has provided key insights
into aspects of the underlying allelic architecture of complex traits. The main lesson learned from
the early GWAS efforts is that though many disease-associated variants are often discovered, most
have only a minor effect on disease, and in total explain only a small amount of the apparent
heritability. Here we provide a brief overview of the genetic variation classes that may harbor the
heritability missing from GWAS, and touch on approaches that will be leveraged in the coming
years as genomics—and by extension medicine—becomes increasingly personalized.
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The genome-wide association study (GWAS) has rapidly become a standard weapon in the
arsenal of investigators interested in the genetic origin of complex human traits and diseases.
Indeed, since 2005 when the first GWAS was reported, 654 studies have been added to the
Catalog of Published Genome-Wide Association Studies (www.genome.gov/gwastudies/), a
number that may well reach 1000 by the time this manuscript is published. The GWAS
approach is predicated on the Common Disease / Common Variants (CDCV) hypothesis,
which posits that common genetic variation is likely to play a significant role in the
underlying allelic architecture of genetic traits.1 Its application is facilitated by the
International HapMap Project,2 which helped to document an extensive number of common
single nucleotide polymorphisms (SNPs) in the genome, and determined the patterns of
linkage disequilibrium (LD) and the correlation (r2) between these variant alleles. This effort
makes it possible to capture a good deal of the common genetic variation across the genome
using a representative group of SNPs that can be affordably assayed by means of high-
throughput technologies. As this is inherently an indirect approach, variants found to be
associated with a disease or trait by GWAS are assumed “innocent until proven guilty” and
extensive fine mapping is generally required to identify the “causal” variant being detected.
The current iteration of genotyping arrays assess ~1 million SNPs across the genome,
providing coverage of ~80–90% of the HapMap SNPs with minor allele frequency (MAF)
greater than 5%, at an r2 value of 0.8 or greater in European populations.3
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WHAT HAVE WE LEARNED FROM GWAS?
To date, hundreds of disease-associated genetic variants have been identified by GWAS, the
majority of which are SNPs with only a small effect on the trait or disease being studied,
generally with odds ratios (OR) in the range of 1.1–1.4.4 Even in instances where numerous
loci have been identified for particular traits or diseases, usually very little of the apparent
heritability is explained. For example, more than 30 loci have been associated with type 2
diabetes to date, yet these appear to explain only ~10% of the observed familial clustering.5
As well, the biologic effects behind a majority of the associated variants remains unclear,
often due to strong LD obscuring the location of specific causative loci and the inability to
ascribe function, especially when the associated alleles are located far from any recognized
gene. These factors have led to the speculation that further inquiry into common genetic
variation is unlikely to result in many findings of significant clinical relevance.6 However,
GWAS has proven to be a useful “biologic pathway detection tool”7 and fundamental
changes in the understanding of complex disease pathogenesis, such as the recognition of
the significant role that autophagy plays in Crohn’s disease,8 have resulted from GWAS
efforts. Although the approach as thus far employed does not appear sufficient to capture all
of the apparent heritability of complex traits, GWAS is likely to remain a valuable tool in
the dissection of their genetic underpinnings for some time to come.

WHERE IS THE MISSING HERITABILITY?
Put simply, heritability is the fraction of phenotypic variance in a population that is
explained by the underlying genetic variation, which is comprised of both additive and
nonadditive (i.e., dominance and epistatic) components.9 Heritability scores are estimates
derived from family studies; due to confounding and sampling error inherent in even large
investigations of closely related relatives such as siblings, the nonadditive variance is
difficult to define with any precision. Thus, heritability is often described as the portion of
phenotypic variance in a population attributable to only the additive genetic factors (i.e.,
narrow-sense heritability, denoted as h2). Theory suggests that the majority of the variance
in complex traits can be explained by the additive effects, and the current data shows this is
indeed the case, as the additive component generally explains over half of and usually nearly
100% of the overall genetic variance.10 However, estimates of h2 can be overstated if
within-family resemblance is significantly influenced by shared familial environment or
nonadditive genetic effects such as dominance or genetic interaction between genes or with
the environment (i.e., epistasis).11 Because a further discussion of the subtleties of
heritability is outside of the scope of this article, we refer readers to an excellent recent
review by Visscher et al.9

Regardless of the past conjectures and continuing debates, it is clear that our understanding
of the underlying allelic architecture of complex traits and disease is limited at best. We
have been long aware of the strong effects of very rare alleles on highly penetrant Mendelian
disorders. Now the recent observations of GWAS confirm that for most of the studied
complex diseases, common genetic variants do explain some of the risk; ranging from the
relatively strong effects noted for age-related macular degeneration12 to little, if any, effect
in most neuropsychiatric disorders.13 However, only minimal effort has been made to
investigate the genetic variation existing in the space between these extremes of rarity and
commonality in the context of complex diseases (Fig. 1).14 Moreover, non-SNP structural
genetic differences such as copy number variants (CNVs, e.g., insertions and deletions) and
copy neutral variants (e.g., translocations and inversions), as well as inherited epigenetic
modifications (e.g., “imprinted” DNA methylation and histone modifications), may also
hide some of the heritability missing in GWAS and remain understudied. Finally,
nonadditive genetic effects such as dominance and epistasis, although not predicted to
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greatly impact heritability, could significantly influence some complex traits and have not
yet been well explored. Below we briefly discuss the classes of genetic variation that are
prime candidates for harboring the heritability not found by current GWAS efforts and the
challenges inherent to their study.

Undetected Common Genetic Variation
Although GWAS has undoubtedly led to significant progress in the detection of disease-
associated common genetic variants (defined as those with MAF ≥ 5%), by no means are
these investigations complete. For instance, only a handful of the diseases so far studied by
GWAS have utilized samples of sufficient size to reasonably power the identification of
common associations in the frequently noted 1.1–1.4 relative risk range, especially when the
variants are at the lower end of the MAF threshold. Moreover, it is very likely that many
common alleles of very low effect size (i.e., risk ratios < 1.1) exist for the majority of traits,
and also remain undetected due to lack of power in even the largest GWAS efforts to date.

This generalized lack of power is due to the often-implemented frequentist approach to
analysis of GWAS data, which utilizes stringent restraints on the P-value to contain type I
error. For example, P-values in the range of 10−6 to 10−8 are generally considered necessary
evidence of association in the context of GWAS; thus, many true associations are likely to
be rejected to reduce the number of false-positives represented in the resulting lists of
promising candidates. This approach is well suited to identify some variants that are truly
associated with the trait of interest, and therefore most likely to generate favorable findings
when studied further; an important factor considering the limited availability of resources
for follow-up studies. However, frequentist approaches are not practical if the goal is to
identify all (or even a good portion) of the common variants associated with a particular
disease.

To maximize the detection of common variant disease association significantly large patient
and control populations are required, the upper limit of which will be constrained by
availability and resources. For complex diseases that are rare in the population the detectable
effect sizes of potentially associated genetic variants will be severely limited by the number
of patients available for study, even assuming widespread cooperation between investigators
and coordinated meta-analysis of all data. In contrast, diseases that are common in the
population are generally well-funded and there is an abundance of patients that can
potentially be observed. Thus, it is possible that many associations of very low effect could
eventually be identified for these diseases; although at some point the clinical utility of
cataloging an extensive list of such variants may become negligible in regards to the
significant increase in cost.15

Low-Frequency Genetic Variants
Interest in exploring the potential contribution of the so-called low-frequency genetic
variants (LFGVs) has risen drastically in the past few years, and perhaps represents the
middle ground between the common variant and rare variant camps. The LFGVs are loosely
defined as those variants with MAF below the threshold of common variants (there is
obvious overlap here), but still segregating in the population at some appreciable frequency.
We will consider LFGVs to be those genetic variants that fall in the range of MAF 0.5–5.0%
for sake of this discussion. As with their more common brethren, the primary challenge to
the study of LFGVs in the context of association studies is power, which to maintain
requires steep increases in sample size as MAF and OR decline (Fig. 2). However, it has
been shown by simulations that small numbers of LFGVs contributing intermediate effects
on disease would explain a large portion of the heritability missing from GWAS.16

Moreover, such variants should be detectable without requiring unrealistically large sample
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sizes, would provide important insights into disease mechanisms, and are not well covered
by the current genome-wide16 Although the prospects for LFGVs to explain some of the
missing heritability seem promising, the proposition that significant numbers will
demonstrate the intermediate effects on risk required to overcome the power challenges is
untested. Indeed, no evidence for a correlation between effect size and allele frequency has
been revealed by the existing GWAS data.

The primary obstacle to investigating LFGVs is the current lack of a complete directory of
these variants upon which to build the next-generation of commercial arrays. However, the
1000 Genomes Project (www.1000genomes.org) is currently undertaking the task of
building this catalog. This immense effort aims to resequence the genomes of 2500
individuals from 27 populations at low coverage (i.e., ~4 ×) with the goal of identifying
most of the genetic variants with MAF of 1% in the studied populations. Although the low
coverage of genotyping performed by this project is certainly not sufficient to produce
“whole-genome sequences” for each individual (a task that requires 25 × –30 × coverage
with current “next-gen” sequencing platforms) the data provided will allow for the detection
of many copy number polymorphisms (CNPs, i.e., “common” CNVs) and other structural
variants in addition to SNPs, and will provide a solid foundation for imputation17 of existing
and emerging genome-wide datasets. The 1000 Genomes Project should allow us to “push-
the-envelope” of utility for association study of genetic variation in human disease by
providing new information to earlier GWAS efforts and facilitating the next generation of
genome-wide arrays.

Rare Genetic Variation
Rare genetic variants are those with MAF below the LFGV threshold (again there is
certainly some overlap, but in keeping with the above convention we’ll consider MAF <
0.5%). In the context of heritability, this would include variants of diminishing
representation in the population down to those whose presence is effectively limited to a
single family, but preclude de novo “private” variation in individuals. However, despite
having little, if any, impact on the observed heritability, such “new” variants could certainly
contribute to disease and should not be discounted. Regardless of where such variants lie
within the spectrum of rarity or whether they are SNPs or CNVs, they are not very amenable
to association study by GWAS due largely to their vast numbers, which would require a
significant increase in array density or the use of numerous arrays to assess, as well as due to
power limitations, which would necessitate the use of considerably expanded patient
populations to detect associations even of large effect. For example, ~5,200 cases are
required to achieve 80% power (α of 10−8) to detect an OR of 3.0 when MAF is 0.5%
(bottom end of the LFGV range), but when MAF drops to 0.1%, ~26,000 cases would be
required to maintain power. Taken further, the minimum detectable OR for an allele with
MAF of 0.1% using the original 5,200 cases is ~7.3, which is quite high in the context of
previous findings and would likely produce a compelling signal in familial linkage analysis.
Of course this illustration considers only the “tip of the rare variant iceberg” so it is not hard
to imagine the futility of GWAS as the alleles become more rare.

To identify and study the rare genetic variants sequencing will need to be employed, either
using the current “next-gen” or promising emerging platforms. Although the price of
sequencing continues to decrease dramatically it may still be many years before data
handling capability and sequencing capacity reach the point that whole-genome association
studies akin to the current GWAS approach in terms of patient numbers are feasible. In the
meantime, more targeted approaches such as whole-exome sequencing, which focuses on
the protein-coding exons and exon/intron boundaries containing splicing signals may be a
more cost-effective tactic in identifying rare genetic variants that impact disease.18 This
approach has already proven successful in finding causative variants for Mendelian
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disorders19–21 and offers promise for complex disease. Moreover, extreme-trait study
designs, which focus on individuals at the far end of the phenotypic distribution, or family-
based designs, which focus on families with multiple affected individuals, are currently
practical using either exome or whole-genome-based approaches.6 However, initial
application of these methods is not likely to reveal a large portion of the heritability missing
from GWAS due simply to the limited number of individuals utilized in such studies
combined with a high likelihood for extensive allelic heterogeneity within deleterious loci.22

In this regard, analytical approaches considering the “mutational load” within genes or
across biological pathways may be suitable for pinning down the loci and mechanisms
responsible for disease (Fig. 3). Although caution must be taken in these analyses, our
current knowledge precludes any precise prediction of functional consequences resulting
from most genetic variants; thus, spurious conclusions could be made.

Nonadditive Genetic Effects
Despite the evidence that additive genetic effects are the primary drivers of heritability there
is still much room for nonadditive effects in the allelic architecture of many complex traits
and diseases. Perhaps the most simple of these in concept are the alternative single locus
genetic models such as dominant (i.e., AA vs. Aa/aa) and recessive (i.e., aa vs. AA/Aa)
acting loci. In the context of GWAS, which is largely an indirect approach, these models are
often not considered, as even minor deviations from perfect LD will drastically reduce the
power to detect such associations.16 Moreover, the detection of recessive genetic effects
inherently suffers from low power, even for relatively common variant alleles. To overcome
these difficulties and improve power to detect recessive effects, especially in the context of
quantitative traits, the use of multiple correlated genetic models has been shown to increase
power,23 although determination of appropriate significance levels from such analysis is not
straightforward and may complicate downstream efforts. More significantly, the routine
consideration of nonadditive genetic models may come back into play once direct
sequencing-based approaches, in contrast to indirect array-based approaches, are the norm.
However, the best methods for maximizing detection while containing error in this
framework are, for the large part, unexplored.

Although simple dominant and recessive models may explain some of the heritability
missing from GWAS, the potential for nonadditive epistatic interaction effects between
genes (gene–gene interactions) and with the environment (gene–environment interactions)
has received growing interest of late. In simple terms, the interaction discussed here is
defined as departure from a liner model describing the relationship between outcome and
predictor variables, and thus is a statistical measure, which does not imply a physical
relationship.24 As such, analysis utilizing regression models is quite fitting and easily
accomplished, with various case-control and case-only approaches often employed,25–27

although other methodologies are being examined.28,29

Although the concept that genetic variation might well modify the impact of environmental
effects on disease etiology and pathogenesis is widely accepted, attempting to implement the
analysis of gene–environment interactions at the genome-wide scale raises several problems,
not the least of which is a lack of environmental exposure data for populations studied in
many of the current and previous GWAS. Defining and assessing environmental exposure is
difficult as many environmental factors are multidimensional, for example, water
contaminants are likely to vary substantially in their levels and overall constituency
dependent on the specific source. Moreover, whether or not there are multidimensional
confounders, the effect of the environmental exposure will often be, at least to some extent,
dependant on timing, such as age at and/or duration of the exposure. In general, such
exposures will be difficult, if not impossible, to assess with any level of accuracy for the
majority of individuals available for study. Use of stratified subsamples for which more
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extensive exposure data are available can be of benefit30 and has been successfully utilized
in identifying a genetic risk factor for smoking-related coronary heart disease.31 However,
uncertainty in exposure quantification, especially when large, could generate arbitrary biases
leading to spurious findings. As well, significant increases in sample size compared with
GWAS (on the order of 4–5×) are required to maintain power, thus modest effects of gene–
environment interaction may be difficult to detect.32 An in-depth review of the challenges of
and emerging approaches to the genome-wide assessment of gene–environment interactions
can be found here.33

Assessment of gene–gene interaction from genome-wide data are a bit more straightforward
as the limits imposed by the esoteric environmental component are avoided. However,
power and computational load place severe restraints on such analyses. For instance, an
exhaustive test of all 4.5 billion two-locus interactions from 100 K chip data in 500
individuals using the fastepistasis command in PLINK is quoted as taking ~24 hours.34

Considering that the current commercial arrays assess 10 times as many SNPs and
experiments often include thousands instead of hundreds of individuals, computation times
in the range of weeks to months, and the utilization of multiple processing nodes is required
to perform such analysis. However, new, more efficient approaches to two-locus interaction
testing have been proposed.35,36 As many billions of observations are being made, concerns
over multiple testing are warranted. Obviously, Bonferroni correction is far too conservative
considering the abundance of correlated tests due to various levels of LD between many of
the polymorphisms. Permutation testing is an obvious solution to the correlation problem,
although this approach is computationally expensive. For the time being, some strict
arbitrary cutoff, as generally employed in GWAS, may be the most practical approach.

Despite the multiple testing issues, exhaustive assessment of all two-locus interactions is
certainly feasible. However, this approach does not scale up, as comprehensive evaluation of
even three- or four-locus interactions becomes severely impractical (if not intractable) with
currently available computing power, due largely to sparseness of data when spread across
many genotype combinations. To get around this limitation, and perhaps more aptly
approach the complexity implied by higher-order epistasis, nonlinear data mining methods
such as multifactor dimensionality reduction37–39 and recursive partitioning methods,40,41 as
well as Bayesian approaches42 to interaction analysis have been proposed. A good primer to
these methodologies is provided in a recent review by Cordell.24

NEXT-GENERATION GENOMICS
As the study of human genomics transitions into the next generation, our ability to identify
genetic variants associated with complex traits and diseases will advance dramatically, due
in large part to anticipated improvements in genotyping array technology and greater access
to low-cost sequencing. Nevertheless, the best approaches to leveraging these technologies
remain unclear, and deciphering the functional mechanisms and determining the clinical
relevance of the resulting findings will perhaps be our greatest challenge as we move into
this new era. Integration of the other comprehensive “-omics” methodologies into the
analysis of genetic variants will provide a global view of their potential effects, and thus, in
the context of genomics are a fitting focus for the following discussion.43 However,
significant advancements in traditional wet-bench approaches (both in vivo and in vitro) will
also be required to quantify what are likely to be quite subtle effects of genetic variants
within genes and across pathways.

The goal of genomics is not only to catalog the structure and variation present in genomes,
but to understand how the information they contain is used to generate and maintain life, and
by extension, to decipher how genetic variants alter biologic mechanisms and contribute to
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disease traits. Perhaps one of the most fundamental processes in this regard is transcriptional
regulation, which has certainly been a topic of significant investigation for many years, but
often focused on individual genes or gene families. However, advancements in chromatin
immuno-precipitation (ChIP) coupled with genome-wide arrays (Chip-chip), or more
recently with next-generation sequencing technologies (ChIP-seq), have facilitated the
identification and analysis of transcription factor binding sites at genome-wide resolution.
Such efforts have led to several key insights into the nature of transcription factors, such as
location of binding sites, specificity of binding to consensus motifs, and functional relevance
of binding site occupation.44 Nonetheless, the story is far from complete as many
transcription factors remain unstudied, and ChIP-chip / ChIP-seq experiments have been
traditionally focused on but one or a few cell types. Moreover, the binding of transcription
factors is certainly not the only determinant of genetic transcription. Epigenetic phenomenon
including histone positioning and modification, DNA methylation, and nucleosome
remodeling are key aspects of transcriptional control, impacting cellular identity and
potentially playing a role in complex disease. Genome-scale approaches to analyze these
mechanisms are maturing (reviewed in45) and are being furthered by the NIH Roadmap
Epigenomics Program (http://nihroadmap.nih.gov/epigenomics/).

Along with the greater capability to study the transcriptional control mechanisms mentioned
above, the analysis of the transcriptome itself, as well as its association with inherited
genetic variation, has been furthered by the recent advancements in sequencing technology
coupled with GWAS. Perhaps the most notable example of this innovation is the ability to
utilize the expression level of genes as quantitative traits (eQTLs) in genome-wide mapping
efforts. This approach, which combines data from traditional genome-scale assessments of
expression, such as commercial array-based assays (e.g., Affymetrix) or SAGE (serial
analysis of gene expression) experiments, with data generated from GWAS, offers increased
power to detect subtle differences in expression associated with disease,46 as well as a
mechanism to narrow in on causative loci obscured by strong LD (e.g., the identification of
the ORMDL3 contribution to childhood asthma47). More recently, the advent of RNA
sequencing by next-generation technologies (RNA-seq), though still challenging and not
without problems, provides improved sensitivity and dynamic range compared with array-
based platforms, as well as single-base resolution.48 Moreover, the use of RNA-seq greatly
facilitates genomic-scale examination of alternative isoform expression49 as well as allele-
specific gene expression,50 and has been successfully applied using picogram quantities of
mRNA, making transcriptome analysis of rare cells and tissues possible.51

PERSONALIZED GENETICS, GENOMICS, AND MEDICINE
Although substantial progress in our understanding of human genetics has occurred over the
past decade and the pace of advancement continues to quicken at what seems an exponential
pace, many significant challenges need to be overcome before the jump from understanding
complex traits and disease at the population level to that of individuals will be possible.
Indeed, despite what we have learned, our ability to classify levels of complex disease risk
based on an individuals genetic background remains poor, if not essentially arbitrary, a
statement that is particularly illustrated by the performance of direct-to-consumer genome-
scale genetic tests.52 This is not to imply that targeted genotyping efforts, such as BRCA1/2
genotyping for breast and ovarian cancer risk, have not been beneficial. In the near term, the
effort to personalize medicine is perhaps best envisioned as therapeutic selection targeted to
those patients who are most likely to benefit, which will increasingly be facilitated by
identifying characteristics of their genetic background or specific features identifying a
subset of patients with a particular disease. For instance, the use of EGFR monoclonal
antibodies for the treatment of metastatic colorectal cancer appears to only be efficacious in
patients whose tumors are devoid of mutations in KRAS53 and dose selection for the
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anticoagulant warfarin (Coumadin) can be optimized based on the presence of gene variants
in the patients CYP2C9 and VKORC1 genes.54 In this context, the immediate hurdles will
be ethical, especially in cases where treatment may still offer a slight benefit to patients
lacking the indicative genetic polymorphisms.

The rapidly decreasing cost of whole-genome sequencing may negate price concerns
regarding genotyping as a preliminary step in treatment and dosage determination. However,
such an approach raises considerable ethical, legal, and social issues (ELSI), not to mention
immense technical challenges, which will need to be worked out before substantial clinical
impact will be realized. For instance, our current understanding of the functional
significance of individual genetic variation is severely limited, and hurried integration into
clinical practice could result in inappropriate and unjustified follow-ups and procedures
placing undo burden on our limited health-care resources. Moreover, the utility of whole-
genome sequence as a basis for disease prevention remains untested, and it is not clear that
knowledge of one’s risk of developing future illness is beneficial, particularly considering
the anxiety that might result, and especially if prophylactic recommendations are lacking or
potentially harmful. In this context, the use of personal genomic information in clinical
management could further widen existing income-based disparities in health care when
preventative measures are available, but expensive and possibly unproven. Finally,
significant investments in computing infrastructure, as well as education of physicians and
the public at large will be required to utilize personal genome sequences in the clinical
setting, again raising the question of equity between those who will pay and those who will
benefit.

A more highly personalized form of medicine, in which the characterization of genome
sequence, transcriptome and proteome expression, and microbiome constituencies at global
scales are routine in the context of preventative medical care, will certainly be farther off,
but is no longer out of sight.
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Figure 1.
In the collective human genome, there exists many millions of genetic variants, which range
in frequency among the population as well as in their contribution to the risk of developing
disease. At one extreme are the polymorphisms that cause highly heritable Mendelian
disorders, which are generally quite rare in the population, but are highly penetrant and thus
were relatively easy to identify using linkage approaches. On the other end of the spectrum
are the common variants, which are more readily identified by association analysis, and have
been the focus of genome-wide association studies (GWASs). Although common variants
with modest to strong effects on disease would be relatively easy to detect, we have found
very few, and our experience with GWAS has shown that the majority of disease-associated
common variants confer only a small risk of developing disease; most of the apparent
heritability remains obscure. It is difficult to detect the likely numerous disease variants of
smaller effect sizes (depending on allele frequency) using association due to power
limitations. However, the low-frequency and rare variation remains relatively unexplored
and could harbor detectable polymorphisms, which might explain some of the heritability
missing from GWAS. Such variants are the targets of the next-generation genomics
approaches.
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Figure 2.
This figure illustrates the significant increases in sample size required to maintain power to
detect genetic association as minor allele frequency (MAF) and odds ratio (OR) decline. For
this figure, power was set to 80% and a P-value of 10−6 was assumed.
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Figure 3.
Because there is very little, if any, power to detect disease-specific effects of individual rare
genetic variants using association, analytical approaches considering the “mutational load”
within genes/isolated genetic loci (a) or across the genes of biological pathways (b) may be
useful for identifying the genes and mechanisms effecting disease. However, caution should
be taken in such analyses, as the functional consequence of all the genetic variants is not
likely to be apparent, potentially leading to spurious findings.
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