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Abstract

Background: Taxonomy and phylogeny of subclass Heterodonta including Tellinoidea are long-debated issues and a
complete agreement has not been reached yet. Mitochondrial (mt) genomes have been proved to be a powerful tool in
resolving phylogenetic relationship. However, to date, only ten complete mitochondrial genomes of Heterodonta, which is
by far the most diverse major group of Bivalvia, have been determined. In this paper, we newly sequenced the complete mt
genomes of six species belonging to Heterodonta in order to resolve some problematical relationships among this subclass.

Principal Findings: The complete mt genomes of six species vary in size from 16,352 bp to 18,182. Hairpin-like secondary
structures are found in the largest non-coding regions of six freshly sequenced mt genomes, five of which contain tandem
repeats. It is noteworthy that two species belonging to the same genus show different gene arrangements with three
translocations. The phylogenetic analysis of Heterodonta indicates that Sinonovacula constricta, distant from the
Solecurtidae belonging to Tellinoidea, is as a sister group with Solen grandis of family Solenidae. Besides, all five species of
Tellinoidea cluster together, while Sanguinolaria diphos has closer relationship with Solecurtus divaricatus, Moerella iridescens
and Semele scaba rather than with Sanguinolaria olivacea.

Conclusions/Significance: By comparative study of gene order rearrangements and phylogenetic relationships of the five
species belonging to Tellinoidea, our results support that comparisons of mt gene order rearrangements, to some extent,
are a useful tool for phylogenetic studies. Based on phylogenetic analyses of multiple protein-coding genes, we prefer
classifying the genus Sinonovacula within the superfamily Solenoidea and not the superfamily Tellinoidea. Besides, both
gene order and sequence data agree that Sanguinolaria (Psammobiidae) is not monophyletic. Nevertheless, more studies
based on more mt genomes via combination of gene order and phylogenetic analysis are needed to further understand the
phylogenetic relationships in subclass Heterodonta.
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Introduction

Mitochondrial DNA (mtDNA) is the only extranuclear genome

in animal cytoplasm [1]. Most metazoan mitochondrial genomes

are covalently closed circular molecules which range from 14 to

42 kb in length [2], but see [3]. The typical mitochondrial genome

contains the same 37 genes: 13 for protein subunits of oxidative

phosphorylation enzymes (atp6, atp8, cox1–3, cob, nad1–6 and

nad4l), two for mitochondrial ribosomal RNAs [small and large

subunit ribosomal RNA (rrnS and rrnL)] and 22 for the transfer

RNA genes (tRNAs) genes necessary for translating these 13

proteins [4]. In general, there are few intergenic nucleotides except

for a single large non-coding region generally thought to contain

elements that control the initiation of replication and transcription

[4]. Owing to abundance of mitochondria in cells, lack of

recombination, maternal inheritance (except for [5]), absence of

introns, and higher evolutionary rates, mtDNA sequences are

extensively used for comparative and evolutionary genomics,

molecular evolution, population genetics, species identification,

and phylogenetic relationships at various taxonomic levels [6–9].

For some phyla of animal, mitochondrial gene arrangements

seem seldom to have changed. With few notable exceptions, those

vertebrates studied, for instance, have identical gene arrangements

[10]. However, mollusks, especially bivalves, which display an

extraordinary amount of variation in gene arrangement, challenge

this rule. Gene arrangement has been shown to be very powerful

characters for reconstructing evolutionary relationships, and the

rapidity of rearrangement within a lineage determines the level at

which rearrangements are likely to be phylogenetically informative

[10,11].

In recent studies, phylogenetic analysis based on complete mt

sequence data have proved to enhance resolution and statistical

confidence of inferred phylogenetic trees when compared with

analyses based only on small portions of the mtDNA [12–15].

With technological and methodological advances, and associated

decreasing costs of DNA sequencing, the amplification and
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sequencing of whole mt genomes has become routine [16].

Consequently, there have been significant increases in the number

of complete mitochondrial sequences available during the last ten

years. Nevertheless, to date, only ten complete mitochondrial

genomes of Heterodonta, which is by far the most diverse major

group of Bivalvia [17], have been determined.

Heterodonta, encompassing richly speciose families such as the

Cardiidae, Tellinidae, Veneridae and Lucinidae, and including

major economic groups such as clams, cockles, geoducks and razor

shells, can be hugely abundant in both marine and freshwater

systems, and of considerable ecological importance in community

structure as well as a trophic resource [17–19]. However,

taxonomy and phylogeny of Heterodonta are long-debated issues,

and a complete agreement has not been reached yet, even if this

subclass has a rich fossil history extending from the Lower

Palaezoic, with major radiations in the Late Mesozoic [20–22]. In

particular, the morphologically-inferred phylogenies of subclass

Heterodonta were challenged by recent phylogenetic studies based

on molecular data. For example, the Gastrochaenidae and

Hiatellidae do not form a monophyletic group with the other

families of the order Myoida [23–24]. Monophyly of the

Lucinoidea is not supported, with the families Thyasiridae and

Ungulinidae not closely related to the Lucinidae [25].

The superfamily Tellinoidea of the subclass Heterodonta

consists of five families (Tellinidae, Donacidae, Psammobiidae,

Semelidae, Solecurtidae) [26]. Based on the information of

paleontology and morphology of Tellinoidea, large numbers of

research works have been performed to study the evolutionary

history and taxonomy within this superfamily over a long time

[27–30]. Howbeit, compared with molecular analyses carried out

to investigate relationships within individual families of Hetero-

donta (e.g., Veneridae [31,32], Sphaeriidae [33], Thyasiridae [34]),

there have been few attempts to make comprehensive analysis of

phylogenetic relationships of Tellinoidea on molecular level so far,

not to mention analysis based on complete mitochondrial genome.

In this paper, we newly sequenced the complete mt genomes of

six heterodont bivalves, including five from four families (Tell-

ininae, Psammobiidae with two species, Semelidae, Solecurtidae)

within superfamily Tellinoidea and one from superfamily

Solenoidea which was ever classified in Tellinoidea, and compared

their different gene arrangements. In addition, the six newly

determined sequences, together with the heterodont mt genomes

available in GenBank, were used to recover the phylogeny of

Heterodonta in order to resolve some problematical relationships

among this subclass.

Results and Discussion

Genome composition
The main structural features of the six newly sequenced mt

genomes in this study are summarized in Table 1. The complete

mitochondrial genomes of MOIR-0101 Moerella iridescens

[JN398362], SADI-0111 Sanguinolaria diphos [JN398363], SAOL-

0112 Sanguinolaria olivacea [JN398364], SESC-0121 Semele scaba

[JN398365], SICO-0201 Sinonovacula constricta [JN398366] and

SODI-0131 Solecurtus divaricatus [JN398367] vary in size from

16,352 bp (S. diphos) to 18,182 bp (S. olivacea). Length differences

are mostly in virtue of the variation in tandem repeats within the

non-coding region. The placement of all coding genes on the same

strand and the lack of one protein coding gene atp8 are the most

distinctive features of marine bivalve mt genomes [35,36], without

exceptions for six studied species. The overall A+T content of six

newly sequenced complete mt genomes ranges from 59.19% (S.

scaba) to 67.08% (S. constricta). In addition, overlapping genes,

which are presumably to help prevent rearrangements of gene

order and loss of genes during evolution in mammalian [37], are a

common phenomenon in all newly sequenced mt genomes

(Table 1).

Protein coding genes
Table 1 shows the initiation and termination codons for the 12

protein-coding genes (PCGs) encoded by the six mt genomes. Most

of PCGs (64/72) appear to start with the conventional codon ATN

(ATG, N = 34; ATA, N = 22; ATT, N = 8), which is typical for

metazoan mt genomes [2]. There are also TTG (N = 3) and GTG

(N = 5) acted as start codons, which are not unusual start codons in

molluscan mt genomes but in several gastropod mt genomes [38].

All 12 PCGs of six mt genomes end in full termination codon

(TAG, N = 37; TAA, N = 34), except for nad4 gene of S. diphos

ending with the incomplete stop codon T which may be modified

to a complete TAA stop codon via posttranscriptional polyade-

nylation [39]. In contrast to the available heterodont bivalves mt

genomes from GenBank, the mt genome of S. olivacea has the

longest cox1 (1758 bp) and nad2 (1077 bp) genes, S. scaba has the

longest cox2 (1206 bp) and nad6 (633 bp) genes, and S. diphos has

the shortest nad4 (1303 bp) gene.

Transfer and ribosomal RNA genes
In the mt genomes of metazoan, almost all amino acids but

leucine and serine are decoded by only one tRNA each [40].

Without exception, there are 22 typical tRNAs interspersed

throughout the mt genome of M. iridescens, S. divaricatus, and S.

constricta. The trnF is missing in both S. diphos and S. olivacea, and S.

scaba lacks trnY and trnS1. Deficiencies of tRNA genes are often

observed in protozoans, fungi, algae, plants and low metazoans

[41,42]. In this study, most of tRNAs can be folded into the typical

secondary structures (not shown).

BLAST searches indicated approximate locations of the two

rRNA genes, but their exact boundaries can not been determined

[43]. The size of rrnL flanked by nad6 and atp6 in all six mt

genomes ranges from 1228 bp (S. constricta) to 1380 bp (S.

divaricatus). The length of rrnS varies from 861 bp (S. scaba) to

949 bp (S. olivacea). The rrnS genes of M. iridescens, S. diphos and S.

divaricatus position in between trnG and major non-coding region.

However, rrnS genes of S. olivacea, S. scaba, and S. constricta lie in

between cox2 and trnS1, between trnW and cox2, and between trnM

and cox3, respectively. Both lengths of rrnL and rrnS are within the

range of genome sizes of already sequenced molluscan mtDNAs.

Non-coding regions
There are a large number of non-coding regions (NCR)

including in the six mt genomes each. The number of NCR

varies from 16 (S. diphos and S. olivacea) to 25 (S. constricta). The total

length of unassignable nucleotides ranges from 1022 bp (6.25% of

the genome) in S. diphos to 2730 bp (15.01% of the genome) in S.

olivacea (Table 2).

Due to lacking discrete conserved sequence blocks, the control

regions of invertebrates’ mt genomes, unlike those of vertebrates,

are not well characterized [44]. In general, the mt genome

contains one major non-coding region with some peculiar patterns

(e.g. AT-rich, hairpin structures, T-stretch, C-rich,tandem re-

peats), believed to play a role in initiating and/or regulating

mitochondrial transcription and replication [2,45–48]. The largest

non-coding region (MNR) of the six mt genomes with all the

patterns mentioned above is identified as a putative control region

(CR). As highly rearranged gene order in bivalves, the MNR is not

conserved at the same location among bivalves [42]. In this study,

Complete Mitogenomes of Six Heterodont Bivalves
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four different locations (between rrnS and trnM, trnG and trnI, cob

and trnG, nad2 and trnK) of MNR occur.

Among the six mt genomes, the MNRs vary in size from 674 bp

(S. diphos) to 2272 bp (S. olivacea) (Table 2). Moreover, the A+T

content of the putative CR in each mt genome is higher or slightly

lower than that of the whole mt genome. There are some sections

of nucleotide sequence existed in MNR, all of which can form a

typical hairpin-like secondary structures (Figure S1). The con-

served flanking sequences around the hairpin structures exhibit

conserved motifs: 59-flanking sequences show a TATA element

(except for S. divaricatus) which has also been reported in Crustacea

[49], while 39-flanking sequences possess a TTTAT element in M.

iridescens, S. scaba, S. olivacea and S. divaricatus. It is assumed that

these structures are of functional importance involving in the

origin of the replication of mtDNA [48]. Long T-stretches of

18 bp, 15 bp, 18 bp and 13bp are observed in the MNR of S.

diphos, S. olivacea, S. divaricatus and S. constricta, respectively, which

may provide essential signals for the replication initiation of

mtDNA [46]. In addition, the C-rich sequences, predicted to

facilitate formation of the D-loop by decelerating the extension of

heavy-strand synthesis at this location in some vertebrates [45],

exist in the MNR of M. iridescens, S. scaba and S. olivacea.

Tandem repeats are also detected in MNR of five mt genomes

(Figure S2; Figure S3; Figure S4; Figure S5; Figure S6; Figure S7),

but that of S. diphos. Especially in MNR of M. iridescens mt genome,

three distinct tandem repeat units are found, one of which

comprises 14.4 nearly identical copies of a 54 bp unit. Besides, S.

olivacea has 2 copies of 98 bp and S. scaba has 2.8 copies of 109 bp.

Such large tandem repeat units are also reported in the bivalves

Acanthocardia tuberculata [50] and Placopecten magellanicus [51].

Further study on tandem repeats in the control region is needed,

as it is important to illuminate the functional implications of the

Table 1. Main structural features of the six newly sequenced mt genomes in this study.

Moerella
iridescens

Sanguinolaria
diphos

Sanguinolaria
olivacea

Semele
scaba

Sinonovacula
constricta

Solecurtus
divaricatus

Total size 16799 16352 18182 17117 17224 16749

A+T % 65.72 63.36 65.27 59.19 67.08 60.15

rrnS 863 876 949 861 909 887

rrnL 1268 1343 1346 1330 1228 1380

No. of tRNA 22 21 21 20 22 22

No. of gene
overlapping

3 6 9 2 2 4

Size range of
gene overlapping

1 1 to 44 1 to 44 1 to 20 1 to 3 1

cox1 1671 1755 1758 1692 1692 1725

(ATA/TAA) (ATA/TAG) (ATA/TAA) (ATG/TAA) (ATT/TAA) (ATA/TAG)

cox2 861 873 858 1206 843 867

(ATG/TAG) (ATG/TAG) (ATG/TAA) (ATG/TAG) (ATG/TAG) (ATG/TAA)

cox3 867 936 936 894 804 894

(ATA/TAA) (ATG/TAG) (ATA/TAG) (ATG/TAG) (ATG/TAG) (ATG/TAG)

nad1 924 924 939 921 930 927

(GTG/TAG) (ATT/TAG) (ATA/TAA) (ATG/TAG) (ATA/TAG) (ATA/TAA)

nad2 1014 1071 1077 1056 1056 1062

(ATA/TAA) (ATG/TAG) (ATG/TAA) (TTG/TAA) (ATG/TAG) (ATG/TAG)

nad3 360 363 378 360 366 360

(ATT/TAA) (ATT/TAA) (ATG/TAG) (ATA/TAG) (ATG/TAG) (ATG/TAA)

nad4 1335 1303 1362 1365 1392 1347

(ATA/TAG) (ATA/T) (ATA/TAA) (GTG/TAG) (ATG/TAA) (TTG/TAG)

nad4L 291 315 312 291 288 291

(ATG/TAG) (ATG/TAA) (ATG/TAA) (GTG/TAA) (ATG/TAA) (GTG/TAG)

nad5 1746 1788 1800 1737 1761 1734

(TTG/TAA) (ATA/TAA) (ATT/TAG) (ATG/TAA) (ATT/TAA) (ATG/TAG)

nad6 537 567 555 633 531 567

(ATT/TAA) (ATA/TAG) (ATA/TAG) (ATA/TAA) (ATG/TAG) (ATA/TAG)

cob 1233 1233 1242 1176 1146 1248

(ATA/TAA) (ATG/TAG) (ATG/TAG) (ATT/TAG) (ATG/TAA) (GTG/TAA)

atp6 777 720 687 711 702 846

(ATG/TAA) (ATA/TAG) (ATG/TAA) (ATG/TAA) (ATA/TAG) (ATG/TAA)

For each, total size of the mt genome, the percent of overall A+T content, size of rrnS and rrnL, number of tRNA, number of gene overlapping and its size range, and size
of the protein coding genes (start and stop codons in parentheses) are presented. Gene lengths are in bp.
doi:10.1371/journal.pone.0032353.t001
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repeats and the molecular mechanisms that generate the repeats

[52].

Gene order rearrangements
In contrast with other metazoans, the phylum Mollusca has long

been known to exhibit an exceptionally variable arrangement of

genes within mitochondrial DNA [53–55]. So far, due to coding

on one strand probably, all bivalves whose mt genomes have been

presented display enormous gene rearrangements (but see oysters

[56]). It is suspected that coding on both strands may be inhibitory

to mt genome rearrangement, because rearranging a genome with

dual-strand coding may be more complicated and cause more

harm than that codes on one strand [57].

In this study, we compare the gene order rearrangements of six

newly sequenced mt genomes (Figure 1). The six heterodont

bivalves exhibit five different gene orders, among which M.

iridescens and S. divaricatus have the identical gene order.

Furthermore, the five patterns of gene arrangement differ from

any gene order ever reported in molluscs. The gene order of S.

constricta is remarkably unlike that of five other species, even

excluding the tRNA, which might indicate the relatively distant

relationship as also revealed in the phylogenetic analysis in this

study (see below). And five other complete mt genomes differ

primarily in the position of tRNA genes, whose secondary

structures allow them to translocate more frequently than either

rRNAs or protein coding genes [58,59]. When disregarding tRNA

genes, all five species belonging to superfamily Tellinoidea show

the same gene arrangements except for translocations of genes rrnS

and cox2 in S. scaba. The relatively high level of conservation in the

gene order may verify the close lineage relationship. In addition,

there are three small blocks, trnK-nad4l, trnV-trnW and nad6-rrnL,

and three large blocks, cox1-nad4-trnH-trnS2-trnE-nad3, trnT-trnL1-

trnD-trnL2-nad1-trnN-nad5-trnR-cob and atp6-cox3-nad2-trnP-trnQ-

trnC-trnA, shared by S. olivacea and S. scaba.

One of our noteworthy finding during this study is that S. diphos

and S. olivacea, which belong to the same genus Sanguinolaria, have

different gene arrangements with three translocations of trnI, trnV-

trnW-trnG and trnM. The case that differences in the gene

arrangement occur in the same genus is seldom reported, yet in

genus Dendropoma [16] and genus Crassostrea [57]. Besides, M.

iridescens, S. divaricatus and S. diphos have a completely identical gene

order, if lacking a trnF in S. diphos is ignored. As described above, it

is surprising that the gene arrangement of S. diphos is more similar

with that of M. iridescens and S. divaricatus than that of S. olivacea,

while S. diphos and S. olivacea should have close relatives according

to traditional taxonomy. Meanwhile, this result is consistent with

the conclusion from the phylogenetic analysis (see below). Early

analyses of mtDNA had led to the proposition that a comparative

analysis of mt gene order could proved to be a useful phylogenetic

tool [11,60,61]. By mt gene order comparisons, Smith et al.

provided evidence that two echinoderm classes, sea stars and

brittle stars, form a monophyletic group to the exclusion of two

others, sea cucumber and sea urchins [60]. Akasaki et al.

examined the relationships of subclass Coleoidea via comparing

extensive mt gene arrangements, and concluded that order

Octopoda might be the most ancestral among this subclass

Coleoidea in accordance with the phylogenetic tree [61]. In this

study, the results obtained here support that comparisons of mt

gene order rearrangments, to some extent, are a useful tool for

phylogenetic studies.

Phylogenetic analyses of Heterodonta
ML and Bayesian trees based on amino acid and nucleotide

sequences of 12 concatenated protein-coding genes (except atp8

gene) were performed to reconstruct phylogenetic relationships

within heterodont bivalves (Figure 2). The tree topologies based on

amino acid and nucleotide sequences were largely congruent and

received high supports in most nodes.

Using mt genome data, the KH and SH tests were performed to

evaluate the alternative morphology-based hypotheses and

previous molecular studies. All 7 alternative topologies including

2 topologies presented in our study were summarized in Table S1.

The best topology was phylogenetic analysis based on amino acid

data shown in Figure 2A (KH and SH tests p = 1.000), while the

second best one was phylogenetic analysis based on nucleotide

sequences in Figure 2B (KH test p = 0.005 and SH test p = 0.210).

All other topologies were significantly rejected (KH and SH

P,0.001) which confirmed the phylogenetic analyses based on our

data.

Our analysis shows the two species of family Lucinidae form a

single clade as a sister group to other heterodont bivalves,

indicating that Lucinidae is monophyletic, in accordance with

previous viewpoint of Taylor [17]. Five species belonging to family

Veneridae, including Paphia euglypta, Venerupis philippinarum, Meritrix

meretrix, Meritrix petechialis and Meretrix lusoria cluster together,

supporting the monophyly of family Veneridae [62,63]. In the

phylogenetic trees based on the amino acid data, the rock-boring

and nestling Hiatella arctica belonging to the order Myoida is as a

sister group with Solenidae+Pharidae (superfamily Solenoidea)

questioning the subdivision of the subclass Heterodonta into two

orders Veneroidea and Myoida, which corroborates the finding of

previous molecular analysis [17,64]. It should be noticed that A.

tuberculata evidenced as a member of superfamily Cardioidea based

on molecular analysis [17,50], is placed in a long branch as a sister

Table 2. A comparison of non-coding regions (NCR) within the six mt genomes.

Largest NCR

Species No. of NCR Total lenth (bp)
Proportion of the
mt genome (%) Lenth (bp) A+T % Location

Moerella iridescens 23 1604 9.55 1200 70.00 rrnS - trnM

Sanguinolaria diphos 16 1022 6.25 674 70.77 rrnS - trnM

Sanguinolaria olivacea 16 2730 15.01 2272 69.67 trnG - trnI

Semele scaba 23 1567 9.15 1166 58.92 cob - trnG

Sinonovacula constricta 25 2134 12.39 1492 66.89 nad2 - trnK

Solecurtus divaricatus 22 1160 6.93 775 65.81 rrnS - trnM

doi:10.1371/journal.pone.0032353.t002
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group to Hiatelloidea+Solenoidea, which is robustly supported by

BI but ML based on 12-protein amino acid data (Figure 2A).

While in the phylogentic analyses based on nucleotide data, the

position of this species is as sister group with the other heterodont

bivalves except for Lucinidae (Figure 2B). Both of results are

incompatible with a sister relationship of Cardioidea to Tell-

inoidea, reported by Campbell [23], Steiner and Hammer [65],

Dreyer et al. [66], and Taylor et al. [34] based on short fragments

of nuclear gene or mt DNA. Therefore, more phylogenetic

analyses based on more molecular data, in addition to morpho-

logical characters, are required in order to resolve the relationship

among the subclass Heterodonta in the future.

The position of genus Sinonovacula has been debated over a long

time. Using morphological evidences such as the formation of the

siphons and so on, Sinonovacula had previously been suggested by

Yonge [67,68] that it should be removed from the family

Figure 1. Linear representation of the mitochondrial gene arrangement in six newly sequenced bivalves. As is the standard convention
for metazoan mt genomes, cox1 has been designated the start point for all genomes. All genes are transcribed from left-to-right. The bars indicate
identical gene blocks. The non-coding regions are not presented and gene segments are not drawn to scale.
doi:10.1371/journal.pone.0032353.g001

Figure 2. Phylogenetic trees of heterodont bivalves based on the concatenated amino acid (A) and nucleotide sequences (B) of 12
protein-coding genes (except atp8 gene). Numbers in the nodes correspond to Bayesian posterior probabilities (left) and ML bootstrap
proportions (right). Dashes indicate support values below 50%.
doi:10.1371/journal.pone.0032353.g002
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Solenidae where it was placed by Ghosh [69] and transferred to

the Tellinoidea. This decision was accepted and followed by Keen

[70], Habe [71] and Vokes [72] who transferred Sinonovacula to

Solecurtidae within the Tellinoidea. Subsequently, using shell and

anatomical characters, von Cosel [73] retransferred Sinonovacula to

Solenoidea. And then, the result of phylogenetic analyses of

heterodont bivalves based on rRNA genes by Taylor [17] was in

agreement with von Cosel’s decision. Our phylogenetic analyses of

multiple protein-coding genes not only show that S. constricta is

distant from the Solecurtidae belonging to Tellinoidea, but also

indicate that S. constricta is as a sister group with Solen grandis of

family Solenidae. In other words, we prefer classifying the genus

Sinonovacula within the superfamily Solenoidea and not the

superfamily Tellinoidea.

All five species of superfamily Tellinoidea from four different

families form a clade strongly supported by three trees (except for

ML tree based on amino acid sequence), which corroborates the

monophyly of Tellinoidea. This result is also reported by Taylor et

al. [17]. However, according to the phylogenetic trees in this

study, S. diphos has a closer relationship with S. divaricatus, M.

iridescens and S. scaba rather than with S. olivacea, highly supported

by BI and ML, implying that two species presently classified into

Sanguinolaria (Psammobiidae) do not form monophyletic groups.

These unexpected findings suggesting that the current taxonomy

should be brought into question and a careful review of this genus

is required. Similar conclusions that Semelidae, Donacidae and

Tellinidae are not monophyletic were ever made when Taylor et

al. analyzed familial relationships within Tellinoidea [17]. In fact,

to date, there has no special research for the taxonomy of this

superfamily based on molecular data. Thereby, in the future study,

more detailed analyses with a larger taxon sampling and more

rapidly evolving molecular markers including mt genome are still

necessary in order to test the taxonomy of superfamily Tellinoidea

based on morphology and clarify familial relationships within this

superfamily.

Conclusions
In this study, we newly determined the complete mt genomes of

six bivalves, increasing the number of complete mt genomes

sequenced within subclass Heterodonta from 10 to 16. By

comparative study of the gene order rearrangements and

phylogenetic relationships of the species belonging to Tellinoidea,

our results support that comparisons of mt gene order rearrange-

ments, to some extent, are a useful tool for phylogenetic studies.

Based on phylogenetic analyses of multiple protein-coding genes,

we prefer classifying the genus Sinonovacula within the superfamily

Solenoidea and not the superfamily Tellinoidea. Besides, both

gene order and sequence data agree that Sanguinolaria (Psammo-

biidae) is not monophyletic. Nevertheless, more studies based on

more mt genomes via combination of gene order and phylogenetic

analysis are needed to further understand the phylogenetic

relationships in subclass Heterodonta including superfamily Tell-

inoidea and Solenoidea.

Methods

Taxon sampling and DNA extraction
In this study, each of the six bivalve complete mt genomes

sequenced was obtained from a single specimen. M. iridescens was

collected from Leqing (Zhejiang province of China), S. diphos was

from Beihai (Guangxi province of China), S. scaba was from Lingao

(Hainan province of China), and meanwhile, all three were

preserved in EtOH 95% in 2008. S. olivacea was sampled in Rizhao

(Shandong province of China) and preserved frozen at 280uC in

2009. S. constricta and S. divaricatus were collected in Qingdao

(Shandong province of China) and Rizhao in 2011, respectively.

The total genomic DNA was extracted from adductor muscle by

a modification of standard phenol–chloroform procedure that has

been described by Li et al. [74] and visualized on 1.0% agarose gel.

PCR amplification and sequencing
In order to design long-PCR primers, we first obtained partial

cox1 and rrnL gene sequences, with the universal primers of

LCO1490/HCO2198 [75], and 16SF/16SR [76], respectively.

Polymerase chain reaction (PCR) was performed in a total volume

of 50 ml including 2 U Taq DNA polymerase (Takara), about

100 ng template DNA, 1 mM forward and reverse primers, 200 mM

of each dNTP, 16PCR buffer and 2 mM MgCl2. The PCR

reaction was carried out in TaKaRa PCR Thermal Cycler Dice

Model TP600 (Takara Bio Inc.) under the following conditions: an

initial denaturation for 3 min at 94uC, then 35 cycles of

denaturation for 45 s at 94uC, annealing for 45 s at 52uC, extension

for 1 min at 72uC, and final extension for 5 min at 72uC.

Subsequently, each mitochondrial genome was amplified by

long-PCR technique [77] based on the two specific primer pairs,

which were designed from the obtained partial sequences using

Primer Premier 5.0 (http://www.premierbiosoft.com/). PCR

reactions were carried out in 50 ml reaction mixtures containing

33.5 ml of sterile distilled H2O, 5 ml of 106LA PCR buffer II

(Mg2+ plus, Takara), 8 ml of dNTP (10 mM each), 1 ml of each

primer (10 mM), 0.5 ml of LA Taq polymerase (5 U/ml, Takara),

and 1 ml of DNA template (50 ng). The long PCR cycling was set

up with an initial denaturation step at 94uC for 2 min, followed by

35 cycles comprising denaturatin at 94uC for 20 s, annealing at

60uC for 35 s and extension at 68uC for from 7 to 15 min

depending on the expected length of the PCR products. The

process was completed with a final extension at 72uC for 10 min.

PCR products were purified using EZ-10 spin column DNA gel

extraction kit (Sangon Biotech), and then directly sequenced with

the primer walking method. The sequencing was conducted on an

ABI PRISM 3730 (Applied Biosystems) automatic sequencer.

Sequence analysis and gene annotation
All sequence data were analysed and arranged to create the full

genome using the Seqman program from DNASTAR (http://

www.DNASTAR.com). Protein coding genes were analysed by

ORF Finder [78] using the invertebrate mitochondrial code. The

rRNA genes were identified with DOGMA [79] and BLAST

searches [80]. The boundaries of each gene were determined with

multiple alignments of other published bivalve mitochondrial

sequences. The tRNA genes were identified by DOGMA and

tRNAscan-SE Search Server [81] with a COVE score cutoff of 1.0

and the invertebrate mitochondrial genetic code for secondary

structure prediction. The whole mt genome sequence was tested

for potentially tandem repeats by TANDEM REPEAT FINDER,

Version 4.0 [82].

Phylogenetic analyses
Eighteen molluscan mt genomes including six newly determined

mt genomes, as well as those of all other heterodont bivalves, were

used to illustrate the phylogenetic relationship of Heterodonta

(Table 3). Chlamys farreri and Mimachlamys nobilis from the subclass

Pteriomorphia served as outgroups. Owing to the fact that most

bivalve species lack the atp8 gene, amino acid sequences of 12

concatenated protein-coding genes were used in phylogenetic

analysis. The alignment of the amino acid sequences of each 12

mitochondrial PCGs was aligned with Clustal X [83] using default

settings, followed by manual correction. After areas of dubious
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alignment were isolated using Gblocks [84] (default settings) and

excluded from the analysis, the 12 separate amino acid sequence

alignments were concatenated to a single multiple sequence

alignment, which consisted of 2026 sites. The nucleotide sequence

was substituted from the concatenated amino acid alignment and

the final sequence consisted of 7076 sites.

Two methods: Maximum likelihood (ML) and Bayesian

inference (BI) were used to reconstruct phylogenetic relationships

of heterodont bivalves. For phylogenetic analyses based on amino

acid data, MtArt+I+G evolutionary model was chosen as the best-

fit model of amino acid evolution by ProtTest version 2.4 [85] at

the default setting based on Akaike Information Criterion (AIC).

As the MtArt evolutionary model is not available in MrBayes, the

WAG model (the second best-fit model according to ProtTest) was

used in Bayesian analysis. For phylogenetic analyses based on

nucleotide data, the most appropriate model GTR+I+G was

selected by MODELTEST [86] using the Akaike information

criterion. The ML analysis was conducted with PHYML 3.0

program [87] and 1000 bootstraps were used to estimate the node

reliability. BI was performed on combined database using

MrBayes 3.1 [88] In the case of the Bayesian analysis, the Markov

chain Monte Carlo (MCMC) were run for 5,000,000 generations

(sampling every 100 generations) to allow adequate time for

convergence. After omitting the first 25,000 ‘‘burnin’’ tree, the

remaining 25,000 sampled trees were used to estimate the 50% of

majority rule consensus tree and the Bayesian posterior probabil-

ities. All phylogenetic parameters were checked with Tracer v 1.5

[89]. Alternative phylogenetic hypotheses from previous morpho-

logical and molecular studies were tested using the Kishino-

Hasegawa (KH) test [90] and Shimodaira-Hasegawa (SH) test [91]

implemented in CONSEL [92].

Supporting Information

Figure S1 Hairpin-like secondary structures in the
mitochondrial putative control regions of M. iridescens,

S. scaba, S. divaricatus, S. diphos, S. olivacea and S.
constricta. Conserved motifs in 59- and 39-flanking sequences

are underlined.

(DOC)

Figure S2 Alignment of the tandem repeats in the
largest non-coding region (MNR) of mitochondrial
genome of Moerella iridescens A. Symbol ‘‘-’’ indicates an

insertion or deletion.

(DOC)

Figure S3 Alignment of the tandem repeats in the
largest non-coding region (MNR) of mitochondrial
genome of Moerella iridescens B. Symbol ‘‘-’’ indicates an

insertion or deletion.

(DOC)

Figure S4 Alignment of the tandem repeats in the
largest non-coding region (MNR) of mitochondrial
genome of Sanguinolaria olivacea. Symbol ‘‘-’’ indicates an

insertion or deletion.

(DOC)

Figure S5 Alignment of the tandem repeats in the largest
non-coding region (MNR) of mitochondrial genome of
Semele scaba. Symbol ‘‘-’’ indicates an insertion or deletion.

(DOC)

Figure S6 Alignment of the tandem repeats in the
largest non-coding region (MNR) of mitochondrial
genome of Sinonovacula constricta. Symbol ‘‘-’’ indicates

an insertion or deletion.

(DOC)

Figure S7 Alignment of the tandem repeats in the
largest non-coding region (MNR) of mitochondrial
genome of Solecurtus divaricatus. Symbol ‘‘-’’ indicates an

insertion or deletion.

(DOC)

Table 3. List of the species whose mt genome sequences were used in phylogenetic analysis in present paper.

Species Classification Accession Number Reference

Paphia euglypta Bivalvia; Heteroconchia; Veneroida; Veneroidea; Veneridae GU269271 [93]

Venerupis philippinarum Bivalvia; Heteroconchia; Veneroida; Veneroidea; Veneridae AB065375 Okazaki et al., unpublished

Meretrix meretrix Bivalvia; Heteroconchia; Veneroida; Veneroidea; Veneridae GQ463598 [94]

Meretrix lusoria Bivalvia; Heteroconchia; Veneroida; Veneroidea; Veneridae GQ903339 [95]

Meretrix petechialis Bivalvia; Heteroconchia; Veneroida; Veneroidea; Veneridae EU145977 [96]

Lucinella divaricata Bivalvia; Heteroconchia; Veneroida; Lucinoidea; Lucinidae EF043342 Dreyer et al., unpublished

Loripes lacteus Bivalvia; Heteroconchia; Veneroida; Lucinoidea; Lucinidae EF043341 Dreyer et al., unpublished

Acanthocardia tuberculata Bivalvia; Heteroconchia; Veneroida; Cardioidea; Cardiidae DQ632743 [50]

Hiatella arctica Bivalvia; Heteroconchia; Myoida; Hiatelloidea; Hiatellidae DQ632742 [50]

Solen grandis Bivalvia; Heteroconchia; Veneroida; Solenoidea; Solenidae HQ703012 [97]

Sinonovacula constricta Bivalvia; Heteroconchia; Veneroida; Solenoidea; Pharidae JN398366 This study

Moerella iridescens Bivalvia; Heteroconchia; Veneroida; Tellinoidea; Tellinidae JN398362 This study

Sanguinolaria diphos Bivalvia; Heteroconchia; Veneroida; Tellinoidea; Psammobiidae JN398363 This study

Sanguinolaria olivacea Bivalvia; Heteroconchia; Veneroida; Tellinoidea; Psammobiidae JN398364 This study

Semele scaba Bivalvia; Heteroconchia; Veneroida; Tellinoidea; Semelidae JN398365 This study

Solecurtus divaricatus Bivalvia; Heteroconchia; Veneroida; Tellinoidea; Solecurtidae JN398367 This study

Chlamys farreri Bivalvia; Pteriomorphia; Pectinoida; Pectinoidea; Pectinidae EU715252 [36]

Mimachlamys nobilis Bivalvia; Pteriomorphia; Pectinoida; Pectinoidea; Pectinidae FJ415225 Xu et al., unpublished

doi:10.1371/journal.pone.0032353.t003
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Table S1 Tests of alternative topologies.
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