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Abstract

Neprilysin (NEP), a member of the M13 subgroup of the zinc-dependent endopeptidase family is a membrane bound
peptidase capable of cleaving a variety of physiological peptides. We have generated a series of neprilysin variants
containing mutations at either one of two active site residues, Phe563 and Ser546. Among the mutants studied in detail we
observed changes in their activity towards leucine5-enkephalin, insulin B chain, and amyloid b1–40. For example, NEPF563I

displayed an increase in preference towards cleaving leucine5-enkephalin relative to insulin B chain, while mutant NEPS546E

was less discriminating than neprilysin. Mutants NEPF563L and NEPS546E exhibit different cleavage site preferences than
neprilysin with insulin B chain and amyloid ß1–40 as substrates. These data indicate that it is possible to alter the cleavage
site specificity of neprilysin opening the way for the development of substrate specific or substrate exclusive forms of the
enzyme with enhanced therapeutic potential.

Citation: Sexton T, Hitchcook LJ, Rodgers DW, Bradley LH, Hersh LB (2012) Active Site Mutations Change the Cleavage Specificity of Neprilysin. PLoS ONE 7(2):
e32343. doi:10.1371/journal.pone.0032343

Editor: Juliet Ann Gerrard, University of Canterbury, New Zealand

Received June 28, 2011; Accepted January 26, 2012; Published February 23, 2012

Copyright: � 2012 Sexton et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by grants from the Alzheimer’s Association (DR. Rodgers, Dr. Bradley, Dr. Hersh), and the National Institutes of Health
RO1DA02243 (Dr. Hersh), T32DA016176 (Dr. Sexton), and P2ORR020171 (DR. Rodgers, Dr. Bradley, Dr. Hersh). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: lhersh@uky.edu

Introduction

Neprilysin (NEP), also known as neutral endopeptidase 24.11,

CD10, enkephalinase, and CALLA, is a member of the M13

subgroup of zinc-dependent endopeptidases [1]. NEP was

originally discovered in rabbit kidney as a peptidase that cleaves

insulin B chain [2]. Subsequent studies showed that NEP is widely

expressed throughout mammalian tissues, including the lung, male

genital tract, fibroblasts, various epithelia, and at neural synapses

in the central nervous system [3–5]. The enzyme cleaves a variety

of physiological substrates including bombesin-like peptides,

amyloid b peptides (Aß), leucine5 or methionine5-enkephalin,

bradykinin, atrial natriuretic factor (ANF), and substance P [6–9].

NEP exhibits a preference for cleavage on the amino terminal side

of hydrophobic residues [10].

Because of its multiple targets, NEP has been the focus of

numerous studies attempting to modulate its activity for

therapeutic purposes. One such target is the use of NEP to reduce

Aß peptide levels in Alzheimer’s disease, since the oligomerization

of Aß has been linked to the etiology of this disease [11]. Indeed, in

studies with transgenic mice NEP expression decreases the level of

Aß [12–15] and ameliorates cognitive deficits typically attributed

to AD [16]. In yet another application inhibitors of NEP were

developed to block its ‘‘enkephalinase’’ activity to increase the

concentration of enkephalins in the brain and thus their analgesic

effect [17]. Peripherally expressed NEP may have a role in

appetite control and obesity. NEP deficient mice become obese

[18], while a peripherally administered NEP inhibitor that does

not cross the blood-brain barrier increased food intake and

subsequently led to obesity. Recently, an NEP inhibitor was shown

to increase female genitalia blood flow in rabbits by preventing

vasoactive intestinal peptide (VIP) cleavage [19]. This could

potentially lead to the use of NEP as a therapeutic agent in the

treatment of female sexual arousal disorder.

While methods to modulate NEP activity have displayed the

potential for therapeutic use, they also reveal a paradox to their

usage. For example, using NEP to lower Aß may indeed decrease

the amount of the target substrate; it may also have undesired

consequences by removing other physiologically important

products such as the enkephalins or vasopressin. Alternatively,

inhibiting NEP to enhance opioid levels will likely cause an

increase in Aß, which would result in an increased risk in the

development of Alzheimer’s disease.

A strategy to bypass the potential problems associated with the

substrate promiscuity of NEP is to alter its specificity towards a

target substrate thus reducing potential off-target effects. There is

ample precedence to apply such a strategy. For example,

substitutions within the active site of trypsin, although decreasing

activity, shifted the relative preference for arginine versus lysine

[20]. Similarly, a series of mutations in Rous sarcoma virus

protease displayed altered amino acid preferences at particular

substrate positions, allowing position-by-position control of

substrate specificity [21]. Using thermolysin as a homology model,

we were able to show that conversion of Val573 to Leu produced a

form of NEP which reacted with substrates with small P91 residues

essentially the same as wild-type enzyme, yet substrates containing

bulky P91 residues exhibited a decreased Vmax with little change in

Km [22]. This study, although limited in scope, demonstrated the
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feasibility of altering NEP substrate specificity. The nomenclature

of Schecter and Berger (Schechter I, Berger A. (1968) Biochem.

Biophys. Res. Commun. 32: 898–902) is used where residues of

the substrate C-terminal to the site of cleavage are designated P19,

P29, P39, etc as they move away from the scissile bond and residues

N-terminal to the scissile bond are designated P1, P2, P3, etc as

they move away from the scissile bond. The corresponding

binding sites on the enzyme are designated S19, S29, S39, and S1,

S2, S3, etc. respectively.

By analyzing the crystal structure of NEP in complex with the

inhibitor phosphoramidon [23], we have initiated a rational design

approach to mutate NEP active site targeting residues likely to

interact with substrates. In this study, we explore NEP substrate

specificity by generating NEP mutant libraries of two active site

residues, Phe563 which is part of the S19 binding site and Ser546

which appears to contribute to the S2/S3 binding site. A number

of these mutants displayed differential changes in activity toward

physiological substrates including changes in cleavage site

preferences. Together, these data support the hypothesis that

amino acid changes in the active site of NEP can potentially give

rise to therapeutically relevant forms of NEP.

Results and Discussion

Selection of sites for mutagenesis
Mutations were made at the Phe563 and Ser546 sites in a secreted

form of human NEP (shNEP) expressed as a C-terminal

hexahistidine fusion protein. The NEP crystal structure reveals

that Phe563 forms part of the S19 substrate binding pocket believed

to impart the preference for hydrophobic/aromatic P19 residues at

this position, Figure S1. Phe563 is located in a coil region just

prior to the helix containing the active site residues. Ser546 is part

of a ß-sheet lining the substrate-binding site [23] and is positioned

to interact with the P2 or P3 residues of a bound substrate on the

carboxyl side of the scissile bond. Based on the NEP crystal

structure, the position of both Phe563 and Ser546, and their

conservation among species, we hypothesized that these residues

contribute to substrate specificity.

Expression of mutant NEP
To test the contribution of Phe563 and Ser546 to catalysis we

used degenerate oligonucleotides to construct NEP libraries in

which we introduced amino acid substitutions at these positions.

Substitutions made at Phe563 included valine, leucine, methionine,

isoleucine, serine, histidine, aspartic acid, arginine, glutamine,

asparagine, and lysine. Substitutions made at Ser546 included

glutamate, lysine, threonine, glycine, arginine, and alanine.

Individual mutant library members were transfected in HEK293

cells and analyzed for expression. Of the seventeen sequences

examined, five mutants, NEPF563L, NEPF563V, NEPF563M,

NEPF563I, and NEPS546E expressed at levels near to that of wild-

type NEP and were selected for further purification and analysis.

The low expression of other mutants appeared to be due to their

cellular instability as they all produced similar amounts of mRNA,

Figure S2, which did not correlate with protein expression nor

did the poorly expressing mutants accumulate intracellularly.

These results suggest that active-site residues Phe563 and Ser546

play a role in overall protein folding and/or stability and that the

non-expressing mutants were likely degraded intracellularly.

The five expressing NEP mutants were purified by nickel

affinity chromatography, and the amount of NEP present

determined by Sypro ruby staining of SDS-PAGE gels. We

initially compared Sypro Ruby and Western blot analysis for

enzyme quantitation and obtained equivalent results with either

method, Figure S3.

Reaction of NEP mutants with the synthetic substrate
Glut-Ala-Ala-Phe-MNA

Activity assays were first performed using the synthetic peptide

Glut-Ala-Ala-Phe-MNA. This substrate is cleaved between the

Ala-Phe peptide bond and thus any effects of mutations on the

cleavage at this site will be reflected in the reaction kinetics. We

demonstrated that Glut-Ala-Ala-Phe-MNA hydrolysis by NEP and

each of the studied mutants was completely inhibited by the

relatively specific inhibitor, phosphoramidon at 100 mM, and the

highly specific inhibitor CGS 24592 [24] at 10 nM, thus

demonstrating that hydrolysis was attributed to NEP or its variant

and not a contaminating protein.

Kinetic constants for mutants determined with Glut-Ala-Ala-

Phe-MNA as substrate are presented in Table 1. These kinetic

constants were derived under first-order assay conditions monitored

in a continuous mode. The wild-type enzyme and the NEPF563L

mutant exhibited essentially the same specific activity of 46 and

44 pmoles/min/ng, respectively, while the NEPF563I, NEPF563V,

NEPF563M, and NEPS546E mutant activities varied from ,25% to

45% of the wild-type enzyme, Table 1. Km values varied ,2.5 fold

ranging from 51 to 118 mM, with Vmax/Km values varying three

fold or less. Thus mutating Phe563 and Ser546 produce small but

detectable affects on the cleavage of Glut-Ala-Ala-Phe-MNA

confirming that these residues contribute to catalysis.

Reaction of NEP mutants with physiological substrates
We extended the comparison of the various mutants by studying

their reaction with three physiological substrates; leucine5-

enkephalin (leu-ENK = Tyr-Gly-Gly-Phe-Leu), which is cleaved

by NEP at the Gly-Phe bond, insulin B chain, which has multiple

cleavage sites, and amyloid beta peptide 1–40 (Aß1–40), which also

has multiple cleavage sites. The rate of cleavage of these peptides

was determined by following the disappearance of the parent

peptide by reverse-phase high performance liquid chromatogra-

phy (HPLC). Leu-ENK was cleaved at the Gly-Phe bond by all of

the mutants, with rates varying from approximately 80% of the

wild-type NEP rate (NEPF563L) to less than 20% of the wild-type

rate (NEPF563V), Table 2.

Table 1. The specific activity towards glutaryl-Ala-Ala-Phe-
MNA cleavage is reduced in NEP mutants.

Specific Activity Km Ki insulin B chain

(pmoles/min/ng) (mM) (mM)

NEP 45.962.5 51611 1.960.2

NEPF563I 17.760.6 8364 2.560.9

NEPF563L 43.660.1 81611 1.560.3

NEPF563M 19.260.4 8768 1.260.1

NEPF563V 11.260.3 51610 1.060.1

NEPS546E 20.160.6 74610 ND

NEPS546A ND* 11867 ND

NEPS546T ND* 7366 ND

All assays were conducted at 37uC at in 20 mM MES buffer, pH 6.5.
ND = not determined.
*The concentrations of NEPS546A and NEPS546T were too low to quantify,
however, they were active enough to determine Km.
doi:10.1371/journal.pone.0032343.t001
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The specific activities of the various mutants with the

physiological substrate leu-ENK showed a similar pattern as

observed with Glut-Ala-Ala-Phe-MNA. NEPF563L had near wild-

type levels of activity for both Glut-Ala-Ala-Phe-MNA and leu-

ENK, while NEPF563M, NEPF563I, and NEPS546E all showed

approximately 40–60% activity towards these substrates, and

NEPF563V exhibited a 75–85% decrease in activity towards both.

Thus the effects of these mutations can be attributed to those

produced for cleaving N-terminal to single phenylalanine residue.

Insulin B chain and Aß1–40 contain multiple cleavage sites.

Cleavage at any one of these sites will result in peptide

disappearance as determined by HPLC. Compared to wild-type

NEP, mutants NEPF563V, NEPS546E, NEPF563M, and NEPF563I all

exhibited reduced hydrolysis rates for insulin B chain (p values of

0.03 or lower), whereas with NEPF563L the hydrolysis rate was

higher (p = 0.03). With Aß1–40 as substrate all of the mutants

showed reduced rates of hydrolysis (all exhibited p values,0.05).

When the relative cleavage rates for insulin B chain, Aß1–40, and

leu-ENK were compared between NEP and the various mutants

there was a discernable change in substrate preference. For

example, NEPF563L hydrolyzed insulin B chain at a rate 1.4 times

faster than NEP, but cleaved Aß1–40 at nearly half the rate of the

wild-type enzyme. Thus NEPF563L exhibits a greater than 2 fold

preference for insulin B chain over Aß1–40. NEPF563V cleaved leu-

ENK at 1/6 the rate of the wild-type enzyme and Aß1–40 at 1/12

the wild type rate, Table 2, increasing the preference of this

mutant for leu-ENK by two fold. Thus different mutations

differentially altered NEP specificity.

To further demonstrate that the NEP mutants differ in their

ability to discriminate between substrates, we measured rates of

cleavage of a mixture of two substrates, leu-ENK and insulin B

chain. The rate of cleavage of a substrate mixture is determined by

both the kcat for that substrate as well by the affinity for the

substrate. As can be seen in Table 3 all NEP mutants showed a

decrease in the rate of hydrolysis of both leu-ENK and insulin B

chain when present together. This is expected, given that each

peptide acts as a competitive inhibitor of the other. NEPF563V,

NEPF563L, and NEPF563M all showed approximately the same

wild-type enzyme ratio of rates for leu-ENK/insulin B chain

indicating no change in overall substrate preference. However,

NEPF563I exhibited a shift in substrate preference toward leu-

ENK, while the substrate preference for NEPS546E shifted more

toward insulin B chain, even though the rate remained higher for

leu-ENK. That is the ratio for leu-ENK/insulin B chain cleavage

is 3 for NEPS546E compared to 6 for wild-type NEP. Thus these

single amino acid substitutions had a measureable effect on

substrate preference.

Identification of NEP cleavage sites in insulin B chain
We next looked in more detail on the effect of the NEPF563 and

NEPS546 mutations on the hydrolysis rates at individual cleavage

sites in insulin B chain. We first tested for a change in the affinity

of insulin B chain for mutant NEPs by using insulin B chain as an

alternate substrate (competitive) inhibitor of Glut-Ala-Ala-Phe-

MNA hydrolysis. We found that there was no dramatic change in

the Ki for any of the mutants, with variations of two fold or less

(Table 1).

Degradation of insulin B chain by wild-type NEP was analyzed

by reverse-phase HPLC following the appearance of each product

as a function of time, Figure 1. Product peaks were collected and

subsequently analyzed by mass spectrometry to determine their

identities. As shown in Table 4 and the insert in Figure 1 this

analysis identified seven cleavage sites. Based on the order of

appearance of each peak, it is likely that insulin B chain1–10, insulin

B chain1–11, insulin B chain1–14 and its partner peak insulin B

chain15–30, insulin B chain17–30, and insulin B chain24–30 are all

products of primary cleavages. These products appear at the first

time point when approximately 15% hydrolysis of insulin B chain

had occurred (30 minutes). At 30% hydrolysis (90 min.), peaks

corresponding to insulin B chain1–5 and insulin B chain17–24 are

observed. Peaks for insulin B chain1–16 and insulin B chain15–23

become apparent at .30% insulin B chain hydrolysis. It should be

noted that the expected product peaks insulin B chain11–30 and

insulin B chain12–30, the partner products of insulin B chain1–10

and insulin B chain1–11 respectively, were identified by mass

spectrometry, however the peaks never accumulated significantly

above the baseline throughout the incubation. It is likely that these

are transient products that are subsequently cleaved contributing

to other product peaks (i.e. insulin B chain24–30).

Analysis of NEP mutant cleavage of insulin B chain
As a representative of the NEPF563 and NEPS546 mutants, we

compared the cleavage profile of NEPF563L and NEPS546E to that

of NEP using time course experiments, Figure 2. By adjusting the

amount of NEP mutant used, the rate of hydrolysis of insulin B

chain by all NEP forms was virtually identical. The overall

Table 2. Rates of hydrolysis of physiological peptides by NEP
mutants.

leu-ENK Insulin B Chain Aß1–40

pmole/min/ng pmole/min/ng fmole/min/ng

NEP 1.9060.23 0.8660.13 198612

NEPF563L 1.5760.32 1.1760.18 11664

NEPF563M 1.2160.22 0.2160.01 8563

NEPS546E 1.1260.12 0.5860.07 9368

NEPF563I 1.0660.17 0.1360.02 4361

NEPF563V 0.3160.02 0.0660.02 1461

Hydrolysis was carried out at 37uC at in 20 mM MES buffer, pH 6.5. Substrate
concentrations were 15 mM insulin B chain, 24 mM Aß1–40, and 64 mM leu-ENK.
Activity was determined by following the disappearance of substrate by HPLC.
Each reaction was run in at least triplicate. Statistical analysis was conducted
using a two-tailed paired t-test with Prism4 software.
doi:10.1371/journal.pone.0032343.t002

Table 3. Leu-Enkephalin and Insulin B chain dual substrate
assays.

Mutant NEP leu-ENK Insulin B Chain
Ratio leu-ENK
insulin B chain

pmole/min/ng pmole/min/ng

NEP 1.1660.06 (0.61) 0.2060.04 (0.23) 5.8

NEPF563V 0.2360.03 (0.74) 0.0460.01 (0.67) 5.8

NEPF563L 0.9760.06 (0.62) 0.1960.03 (0.20) 5.1

NEPF563M 0.6960.11 (0.57) 0.1160.02 (0.52) 6.3

NEPF563I 0.6260.03 (0.58) 0.0260.01 (0.15) 31.0

NEPS546E 0.7660.14 (0.68) 0.2560.01 (0.43) 3.0

The numbers in parenthesis indicate activity relative to the uninhibited values.
Reactions were carried out at 37uC at in 20 mM MES buffer, pH 6.5 containing
15 mM insulin B chain and 64 mM leu-ENK. Activity was measured and statistical
analysis carried out as in Table 2.
doi:10.1371/journal.pone.0032343.t003
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cleavage profile at 30% substrate hydrolysis revealed that all of the

product peaks observed with NEP are present with the mutant

enzymes indicating that there were no unique or missing cleavage

sites between NEPF563L, NEPS546E and NEP, Figure 2A. Since

rates were based on peak areas measured at 214 nm, which in turn

is dependent on both the number of peptide bonds and the

number of aromatic residues within a given peptide, only the

observed rates of change for a particular peptide product can be

compared between enzyme forms. A comparison of the rate of

change of different peaks within the same enzyme form or between

enzyme forms is not valid under our conditions of analysis.

NEP mutations affect cleavage sites preferences in insulin
B chain

Table 5 and Figure 2B,C show the rates of product

accumulation normalized to the amount of NEP protein present.

Relative to wild-type NEP the overall rate of hydrolysis of insulin B

chain is slightly increased in NEPF563L and slightly decreased in

NEPS546E, Table 2. Thus one scenario is that all sites in insulin B

chain would be cleaved at the same relative rate compared to wild-

type NEP. Alternatively, the introduced mutations may differen-

tially affect specific cleavage sites. The data in Table 5 clearly

shows the latter scenario with differential effects of mutations on

specific cleavages. NEPS546E cleaves insulin B chain at an overall

rate 0.7 times that of NEP, however it is clear that cleavage at A14-

L15 is nearly identical between NEP and this mutant. Cleavage at

H5-L6 is well below the overall insulin B chain rate of 0.7

(Figure 2B), while cleavages at H10-L11, Y16-L17, and G23-F24 are

all slightly slower than the expected 0.7 times the wild-type rate.

NEPF563L cleaves insulin B chain at a rate 1.4 times that of NEP.

Similar to that seen with NEPS546E, NEPF563L products produced

from single cleavage sites exhibit noticeably different rates

compared to NEP, Figure 2C. Cleavage at A14-L15, H5-L6, and

G23-F24 are close to the expected 1.4 times faster that of NEP, but

cleavage at H10-L11, L11-V12, and Y16-L17 are slower than NEP,

(0.8 times, 0.2 times, and ,0.7 times the NEP rate respectively,

rather than the overall 1.4 times faster than the NEP rate).

Based on the data in Table 5 the elevated activity of NEPF563L

towards insulin B chain can likely be attributed to an increased

rate of cleavage at the primary cleavage site A14-L15. Although this

cleavage involves a leucine residue, the finding that cleavage at

Y16-L17 is slower than with wild-type NEP shows the enhanced

cleavage at A14-L15 is not due to simply the F563L mutation

Figure 1. Time course for NEP mediated hydrolysis of insulin B chain. Time course assays were conducted by incubation of NEP with 15 mM
insulin B chain in 20 mM MES buffer, pH 6.5, at 37uC. A 100 mL aliquot was removed at each time point and 10 mL of 5% trifluoroacetic acid (TFA) was
added to stop further hydrolysis. 95 mL were injected into a Vydac C4 column and developed as described in Materials and Methods. Each product
was isolated and subjected to mass spectral analysis. Numbers under each peak indicate the identification of the peptide by sequence. Peaks without
numbers were not identified.
doi:10.1371/journal.pone.0032343.g001

Table 4. Products of insulin B chain hydrolysis by NEP.

Retention
Time

(min.)
Insulin B Chain
fragment

Expected
Mass

Observed
Mass Cleavage Site

9.1 1–5 643.31 643.24 H5-L6

18.3 1–10 1188.48 1188.39 H10-L11

22.7 17–24 927.42 927.35 Y16-L17+F24-F25

24.3 1–11 1301.6 1301.47 L11-V12

24.7 15–23 1056.51 1056.42 A14-L15+G23-F24

25.4 1–14 1600.75 1600.64 A14-L15

26.2 24–30 872.44 872.39 G23-F24

29.1 17–30 1634.79 1634.64 Y16-L17

31.9 1–16 1876.89 1876.75 Y16-L17

33.3 15–30 1910.93 1910.8 A14-L15

33.6 12–30 2210.87 2209.93 L11-V12

35.5 11–30 2323.17 2323.06 H10-L11

36.6 1–30 3493.67 3493.52 (insulin B chain)

NEP mediated hydrolysis was carried out as described in Table 2. The reaction
was stopped by adding 10 mL of 5% TFA when approximately half of the
substrate had been hydrolyzed (180 min.). The acidified reaction mixture was
subjected to HPLC as described in figure 1, individual peaks were collected and
identified by mass spectral analysis.
doi:10.1371/journal.pone.0032343.t004
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producing enhanced reactivity toward leucine, but more likely an

effect of neighboring residues.

Identification of NEP cleavage sites in Aß1–40

To further study the effect of mutations on cleavage site

specificity, time course assays were also performed for the

hydrolysis of the physiological substrate Aß1–40. Like the analysis

of insulin B chain, a time course assay was first done with NEP to

identify cleavage products, Figure 3 and Table 6. After 15%

hydrolysis of Aß1–40 (150 min.) by NEP there were six discernable

product peaks corresponding to Aß1–16, Aß1–17, Aß10–17, Aß20–28,

Aß20–29, and Aß20–30. At 25% hydrolysis (240 min.), peaks

corresponding to Aß1–9, Aß4–16, and Aß4–17 were observed, while

at 40% hydrolysis peaks Aß4–9 and Aß10–16 appeared. Peak Aß12–

17 was the last peak to be observed at 45% hydrolysis of Aß1–40

(360 min.). Missing from the HPLC analysis were the C-terminal

products resulting from the cleavages at K28-G29, G29-A30, and

A30-I31. These products are derived from the trans-membrane

region of the amyloid precursor protein (APP) from which Aß is

formed and are rather hydrophobic. It is likely that these peptides

were not eluted in the gradient we employed.

Two other studies have identified NEP cleavage sites within

Aß1–40 [25,26]. These studies as well as the current study all

detected cleavages at G9-Y10, F19-F20, and A30-I31. Cleavage at

A3-F4 was detected in this study as well as by Howell et al [25,26].

Cleavages at K28-G29 and G29-A30 were detected in this study as

well as by Leissring et al. [25,26]. In the current study additional

unreported cleavage sites at E11-V12, K16-L17, and L17-V18 were

detected. These were previously pointed out as potential cleavage

sites, but were not observed [25,26]. Both Leissring and Howell

identified cleavage at G33-L34, yet this cleavage was not found in

this study. These differences likely reflect differences in the

resolution of the Aß1–40 cleavage products on the HPLC columns

used and gradient conditions.

Analysis of specific cleavage sites in Aß1–40

We next compared the Aß1–40 cleavage profile of the NEPF563L

and NEPS546E mutants to that of wild-type NEP, Figure 4. Since

NEP, NEPF563L and NEPS546E cleave Aß1–40 at different rates, the

amount of the mutant enzymes used in the reaction was as before

adjusted in order to analyze products formed at the same fraction

of degradation. Interestingly, although all wild-type peaks were

present in the NEPS563E mutant, the peak corresponding to Aß1–9

was not present among the hydrolysis products of the NEPF563L

mutant.

Similar to the analysis conducted with insulin B chain, the linear

rate of product accumulation was determined for each peak and

normalized to the amount of protein in the reaction, Table 7.

Unlike the hydrolysis of insulin B chain, the hydrolysis of Aß1–40,

even at the earliest time points, produced products resulting from

Figure 2. Comparison of insulin B chain cleavage between NEP, NEPF563L, and NEPS546E. A. HPLC profile of insulin B chain cleaved by NEP
and NEP mutants at 30% hydrolysis. B. Rates of peak accumulation at each cleavage site normalized to that of NEP for mutant NEPS546E. C. Rates of
peak accumulation at each cleavage site normalized to that of NEP for mutant NEPF563L. Dotted lines indicate the overall rate of hydrolysis of insulin B
chain from Table 2. Reactions were carried out at 37uC with 15 mM insulin B chain in 20 mM MES, pH 6.5.
doi:10.1371/journal.pone.0032343.g002
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multiple cleavage events. Out of the 12 identified product peaks,

only 3 could be produced by a single cleavage. Rates for all

cleavages were calculated and are given in Figure 4, B–D, but

only the three putative primary cleavage sites can be compared.

NEPS546E hydrolyzes Aß1–40 at an overall rate 0.5 times that of

wild-type NEP. Two of the three products resulting from a possible

single cleavage by NEPS546E exhibit a higher than predicted rate of

cleavage. Cleavage at K16-L17 producing Aß1–16 is identical rather

than half the wild-type rate while cleavage at L17-V18 producing

Aß1–17 was approximately 70% rather than 50% of the NEP rate.

The remaining single cleavage site at G9-Y10 shows a slower rate

being about 30% that of wild-type enzyme. Thus it would appear

that all three of these cleavages contribute to the overall rate and

together produce an average rate 0.5 times that of NEP.

Cleavage at L17-V18 is approximately three times faster for

NEPS546E compared to NEPF563L. Thus cleavage at L17-V18 for

mutant NEPS563E is 70% of the wild-type NEP whereas cleavage

at this bond for the NEPF563L is 25% of NEP. In order to account

for this finding there must either be an undetected cleavage that is

significantly reduced in NEPS546E or more likely that NEPF563L

exhibits a unique cleavage pattern that yields these products.

The rate of appearance of Aß1–16 is linear over the entire 360-

minute time course for all three enzymes. Aß1–17, on the other

hand, shows a linear increase with both NEPF563L and NEPS546E,

but is non-linear with wild-type NEP showing very little increase

after 150 min. This is consistent with Aß1–17 being further

metabolized by NEP, most likely by being cleaved at G9-Y10

giving rise to Aß1–9 and Aß10–17, both of which show higher peak

areas in NEP than with either mutant. In contrast the absence of

an obvious reduction of Aß1–9 and Aß10–17 in the reaction of

NEPF563L and NEPS546E suggests these mutants cleave the G9-Y10

bond at a much slower rate.

Although NEPF563L did not produce a discrete Aß1–9 peak, it

appears to cleave the G9-Y10 bond as evidenced by the presence of

the products Aß10–16 and Aß10–17. Since Aß1–9 is absent in the

NEPF563L profile but Aß10–16 and Aß10–17 are observed, the

cleavage by NEPF563L at G9-Y10 is likely dependent on the

cleavage at A3-F4. Aß1–9 is not further degraded by hydrolysis at

the A3-F4 site with both NEP and NEPS546E as evidenced by its

linear increase as a function of time. If hydrolysis occurred at the

A3-F4 bond of the Aß1–9 product, one would expect either no time

dependent increase or a decrease in the Aß1–9 peak.

The finding that most of the observed products of Aß1–40

cleavage result from multiple cleavages, even for early time points,

would suggest that NEP is processive in its cleavage of Aß1–40 and

can make several cleavages before product release. Whether the

Table 5. Relative rates of accumulation of peaks generated
by the NEP and NEP mutant dependent hydrolysis of insulin B
chain.

Single Cleavage

Peak NEP S546E F563L

Cleavage Site Darea/min/ng Darea/min/ng Darea/min/ng

H5-L6 1–5 59 12 83

H10-L11 1–10 163 87 135

L11-V12 1–11 88 30 16

A14-L15 1–14 167 145 266

15–30 135 116 282

Y16-L17 1–16 31 17 25

17–30 171 81 112

G23-F24 24–30 268 142 290

Two Cleavages

Peak NEP S546E F563L

Cleavage Sites Darea/min/ng Darea/min/ng Darea/min/ng

A14-L15, G23-F24 15–23 23 26 64

Y16-L17, F24-F25 17–24 33 18 25

Time course assays were carried out by incubation of NEP with insulin B chain
using conditions as described in Table 2. At 0, 30, 60, 90, 120, and 180 min.,
aliquots of 100 mL were removed followed by the addition of 10 mL of 5% TFA
to stop further hydrolysis. Each reaction mixture was subjected to HPLC analysis
as in Table 4 and peak areas measured. The rate of accumulation for each peak
was calculated from the linear phase of the reaction.
doi:10.1371/journal.pone.0032343.t005

Figure 3. Time course of NEP mediated hydrolysis of Aß1–40. Time course measurements were carried out by incubation of NEP with 24 mM
Aß1–40 in 20 mM MES, pH 6.5, at 37u. 100 mL aliquots were removed at each time point and 10 mL of 5% TFA was added to stop the reaction. Samples
were analyzed as described in Figure 1. Numbers under each peak indicate the identification of the peptide by sequence.
doi:10.1371/journal.pone.0032343.g003

Changing the Cleavage Specificity of Neprilysin

PLoS ONE | www.plosone.org 6 February 2012 | Volume 7 | Issue 2 | e32343



enzyme does this with both C-terminal and N-terminal products is

not clear and how the products are reoriented in the active site for

additional cleavages is also unclear. However, the alternative

explanation for observing products derived from multiple cleavages

requires an extremely high affinity of the product peptide to be

bound and cleaved in the presence of a large amount of unreached

Aß1–40. The processive model is consistent with the overall structure

of the enzyme, which has only a small opening leading to the large,

enclosed chamber that borders the active site. Once a peptide

diffuses through the narrow opening, it is likely that it and product

peptides are retained in the enclosed chamber sufficiently long

enough for multiple active site binding events to occur.

Of the eleven substitutions made at Phe563 only four produced

enzyme of sufficient stability to be studied. The four residues that

did produce stable forms of NEP all represented conservative

change to hydrophobic residues, whereas the other non-conser-

vative or semi-conservative changes produced unstable enzyme

forms. This suggests position 563 likely serves as an important

anchor residue in the folding of the enzyme, and interaction of a

hydrophobic residue at this position with other hydrophobic and

aromatic residues is required. Changes at Ser546 produced more

variable results in terms of enzyme expression, and this position is

therefore likely less critical in folding.

Amino acid substitutions at both Phe563 and Ser546 affected the

cleavage pattern of NEP. Phe563 forms part of the S19 substrate

binding pocket and helps define the specificity of NEP for

hydrophobic/aromatic P19 residues, thus changing this amino

acid would likely affect cleavage specificity. Ser546 is positioned to

contribute to the S2/S3 binding site, although this registration is

more speculative, since subsites N terminal to the scissile bond are

not defined by available structures with bound inhibitors.

Although selectivity is less stringent at these positions, we have

previously obtained evidence that residues N terminal to the

scissile bond, particularly the S1 subsite, also contribute to

substrate specificity [27] and this study certainly supports a role

for the P2/P3 peptide positions in selectivity.

Of the two mutants studied in detail no changes in the peptide

bonds that were cleaved were observed, but the relative rates of

cleavage were affected by substitution at both Phe563 and Ser546.

In general substitution of leucine for phenylalanine at the S91 site

either had no effect or increased the rate at which cleavage

occurred with a P91 leucine or phenylalanine residue, but

significantly decreased the rate when valine occupied the P91

position. Since the NEPF563L mutation substitutes a smaller

residue in the hydrophobic S19 subsite, this result can be

rationalized on the basis that the relatively small valine at P19

leaves an unfavorable gap upon substrate binding. Substitution of

glutamate for serine at the S2/S3 position produced marked

differential changes in cleavage rates, but these changes were

complex and not easily rationalized. This result extends our earlier

results indicating that residues N terminal to the scissile bond play

an important role in selectivity. It is possible given the complex

nature of the observed rate changes that positioning of the N

terminal side of the substrate peptide may vary in a sequence

dependent manner.

Taken together this study shows that a single amino acid

substitution within the active site of NEP can cause changes in

cleavage site preference, which strongly supports the notion that it

may be possible to alter the NEP active site to generate substrate

specific variants that will be useful therapeutically.

Materials and Methods

Mutagenesis and production of expression vectors
NEP variants were constructed as gene segment cassette

modules using degenerative oligonucleotide primers to introduce

sequence diversity by PCR. Individual mutation cassettes were

inserted into the pCDNA-shNEP-CHis (SacII+Pst1) expression

vector, a re-engineered pCDNA-3.1 vector with a silent SacII

mutation introduced 59 to the active site region within a secreted

form of the human NEP (shNEP) coding sequence and a C-

terminal hexahistidine affinity tag. Two silent mutations were

made, using the QuickchangeH II site directed mutagenesis kit

(Stratagene) to eliminate additional PstI sites and facilitate cassette

subcloning of the shNEP gene. A 3 kb fragment of lambda

‘‘stuffer’’ DNA was inserted between the SacII and Pst1 sites to

allow gene segment cassette subcloning while eliminating wild-type

sequences from being selected [27,28]. Non-polar substitutions at

Phe563 were initially cloned into and sequenced using the pBPG1

vector for expression in yeast [29]. However, low enzyme yields

from yeast led to the removal of the identified clones from the

pBPG1 vector and subcloning into the pDNA-shNEP-CHis-

(SacII-3kbstuffer-PstI) vector. PCR based mutagenesis was used to

create NEP variants using degenerative primers containing

appropriate restriction sites. For making polar substitutions at

Phe563 the 59 primer contained a PstI restriction site and the 39

primer contained an NcoI restriction site to facilitate movement

from the pBPG1 vector to the pCDNA-shNEP-CHis- (SacII-

3kbstuffer-PstI) vector. The degenerative primers (IDTDNA,

Corralville, IA) used were:

59-gattcggcttgtacagcatatgtgg-39 (S546 reverse primer)

59-gggggctgcagaatgccggctgggaagactatctgatttcttcctgaTBYg-

taaaatgcattgactaccgcg-39 (S546 forward primer)

59-cccattctgcagccccccVtStttagtgcccagcagtccaac-39 (F563 for-

ward primer for non polar residues)

59-cccattctgcagccccccVDStttagtgcccagcagtccaac-39 (F563 for-

ward primer for polar residues)

59-tccaccagtcaacgaggtctc-39 (F563 reverse primer)

Table 6. Identification of products resulting from the
hydrolysis of Aß1–40 by NEP.

Retention
Time (min.)

Amyloid ß
peptide
fragment

Expected
Mass

Observed
Mass Cleavage Site

7.4 4–9 717.32 717.30 E3-F4+G9-Y10

10.3 10–16 939.46 939.44 G9-Y10+K16-L17

14.7 1–9 1032.43 1032.43 G9-Y10

15.8 12–17 760.43 760.44 E11-V12+L17-V18

17.2 20–28 964.45 965.46 F19-F20+K28-G29

17.4 20–29 1022.44 1022.47 F19-F20+V29-A30

18.2 20–30 1093.50 1093.52 F19-F20+A30+I31

19.0 4–16 1638.76 1638.76 E3-F4+K16-L17

19.8 1–16 1953.87 1953.83 K16-L17

20.4 10–17 1052.54 1052.54 G9-Y10+L17-V18

22.3 4–17 1751.85 1751.81 E3-F4+L17-V18

23.1 1–17 2066.96 2066.92 L17-V18

37.4 1–40 4327.00 4327.15 (Ab1–40)

NEP mediated hydrolysis was carried out as described in Table 2. The reaction
was stopped by adding 10 mL of 5% TFA when approximately half of the
substrate had been hydrolyzed (360 min.). The acidified reaction mixture was
subjected to HPLC analysis as described in Table 4. Each peak was isolated and
subjected to mass spectral analysis.
doi:10.1371/journal.pone.0032343.t006

Changing the Cleavage Specificity of Neprilysin

PLoS ONE | www.plosone.org 7 February 2012 | Volume 7 | Issue 2 | e32343



where V = A, C, or G; S = C or G; D = A, G, or T; B = C, G, or T;

Y = C or T.

Expression and purification
NEP protein was expressed in HEK293T cells transfected with

the pcDNA vector described above. Cells were grown in

Dulbecco’s Modified Eagle Medium (DMEM, Gibco) containing

10% FBS and 44 mM NaHCO3 added as a supplement. For

transfections, Polyfector (BamaGen Bioscience) and plasmid DNA

were incubated at room temperature for 20 min in serum free

DMEM media and then added to HEK293T cells in the DMEM

media. The media was replaced with serum free DMEM 12–

14 hours post transfection, and collected 72–96 hours post

transfection. To the media was added 1 M Tris-HCl, pH 7.4 to

a final concentration of 50 mM and the secreted enzyme was then

purified on a His-Select Affinity Agarose Column (Sigma). The

affinity purification step yielded enzyme with the purity dependent

on the level of NEP expression. Activities measured in this study

were attributed to NEP, since a mock transfection and purification

resulted in no activity toward any of the substrates tested and NEP

inhibitors eliminated all activity. We estimated the amount of NEP

protein present by running the purified preparations on 8% or

10% SDS-PAGE gels along with purified NEP as a standard. The

gels were stained with Sypro Ruby dye scanned on a Typhoon

9400 Imager, and quantified with Image Quant 5.2 software. In

preliminary experiments the gel was transferred to a polyvinyli-

dene fluoride (PVDF) and subject to Western blot analysis using

goat anti-mNEP at 1:1000 (R&D systems) as the primary antibody

and anti-goat IRDye800 at 1:20,000 (Rockland) as the secondary

antibody. Probed membranes were imaged using an Odyssey

infrared imager and Odyssey 2.1 software. Intensities of each band

were analyzed with Image Quant 5.2 software. Data was analyzed

using Prism4 software.

Activity assays
NEP activity was routinely assayed using the fluorogenic peptide

glutaryl-Ala-Ala-Phe-4-methoxy-2-naphthylamide (Glut-Ala-Ala-

Phe-MNA, Sigma) [30]. Reactions of 400 ml contained 100 mM

Glut-Ala-Ala-Phe-MNA, 1 mg of aminopeptidase [31] and 15 to

100 ng of NEP or mutant NEP depending on their activity in

20 mM MES buffer, pH 6.5. Activity was monitored with a

Spectra Max Gemini XS plate reader using an excitation

wavelength of 340 nm and an emission wavelength of 425 nm.

Reaction specificity was determined using the NEP inhibitors

Figure 4. Comparison of Aß1–40 cleavage between NEP, NEPF563L, and NEPS546E. A. HPLC cleavage profile of Aß1–40 cleavage by NEP and
NEP mutants at ,30% hydrolysis. B. Rates of peak accumulation at each cleavage site normalized to that of NEP for mutant NEPS546E. C. Rates of peak
accumulation at each cleavage site normalized to that of NEP for mutant NEPF563L. Dotted lines indicate the overall rate of hydrolysis of Aß1–40 from
Table 2. Reactions were carried out at 37uC with 15 mM Aß1–40 in 20 mM MES, pH 6.5.
doi:10.1371/journal.pone.0032343.g004
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phosphoramidon and CGS 24592 [24], the latter being a highly

specific and potent inhibitor.

Kinetic Analysis
Kinetic constants for NEP and its mutants were obtained using

the assay conditions noted above, but with Glut-Ala-Ala-Phe-MNA

varied from 20 to 500 mM. Typically 12 data points were obtained.

The data were fit to the Michaelis-Menten equation using Prism4

software. The Ki for insulin B chain was obtained by measuring the

rate of Glut-Ala-Ala-Phe-MNA hydrolysis in the presence of varying

concentrations of insulin B chain from 1 to 40 mM. Data were fit to

a Dixon plot (1/rate versus [insulin B chain]) using Prism4 software

and the ID50 obtained as the –x intercept, where ID50 corresponds

to the concentration of insulin producing 50% inhibition. The

actual Ki was obtained from the equation: ID50 = Ki (1+ [Glut-Ala-

Ala-Phe-MNA]/KmGlut-Ala-Ala-Phe-MNA) [32,33].

HPLC assays
Cleavage of physiological peptides was measured via reverse

phase high performance liquid chromatography (HPLC) following

incubation of the purified NEP or its mutants with 15 mM insulin

B chain (Sigma Aldrich), 24 mM Aß1–40 (Anaspec), or 64 mM leu-

ENK (Sigma) in 100 mL of 20 mM MES, pH 6.5, at 37uC.

Reactions were run in triplicate. HPLC was carried out in a Vydac

C4 column using a linear gradient from 0.1% trifluoroacetic acid

(TFA) in 95% water, 5% acetonitrile to 0.1% TFA in 50%

acetonitrile/water at a flow rate of 1 mL/min. Peptides and

hydrolysis products were detected at 214 nm and quantified by

measuring peak areas. Peptides obtained from HPLC were

analyzed on an Applied Biosystems 4800 MALDI TOF/TOF

Proteomics Analyzer at the University of Kentucky Proteomics

core. This facility is supported in part by grant P20RR020171

from the NIH/NCRR.

Synthesis and analysis of NEP cDNA
In order to compare NEP transcript levels, RNA from 96-hour

post-transfected HEK cells was collected using a QIAshredder

column (Qiagen) and an RNeasy Mini Kit (Qiagen). Using 5 mg of

the harvested RNA, cDNAs were produced with a Superscript

First Strand Synthesis kit (Invitrogen) using the oligo(dT) primer

included in the kit. Using NEP specific primers (59-aaagtaaacaact-

gaaga-3 and 59-tcctgaaattgcctggac-39) and primers for b-actin (59-

taggagccagagcagtaatc-39 and 59-tgtttgagaccttcaacacc-39) for con-

trols, relative levels of cDNA were measured by comparing

product formation at 20, 25, 30, and 35 cycles in PCR reaction

comparing under standard conditions using 50uC annealing

temperature.

Statistical Analysis
Statistical analysis comparing wild-type NEP and its mutants

was performed with Prism 4 software using a two-tailed paired t-

test with a 95% confidence interval.

Supporting Information

Figure S1 Sites Mutated in NEP. The active site region of

the NEP-phosphoramidon complex [23] is shown with the protein

in a ribbon and surface representation and the bound ligand in a

stick representation. The mutated residue positions are in red with

side chains shown. The zinc ion cofactor is represented by a yellow

sphere. Phosphoramidon residues equivalent to substrate peptide

positions P1–P29 are indicated. The approximate position of

substrate P2 and P3 residues is shown by the blue ovals. Purple

arcs indicate contact between the P19 residue and F563.

(TIF)

Figure S2 NEP and mutant NEPs produce similar levels
of mRNA. Varying PCR cycles were used to estimate the relative

amount of NEP mRNA of high and low expressing mutants. Total

RNA was harvested from HEK293T cells 96 hrs post transfection

and an equal amount of RNA was used as a template for first-

strand synthesis to produce a cDNA library using an oligo(dT)

universal primer. The cDNA libraries were then used as templates

for PCR using primers specific for NEP (experimental) and b-

Actin (control). Samples from PCR cycles 20, 25, and 30 were

used to estimate NEP transcript levels. The NEPF563K mutant

product band intensity relative to NEP was 0.9, 1.0, and 1.3 at

cycles 20, 25, and 30 respectively. NEPF563V and NEPF563L were

at a level approximately half of the wild-type NEP transcript. In

contrast, NEPF563L exhibited the same activity as wild-type

enzyme while NEPF563V displayed ,25% of the wild-type activity,

while the activity for NEPF563K was undetectable (,1% relative to

wild-type enzyme) under our assay conditions (Table 1).

(TIF)

Figure S3 Determination of the concentration of NEP
mutants. Purified NEP samples were subjected to SDS-PAGE on

8% polyacrylamide gels and stained for protein with Sypro Ruby

dye (A). The gel contained 100, 250, and 500 ng of purified NEP,

which was used to construct a standard curve (C) from which the

concentration of each NEP form was calculated. Samples of

purified NEP, NEPF563L, and NEPS536E were run at 15 ml and

30 ml. Intensities of each NEP band were fit to the standard curve

(C) to give 8.960, 12.763.7, and 11.661.1 ng/mL for NEP,

NEPF563L, and NEPS536E, respectively (E, solid bars). Similarly a

Table 7. Accumulation rates of products of NEP dependent
cleavage of Aß1–40.

Single Cleavage

Peak NEP S546E F563L

Cleavage Site Darea/min/ng Darea/min/ng Darea/min/ng

G9-Y10 1–9 7 2 0

K16-L17 1–16 22 22 17

L17-V18 1–17 75 51 22

Dual Cleavages

Peak NEP S546E F563L

Cleavage Sites Darea/min/ng Darea/min/ng Darea/min/ng

A3-F4, G9-Y10 4–9 10 4 5

A3-F4, K16-L17 4–16 7 5 5

A3-F4, L17-V18 4–17 9 3 12

G9-Y10, K16-L17 10–16 4 5 11

G9-Y10, L17-V18 10–17 18 5 8

E11-V12, L17-V18 12–17 3 2 1

F19-F20, K28-G29 20–28 11 2 5

F19-F20, G29-A30 20–29 16 5 6

F19-F20, A30-I31 20–30 34 15 26

Time course assays were carried out by incubation of NEP with 24 mM Aß1–40

using reaction conditions as described in Table 5. At 0, 60, 150, 240, and
360 min., aliquots of 100 mL were removed followed by the addition of 10 mL of
5% TFA to stop further hydrolysis. Each reaction mixture was subjected to HPLC
analysis as in Table 5 and peak areas measured. The rate of accumulation for
each peak was calculated from the linear phase of the reaction.
doi:10.1371/journal.pone.0032343.t007
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Western blot derived from a 10% SDS-PAGE was run containing

10, 50, and 100 ng of purified NEP from which a standard curve

was derived (D). NEP, NEPF563L, and NEPS536E were run at

3.75 ml and 7.50 ml. Intensities of each NEP band were fit to the

standard curve (D) to give 11.061.4, 13.360.6, and 13.162.2 ng/

mL for NEP, NEPF563L, and NEPS546E, respectively (E, empty

bars). Note - the difference in size between the NEP standard and

the NEP experimental samples is due to differences in glycosyl-

ation between NEP isolated from CHO cells and HEK cells,

respectively.

(TIF)
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