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Abstract

Avian influenza virus (AIV) infection is a continuing threat to both humans and poultry. Influenza virus specific CD8+ T cells
are associated with protection against homologous and heterologous influenza strains. In contrast to what has been
described for humans and mice, knowledge on epitope-specific CD8+ T cells in chickens is limited. Therefore, we set out to
identify AIV-specific CD8+ T-cell epitopes. Epitope predictions based on anchor residues resulted in 33 candidate epitopes.
MHC I inbred chickens were infected with a low pathogenic AIV strain and sacrificed at 5, 7, 10 and 14 days post infection
(dpi). Lymphocytes isolated from lung, spleen and blood were stimulated ex vivo with AIV-specific pooled or individual
peptides and the production of IFNc was determined by ELIspot. This resulted in the identification of 12 MHC B12-restricted,
3 B4-restricted and 1 B19-restricted AIV- specific CD8+ T-cell epitopes. In conclusion, we have identified novel AIV-derived
CD8+ T-cell epitopes for several inbred chicken strains. This knowledge can be used to study the role of CD8+ T cells against
AIV infection in a natural host for influenza, and may be important for vaccine development.
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Introduction

Influenza A virus infections affect both humans and poultry.

Seasonal influenza infections affect millions of humans worldwide

each year and outbreaks of avian influenza viruses (AIV) including

the highly pathogenic H5N1 viruses in wild birds and poultry

occur regularly [1,2]. Furthermore, AIV are able to infect humans

[3–5] which makes these zoönotic viruses a significant threat for

human health because of their pandemic potential.

It is well established that the humoral immune response plays an

important role in controlling influenza virus infections [6–9], and

the induction of neutralizing antibodies is nowadays one of main

criteria to determine vaccine efficacy [10]. Antibodies are mainly

directed against the highly variable surface proteins haemagglu-

tinin (HA) and neuraminidase (NA) which continuously change

under ‘‘antigenic drift’’, and viruses escape from recognition by

virus-specific antibodies. Under these circumstances the induction

of cross-protective cytotoxic CD8+ T cells that recognize

conserved epitopes may be important [11].

Studies in humans and mice have shown that influenza-specific

CD8+ T cells are involved in protection against influenza virus

infection [12–14]. CD8+ T-cell responses are mainly directed

against conserved proteins like the nucleoprotein (NP) and matrix

1 (M1) protein [15,16] and have been shown to provide cross-

protection against heterologous influenza strains [17–19].

Also in chickens, which are a natural host for AIV, CD8+ T

cells are associated with protection; immunization with low

pathogenic AIV (LPAIV) of the H9N2 type results in protection

against a highly pathogenic H5N1 AIV (HPAIV) [20,21]. Cross-

reactivity between CD8+ T cells specific for seasonal influenza and

H5N1 HPAIV has been described [22] as well as cross-reactivity

between LPAIV of the H9N2 and H7N2 type [23]. Furthermore,

conserved epitopes have been detected in influenza viruses isolated

from humans and avian species [24]. Taken together, these data

show that influenza-specific CD8+ T cells exist in chickens and are

associated with protection against homologous and heterologous

influenza strains.

In contrast to what has been described for humans and mice,

knowledge on influenza epitope-specific CD8+ T cells in chickens

is limited. Cross-reactive T-cell responses to the AIV proteins HA

and NP have been reported in chickens inoculated with plasmids

expressing viral proteins HA and NP [25] or non-replicating

adenovirus vectors expressing these proteins [26]. However, AIV-

derived epitopes recognized by these CD8+ T cells are still

unknown.

The chicken MHC, also called ‘‘B locus’’, is more compact and

differently organised than the mammalian MHC. The B-F/B-L

region within the B locus contains the classical class I and class IIb

chains, and determines allograft rejection, strong mixed lympho-

cyte reactions and the cellular control of antibody production [27–

32]. For a number of common chicken MHC haplotypes, MHC

class I restricted peptide motifs have been determined. Anchor

residues involved in binding to the MHC class I molecules of these

different haplotypes were found to be just as critical as to what has

been described for mammalian MHC class I [32–34].

In this study, we set out to identify novel AIV-specific CD8+ T-

cell epitopes. To this end, epitopes in the viral proteins NP and M1

were predicted based on anchor residues described for MHC B4,
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B12, B15, B19 and B21. Screening of these peptides resulted in the

identification of 16 novel AIV-specific CD8+ T-cell epitopes; 12

B12-restricted epitopes, 3 B4-restricted epitopes and 1 B19-

restricted epitope.

Results

Analysis of T-cell frequencies upon LPAIV infection
To investigate if infection with LPAIV would result in an influx

of T cells into the lung, we determined the frequencies of different

T-cell subsets by flowcytometry. No differences in the percentage

of CD8aa+ T cells in the lungs was observed in infected birds

compared to uninfected controls (Fig. 1A) while the number of

CD8aa+ T cells in lung did increase upon infection (Fig. 1G),

Interestingly, at 10 dpi frequencies of CD8aa+ T cells were

slightly higher in infected birds compared to uninfected controls in

both spleen (14.460.8% versus 22.563.0%, Fig. 1B) and PBMC

(33.161.5% versus 43.162.7%; Fig. 1C). This increase in splenic

CD8aa+ T cells was more pronounced when the number of cells

was analysed (50.067.16106 versus 143.6613.76106, Fig. 1H).

Figure 1. CD8+ T-cell frequencies in tissues of LPAIV infected chickens. Percentages of CD8aa+CD3+ T cells (A–C) and CD8ba+CD3+ T cells
(D–F) were analysed by flowcytometry in lung, spleen and PBMC at several days post infection. Absolute numbers were calculated by multiplying the
percentage of CD8aa+CD3+ T or CD8ba+CD3+ T cells with the total number of cells isolated from lung (G, I) and spleen (H, J). Mean plus SEM is
shown. In white: uninfected controls (UNINF, n = 12), in grey infected birds (n = 3 per time point).
doi:10.1371/journal.pone.0031953.g001

CD8+ T Cells and Avian Influenza Virus Infections
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At 14 dpi, the percentage of CD8ab+ T cells was slightly increased

compared to uninfected controls in lung (47.663.9% versus

33.761.0%; Fig. 1D), spleen (51.962.9% versus 57.663.6%;

Fig. 1E) and PBMC (30.360.5 versus 24.060.8%; Fig. 1F). Again,

differences in numbers of CD8ab+ T cells between infected birds

and uninfected controls were much higher in both lung

(18.364.16106 versus 64.3617.86106; Fig. 1I) and spleen

(191.1617.86106 versus 333.9640.26106; Fig. 1J). Similar results

were observed for numbers of CD4+ T cells and cd+ T cells (data

not shown). Thus, infection with LPAIV results in increased

numbers of CD8+ T-cells.

Identification of AIV-specific CD8+ T-cell epitopes using
peptide pools

Avian influenza virus-specific IFNc-producing CD8+ T cells

were analysed in the lung, which is a target organ of low

pathogenic avian influenza viruses. ELIspot was performed upon

stimulation of lung cells with pools of peptides that were derived

from the avian influenza viral proteins NP and M1 and were

selected based on the presence of MHC binding motifs (Tables 1

and 2, Tables S1 and S2).

Since most of the predicted MHC binders were B12-restricted,

a kinetic study was performed in which IFNc-producing AIV-

specific CD8+ T cells were analysed at 5, 7, 10 and 14 dpi in

H7N1 infected B12 chickens. For a representative image of

positive and negative ELIspot wells, see Figure S1A. At 5 dpi, a

number of peptide pools triggered IFNc production that was

higher than in the unstimulated control. Based on the strict criteria

we used in order to focus only on epitopes that elicit responses in a

majority of individuals only pool 11 induced a significantly positive

Table 1. Epitope prediction for MHC B12 based on anchor
residues.

B12: X-X-X-X-V/I-X-X-(X)-V/L/I

peptide sequence MHC restriction Viral protein

A1 NATEIRASV B12 nucleoprotein

A2 IRASVERMV B12 nucleoprotein

A3 EGRLIQNSI B12 nucleoprotein

A4 NSITIERMV B12 nucleoprotein

A5 DGKWVRELI B12 nucleoprotein

A6 AVKGVGTMV B12 nucleoprotein

A7 VGTMVMELI B12 nucleoprotein

A8 LIRMIKRGV B12 nucleoprotein

A9 GNAEIEDLI B12 nucleoprotein

A10 QNSQVFSLI B12 nucleoprotein

A11 EDLRVSSFI B12 nucleoprotein

A12 PTFSVQRNL B12 nucleoprotein

B1 VERMVGGI B12 nucleoprotein

B2 DGKWVREL B12 nucleoprotein

B3 DKEEIRRI B12 nucleoprotein

B4 AGAAVKGV B12 nucleoprotein

B5 VGTMVMEL B12 nucleoprotein

B6 VMELIRMI B12 nucleoprotein

B7 GNAEIEDL B12 nucleoprotein

B8 LPACVYGL B12 nucleoprotein

B9 QNSQVFSL B12 nucleoprotein

B10 QGRGVFEL B12 nucleoprotein

F1 VETYVLSI B12 matrix protein 1

F2 ILGFVFTL B12 matrix protein 1

F3 KDDLIENL B12 matrix protein 1

F4 LLTEVETYV B12 matrix protein 1

F5 VETYVLSIV B12 matrix protein 1

F6 LKAEIAQRL B12 matrix protein 1

F7 KTRPILSPL B12 matrix protein 1

F8 LTKGILGFV B12 matrix protein 1

F9 RRRFVQNAL B12 matrix protein 1

F10 RMGTVTTEV B12 matrix protein 1

F11 VTTEVAFGL B12 matrix protein 1

Predicted epitopes and their localization based on anchor residues that have
been described for B12 [32,33]. X represents any amino acid. Anchor residues
specific for the different MHC types are indicated in bold. A variable number of
amino acids between the anchor residues is indicted with (X).
doi:10.1371/journal.pone.0031953.t001

Table 2. Epitope prediction for MHC B4, B15, B19 and B21
based on anchor residues.

B4: X-D/E-X-X-D/E-X-X-(X)-E/L/I

A1 YEQMETGE B4 nucleoprotein

A2 YDKEEIRRI B4 nucleoprotein

A3 AEIEDLIFL B4 nucleoprotein

A4 METMDSSTL B4 nucleoprotein

B15: X-R-X-X-X-X-X-(X)-Y

A5 GRRTRIAY B15 nucleoprotein

B19: X-R-X-X-X-X-X-Y/P/L/F

A6 ERMVLSAF B19 nucleoprotein

A7 KRGVNDRNF B19 nucleoprotein

A8 GRRTRIAY B19 nucleoprotein

A9 IRGTRVVP B19 nucleoprotein

A10 TRVVPRGQL B19 nucleoprotein

A11 ERATIMAAF B19 nucleoprotein

A12 IRMMESARP B19 nucleoprotein

B1 ARPEDVSF B19 nucleoprotein

B2 TRPILSPL B19 matrixprotein 1

B3 ERGLQRRRF B19 matrixprotein 1

B4 RRRFVQNAL B19 matrixprotein 1

B5 RRFVQNAL B19 matrixprotein 1

B6 IRHENRMVL B19 matrixprotein 1

B7 MRTIGTHP B19 matrixprotein 1

B21: X-H/K/R-X-X-X-X-X-(X)-E/D-X-A/V/L/I/F/M

B8 RRDGKWVRELI B21 nucleoprotein

B9 CHSAAFEDLRV B21 nucleoprotein

B10 GRTSDMRTEII B21 nucleoprotein

B11 WRQANNGEDA B21 nucleoprotein

B12 NRMGTVTTEVA B21 matrixprotein 1

C1 LKDDLIENLQA B21 matrixprotein 1

Predicted epitopes and their localization based on anchor residues that have
been described for B4, B15, B19 and B21 [32–34]. X represents any amino acid.
Anchor residues specific for the different MHC types are indicated in bold. A
variable number of amino acids between the anchor residues is indicted with
(X).
doi:10.1371/journal.pone.0031953.t002
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response which was defined as the mean of the triplicates is higher

than the mean of the triplicates plus 2 times the standard error of

unstimulated control and positive in more than 2 birds (Fig. 2A–

C). As is shown in Figure 2D–F, at 7 dpi the number of pools

inducing significant IFNc production had strongly increased

which resulted in 7 significantly positive pools. Also the number

Figure 2. Identification of MHC B12-restricted CD8+ T-cell epitopes using peptide pools. Lung cells were stimulated with B12-restricted
peptide pools and IFNc-producing cells were determined by IFNc ELIspot analysis. Results for three individuals birds are shown at 5 dpi (A–C), 7 dpi
(D–F), 10 dpi (G–I) and 14 dpi (J–L). Mean plus SEM is shown, n = 3 per group. Positive responses (*) and ‘‘significant’’ peptides inducing a positive
response in 2 out of 3 chickens (Q) are indicated.
doi:10.1371/journal.pone.0031953.g002

CD8+ T Cells and Avian Influenza Virus Infections
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of spots had increased compared to 5 dpi. At 10 dpi again 7 pools

tested significantly positive (Fig. 2G–I). Most pools were

significantly positive both at 7 dpi and 10 dp, with the exception

of pool 12 (only significantly positive at 7 dpi) and pool 5 (only

significantly positive at 10 dpi). At 14 dpi, both the number of

pools that induced IFNc-producing cells as well as the number of

significantly positive pools had decreased compared to 7 and

10 dpi (Fig. 2J–L). Three of the B12-restricted peptide pools that

were significantly positive in the lung were also found positive in

PBMC and spleen (pool 1, 3, 7; data not shown).

Testing of MHC-B4 restricted peptides in the lung of H7N1

infected B4 chickens at 10 dpi resulted in 1 significantly positive

peptide pool (Fig. 3A). No response was observed in lung cells of

infected B15 chickens upon stimulation with a peptide predicted to

bind MHC B15 (Fig. 3B). The pool of potential B21 binders

induced IFNc-producing cells in 1 out of 3 infected B21 chickens

(Fig. 3C). Testing of MHC-B19 restricted peptides resulted in 2

significantly positive peptide pools in lung (Fig. 3D–F) which was

elicited by 1 peptide (B7, Table 2). One of these B19-restricted

pools was also significantly positive in PBMC, the other B19- and

the B4-pool did not induce a significantly positive response in

spleen or PBMC (data not shown).

None of the B12 restricted pools 3, 4 and 12 induced a positive

IFNc response in MHC B4, B15, B19 or B21 birds (data not

shown). Thus, screening of NP- and M1-derived peptide pools

resulted in several candidate CD8+ T-cell epitopes that are

restricted by different MHC types.

Identification of AIV-specific CD8+ T-cell epitopes using
individual peptides

The initial screening of pools of predicted B12-restricted

peptides resulted in 14 candidate epitopes. These peptides were

tested individually together with a peptide from a pool that was not

significantly positive in the first screening as a negative control. At

7 dpi, all 14 peptides induced IFNc-producing cells in the lung,

and 8 peptides were significantly positive (Fig. 4A). Also in PBMC

many peptides tested significantly positive (Fig. S1C). Six peptides

were both significantly positive in lung and PBMC (A1, A5, A6,

A7, A11, F7, Table 1), 1 peptide was significantly positive in lung

only (B6, Table 1) and 4 peptides were significantly positive only in

PBMC (A12, B5, F2, F3, Table 1). However, these peptides

induced IFNc production in lung cells as well, but this was not

significant. At 10 dpi, the numbers of spots were lower compared

to 7 dpi both in the lung (Fig. 4B) and PBMC (Fig. S1D). Also the

number of significantly positive peptides had decreased: 1 peptide

was still positive in the lung while 5 peptides tested positive in

PBMC. Again, the peptide that was recognized by CD8+ T cells in

the lung was recognized also by CD8+ T cells in PBMC and the

peptides found positive in PBMC did induce IFNc-producing cells

in the lung also but, based on our criteria, failed to test significantly

positive. Individual testing of the B4-restricted candidate epitopes

on frozen lung cells resulted in 3 significantly positive peptides

(Fig. 5).

None of the peptides induced a positive response in cells isolated

from uninfected chickens. This was shown both in lung cells (Fig.

S2A) and PBMC (Fig. S2B). Interestingly, IFNc production by

unstimulated cells was much lower in cells from uninfected

chickens compared to cells isolated from AIV infected chickens.

IFNc production in unstimulated lung cells varied between 461

spots/200,000 cells in uninfected chickens versus 1862 spots/

200,000 cells in AIV infected chickens (Fig. S3A). Similar results

were observed in PBMC (Fig. S3B).

Thus screening of AIV-specific CD8+ T-cell epitopes using lung

cells of AIV-infected chickens resulted in 12 B12-restricted

Figure 3. Identification of MHC B4-, B15-, B19- and B21-restricted CD8+ T-cell epitopes using peptide pools. Lung cells isolated at
10 dpi were stimulated with B4 restricted peptide pools (A) or, B15 (B), B21 (C) and B19-restricted peptide pools (D–F) and IFNc producing cells were
determined by IFNc Elispot analysis. Mean plus SEM is shown, n = 3 per group. Positive responses (*) and ‘‘significant’’ peptides inducing a positive
response in 2 out of 3 chickens (Q) are indicated.
doi:10.1371/journal.pone.0031953.g003
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epitopes, 3 B4-restricted epitopes and 1 B19-restricted epitope.

The novel AIV-specific CD8+ T-cell epitopes are distributed

throughout the NP protein (Fig. 6A) and M1 protein (Fig. 6B)

except for 4 B12 restricted epitopes (A6, A7, B5 and B12) which

are overlapping. Different peptides from these regions are

processed and presented by B12 molecules, suggesting that this

region within the NP protein may be very immunogenic.

Discussion

In the current study we set out to identify novel CD8+ T-cell

epitopes in the NP and M1 protein of AIV. Based on epitope

prediction, 33 epitopes restricted by 5 different MHC types were

tested ex vivo using cells from MHC inbred chickens infected with a

LPAIV H7N1. This resulted in the identification of 16 novel AIV-

specific CD8+ T-cell epitopes; 12 B12-restricted epitopes, 3 B4-

restricted epitopes and 1 B19-restricted epitope.

Most of the peptides induced IFNc-producing cells at one or

more time points post infection. Strict criteria were applied to

select for positive peptides. A peptide was positive when it induced

an IFNc response that was higher than in unstimulated controls

plus 2 times the standard error and positive in at least 2 out of 3

chickens. In this way only peptides that induced a response in the

majority of chickens were selected, which is a prerequisite for the

development of a cross-protective CD8+ T-cell vaccine in

chickens. Screening of B12-resticted peptides resulted in 12 novel

epitopes of which 7 were detected both in the lung and in PBMC.

None of the peptides induced a response in uninfected chickens.

Epitopes are randomly distributed within the NP and M1 protein

except for an immunogenic region in NP that contains 4

overlapping epitopes. This region is similar to the human in-

fluenza virus-specific HLA-A2-restricted CD8+ T-cell epitope

TMVMELVRMIK [35], except for position 7 where the valine

(V) is replaced by an isoleucin (I). Within the M1 protein, the B12-

restricted epitope F7 is homologous to the HLA-A2-restricted

epitopes GILGFVFTL (M156–66) and ILGFVFTLTV (M159–68)

[35,36]. This suggests cross-reactivity between human and avian

influenza viruses similar to what has been reported before [22].

Interestingly, all epitopes were rather conserved. For example,

comparison to sequences of European H5N1 isolates resulted in

87.6–100% homology. Interestingly, more spontaneous IFNc
production was observed in cells isolated from AIV-infected

chickens compared to cells isolated from uninfected chickens. This

suggests a higher activation status of immune cells due to the

presence of the influenza virus.

In contrast to the increase in numbers of CD8aa+ and CD8ab
T cells in lung and spleen no clear changes in percentages of total

CD8+ T cells were observed between infected and uninfected

birds or differences between lung and PBMC. The latter is in

contrast with a study of De Bree et al [37] who reported a higher

frequency of influenza-specific CD8+ T cells in lung compared to

PBMC. However, in the current study frequencies of total

CD3+CD8aa and CD3+CD8ab cells rather than frequencies of

antigen-specific CD8+ T cells were analysed by flowcytometry.

Perhaps the frequencies of influenza-specific CD8+ T cells [38,39]

compared to those of the total CD8 T-cell pool are rather low, and

we were not able to detect these differences. Studies with MHC

class I tetramers are warranted to investigate differences in T-cell

frequencies upon AIV infection in the chicken in more detail.

Influxes of CD8aa+ cells into the lung upon infection with

LPAIV H7N1 and LPAIV H9N2 have been reported before

Figure 5. Identification of MHC B4-restricted CD8+ T-cell
epitopes using individual peptides. Lung cells isolated at 10 dpi
were thawed and re stimulated with B4 restricted peptides and IFNc
producing cells were determined by IFNc Elispot analysis. Mean plus
SEM is shown, n = 3 per group. Positive responses (*) and ‘‘significant’’
peptides inducing a positive response in 2 out of 3 chickens (Q) are
indicated.
doi:10.1371/journal.pone.0031953.g005

Figure 4. Screening of MHC B12-restricted CD8+ T-cell epitopes using individual peptides. Lung cells were isolated, in vitro re-stimulated
with B12-restricted peptide pools and IFNc-producing cells were determined by IFNc ELIspot analysis at 7 dpi (A) and 10 dpi (B). Mean plus SEM is
shown, n = 4 per group. Positive responses (*) and ‘‘significant’’ peptides inducing a positive response in 2 out of 3 chickens (Q) are indicated.
doi:10.1371/journal.pone.0031953.g004
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[40,41]. However, in these analyses no co-staining with CD3 was

performed. Since chicken NK cells also express CD8a [42], these

CD8aa+ cells most likely represent a population of NK cells rather

than CD8aa+ T cells.

In humans and mice, influenza-specific CD8+ T cells are directed

to a limited number of immunodominant epitopes [15,35,43]. Our

results show several novel AIV-specific CD8+ T-cell epitopes,

however dominant epitopes are lacking. This may be related to the

organization of the chicken MHC complex. Chickens have a

‘‘minimal essential MHC’’ [32]; the properties of the single

dominantly expressed class I molecules determine whether a

chicken will respond to a particular pathogen like influenza. This

is in sharp contrast to the huge and complex mammalian MHC that

expresses multiple MHC class I molecules that present pathogen-

derived peptides to CD8+ T cells. The combination of a dominant

CD8+ T-cell epitope with a dominant MHC would be dangerous

for the host; loss of the epitope, for example due to viral escape

mechanisms, would result in loss of influenza-specific immunity and

eventually death. The presence of multiple subdominant epitopes

limits the risk of loss of CD8+ T-cell immunity in case of mutations

in influenza-specific CD8+ T-cell epitopes.

In mammals, immunodominance is influenced by differences in

antigen presentation and CD8+ T-cell repertoire [44], which are

both affected by immunoproteasomes [45,46]. The absence of these

inducible proteasome genes in chickens [47] might provide an

alternative explanation for the lack of immunodominant epitopes.

Due to the use of only predicted epitopes on selected proteins,

we cannot exclude that part of the AIV-specific CD8+ T-cell

response (either targeting other viral proteins or other epitopes

within NP and M1 with non canonical binding motifs) were missed

with this strategy.

In conclusion, we have identified novel AIV-specific CD8+ T-

cell epitopes in chickens. This knowledge can be used to study the

role of CD8+ T cells against AIV infection in more detail in this

natural host for the influenza virus, and will be important for

vaccine development. Since CD8+ T-cell inducing vaccines can be

targeted towards viral proteins that are conserved between a large

variety of influenza strains, such vaccines may provide better

protection against newly arising virus strains than the current

influenza vaccines.

Materials and Methods

Ethics statement
All animal experiments were performed in strict accordance to

the Dutch Animal Experimentation Act and EU directives 86/

Figure 6. Novel AIV-specific CD8+ T cell epitopes within the LPAI H7N1 virus. Epitope mapping resulted in 11 novel CD8+ T-cell epitopes in
the nucleoprotein (A) and 5 epitopes in the matrix 1 protein (B) of the LPAI H7N1 virus. In black, B12-restricted epitopes, in grey, B4-restricted
epitopes (A) or B19-restricted epitopes (B).
doi:10.1371/journal.pone.0031953.g006

CD8+ T Cells and Avian Influenza Virus Infections
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609/CEE and 2010/63/EU related to the protection of vertebrate

animals used for experimental and other scientific purposes. The

experimental protocols were approved by the Committee on

Animal Experiments of the University of Utrecht (DEC

2008.II.01.010) and performed in the Central laboratory Animal

Research Facility of the University of Utrecht, which has

AAALAC (Association for Assesment and Accreditation of

Laboratory Animal care) accreditation.

Animals
One-day old chickens of the following MHC inbred lines

were obtained from Dr. H.J. Madsen: line 2 (MHC B12), line 4

(MHC B4), line 22 (MHC B15), line 21-19 (B19) and line 21-21

(MHC B21) [48]. Chickens were housed in groups and fed ad

libitum on commercial feed. At 3 weeks, chickens were infected

with the low pathogenic avian influenza strain H7N1 isolate A/

chicken/Italy/1067/99 (kindly provided by Dr. W. Dundon).

Virus was diluted in sterile PBS at a concentration of 16108

EID50/ml and chickens were inoculated intranasally and

intratracheally (100 ml each). Uninfected controls chickens were

inoculated with PBS. At 5, 7, 10 and 14 days post infection,

birds were euthanized using cervical dislocation and lungs,

spleen and blood were collected. In the second animal

experiment, B12 birds were infected with H7N1 or PBS as

described before. Birds were euthanized at 7 and 10 dpi and

lungs and blood were collected.

Isolation of cells
In order to obtain a single cell suspension, lung tissue was cut

into small pieces and digested in RPMI containing collagenase

A from Clostridium histolyticum and DNAse I isolated from

bovine pancreas (Roche Applied Science, Almere, the Nether-

lands) for 30 min at 37uC, and homogenised using a 70 mM cell

strainer (Beckton Dickinson (BD), Franklin Lakes, NJ, USA).

Spleens were homogenised using a 70 mM cell strainer. Viable

cells were isolated from lung, spleen and blood by Ficoll-Paque

density gradient centrifugation. Cells were resuspended in

‘‘complete medium’’ which is RPMI medium supplemented

with 10% heat inactivated FCS, 100 U/ml penicillin, 100 mg/

ml streptomycin and 2 mM glutamax (Gibco BRL, United

Kingdom) and were either used directly or frozen and stored in

liquid nitrogen

Peptide pools and peptides
The database SYFPEITHI (http://www.syfpeithi.de/home.

htm) was used to predict epitopes in the AIV-proteins NP and

M1 based on anchor residues described for MHC B4, B12, B19

and B21 [32–34]. Predictions resulted in 33 B12-restricted, 14

B19-restricted, 4 B4-restricted, 1 B15-restricted and 6 B21-

restricted epitopes (Table 1, Table 2). Individual peptides of 8–

11 amino acids were synthesized (Pepscan, Lelystad, The

Netherlands), dissolved in DMSO, diluted in PBS to a

concentration of 2 mg/ml and subsequently pooled. This

resulted in 1 pool of B4-restricted peptides, 12 pools of B12-

restricted peptides, 8 pools of B19-restricted peptides, and 1

pool of B21-restricted peptides. For the B12- and B19-restricted

peptides, peptide pools were made using a matrix approach

[49] to ensure that each peptide is part of two pools. B4- and

B21-restricted peptides were pooled in one pool each (Tables S1

and S2). Peptide pools were aliquoted and stored at 220uC
until use.

Flowcytometry
Frequencies of CD8aa+CD3+, CD8ab+CD3+, and CD4+

CD3+ were analysed by flowcytometry. Cells were stained with

mouse-anti-chicken CD3-PE (clone CT-1; IgG1) together with

mouse-anti-chicken CD8a- FITC (clone CT-8; IgG1) and a

biotin labelled mouse-anti-chicken CD8b (clone EP42, IgG2a).

Alternatively, cells were stained with mouse-anti-chicken CD3-

PE together with mouse-anti-chicken CD4-biotin (clone CT-4,

IgG1) and mouse-anti-chicken TCRcd (TCR-1, IgG1). All

antibodies were obtained from Southern Biotech (SBA), San

Diego, CA, USA. Stainings were performed for 20 min at 4uC.

Next, cells were washed using PBS supplemented with 0.5%

(v/v) bovine serum albumin (PBA) and stained with strepta-

vidin-APC (BD Biosciences, Franklin Lakes, NJ, USA) for

20 min at 4uC. Cells were washed in PBA and fixed using a 2%

final concentration of paraformaldehyde (Merck, Darmstadt,

Germany) for 10 minutes at room temperature. Afterwards,

cells were washed once in PBA and flowcytometry was

performed. At least 50,000 events were acquired using a

FACS Calibur flowcytometer (BD). All data were analyzed

using the software program FlowJO (Threestar Inc, Ashland,

OR, USA).

IFNc ELIspot analysis
IFNc ELIspot was performed as previously described [50].

Briefly, 96 well MulitiscreenH HTS, (Millipore, Billerica, MA,

USA) were incubated with 70% ethanol for 1 min at room

temperature and washed 1 time with H2O followed by 1 wash

with PBS. Wells were coated with mouse-anti-chicken-IFNc
(2.5 mg/well in PBS; chicken IFNc CytoSetTM (Invitrogen,

Carlsbad, CA, USA) and incubated overnight at 4uC. Next,

plates were washed 2 times with complete medium and blocked

with complete medium at 41uC, 5% CO2. After 1 hour,

complete medium was discarded and cells were seeded at

26105 cells/well in 200 ml in triplicate. Cells were stimulated

with either peptides pools (final concentration of the individual

peptides is 1 mg/ml) or individual peptides (1 mg/ml) for

24 hours at 41uC, 5% CO2. As a positive control for the

capacity of cells to produce IFNc a combination of 50 ng/ml

phorbol myristrate acetate (PMA) and 500 ng/ml Ionomycin

was used (Sigma-Aldrich, Zwijndrecht, the Netherlands). Un-

stimulated cells were used as negative control. Next, plates were

washed 5 times with PBS supplemented with 0.05% Tween-20

(PBS-Tween) and incubated with anti-chicken IFNc biotin

(1 mg/well in PBS, Chicken IFNc CytoSetTM, Invitrogen) for

1 hour at room temperature. Plates were washed 5 times with

PBS-Tween and incubated with poly-HRP (0.2 mg/well; San-

quin, Amsterdam, the Netherlands) for 1 hour at room

temperature. Plates were washed again 5 times with PBS-Tween

and TMB was added (50 ml/well, TMB for ELIspot, Sanquin).

After spots became visible, plates were washed with tap water

and airdried. Plates were analysed using the AELVIS automated

spot analyzer (Sanquin). For a representative example, see Fig.

S1A). Positive responses were defined as ‘‘the mean of the

triplicates is higher than the mean of the triplicates plus 2 times

the standard error of unstimulated control’’. Peptides inducing a

response in 2 out of 3 chickens were defined as ‘‘significant’’.

Supporting Information

Figure S1 Screening of MHC B12-restricted CD8+ T-cell
epitopes using individual peptides. (A) A representative
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image of IFNc Elispot results of lung cells isolated at 10 dpi and

stimulated with medium (unstimulated), the B12 restricted peptide

pool 3 or PMA/Ionomycin. Lung cells were isolated, in vitro re-

stimulated with B12-restricted peptides and IFNc-producing cells

were determined by IFNc ELIspot analysis. A representative

example of lung cells isolated at 7 dpi is shown (B) together with

results for PBMC isolated at 7 dpi (C) and 10 dpi (D). Mean plus

SEM is shown, n = 4 per group. Positive responses (*) and

‘‘significant’’ peptides inducing a positive response in 2 out of 3

chickens (Q) are indicated.

(TIF)

Figure S2 Screening of MHC B12-restricted CD8+ T-
cell epitopes using individual peptides in uninfected
birds. Cells from uninfected (PBS infected) birds were isolated,

in vitro re-stimulated with B12-restricted peptide pools and IFNc-

producing cells were determined by IFNc ELIspot analysis at

7 dpi in lung (A) and PBMC (B). Mean plus SEM is shown, n = 3

per group.

(TIF)

Figure S3 Higher spontaneous IFNc production by
unstimulated cells isolated from AIV-infected chickens.
Lung cells were isolated from uninfected and AIV-infected

chickens, cultured for 24 hours in vitro in the absence of peptides

and IFNc-producing cells were determined by IFNc ELIspot

analysis at 7 dpi in lung (A) and PBMC (B). Mean plus SEM is

shown, n = 3 per group. In white, responses in uninfected chickens;

in grey, responses in AIV-infected chickens.

(TIF)

Table S1 Thirty-three MHC B12 restricted individual
peptides were assigned to 12 pools using a matrix
approach.
(DOC)

Table S2 Fourteen MHC B19 restricted individual
peptides were assigned to 8 pools using a matrix
approach.
(DOC)
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