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Abstract The mechanisms of cold and pressure denaturation of proteins are a matter of

debate, but it is commonly accepted that water plays a fundamental role in the process. It

has been proposed that the denaturation process is related to an increase of hydrogen bonds

among hydration water molecules. Other theories suggest that the causes of denaturation are

the density fluctuations of surface water, or the destabilization of hydrophobic contacts as

a consequence of water molecule inclusions inside the protein, especially at high pressures.

We review some theories that have been proposed to give insight into this problem, and we

describe a coarse-grained model of water that compares well with experiments for proteins’

hydration water. We introduce its extension for a homopolymer in contact with the water

monolayer and study it by Monte Carlo simulations in an attempt to understand how the

interplay of water cooperativity and interfacial hydrogen bonds affects protein stability.

Keywords Water · Hydrated proteins · Confined water · Biological interfaces ·
Protein denaturation

1 Introduction

One of the most intriguing challenges in biological physics is the nature of protein folding–

unfolding processes. The temperature range of stability of a folded protein is, in general,

V. Bianco (B) · G. Franzese

Departament de Física Fonamental, Universitat de Barcelona,

Diagonal 647, 08028 Barcelona, Spain

e-mail: vbianco@ub.edu

G. Franzese

e-mail: gfranzese@ub.edu

S. Iskrov

École Normale Supérieure de Cachan, 61, avenue du Président Wilson,

94235 Cachan cedex, France

e-mail: svilen.iskrov@gmail.com



28 V. Bianco et al.

small. For example, staphylococcal nuclease (Snase—a small protein containing 149 amino

acids) folds at low pressure approximately between 260 and 320 K [1].

Heat destabilizes proteins. By increasing the bath temperature T, thermal fluctuations

increase and disrupt the folded configurations of proteins. By decreasing T, proteins can

crystallize, but surprisingly some proteins unfold at sufficiently low temperature instead

of crystallizing [1–7]. Cold denaturation seems to be a general phenomenon for proteins,

generally occurring well below 0
◦
C, the freezing point of water. In some cases, for example

for Snase [1], cold denaturation cannot be directly observed, but experimental data can be

extrapolated to predicted the lowest temperature of protein stability. In general, destabilizing

agents can be used to make the cold denaturation observable. Interestingly, Pastore et al.

[7] observed that yeast frataxin under physiological conditions undergoes cold denaturation

below 7
◦
C and remains folded up to 30

◦
C. Hence, yeast frataxin is an excellent prototype for

studying the folding transition under accessible conditions for both hot and cold unfolding.

The study of this protein could help in understanding the mechanism of cold unfolding that,

as we will discuss in the next sections, is still a matter of debate.

Proteins can unfold also by pressurization. It has been observed that the increase of

pressure induces the unfolding of proteins [8, 9]. The pressure-unfolding process can be

rationalized by considering that the folded structure usually includes cavities. High pressure

can induce an elastic response of the protein, deforming its structure, and pushing water

molecules inside the cavities. The water molecules from inside would swell the protein, with

consequent loss of protein functionality [9]. Because it is difficult to separate the protein

response to high hydrostatic pressure from the response of the aqueous environment, the

understanding of the pressure unfolding is still under debate.

1.1 Thermodynamics of proteins unfolding

By increasing the thermal energy kBT (kB is the Boltzmann constant), the protein residues

vibrate faster, accessing new possible configurations, i.e., increasing the entropy S of the

system. This increase leads to hot denaturation, in the same way an increase of kBT leads

to the melting of a crystal, at the expense of the energy of the system, compensated by an

increase of entropy.

Cold denaturation, in contrast cannot be explained as the effect of an increase of entropy.

By decreasing T, the entropy of the system decreases. Hence, in the case of proteins there

must be a complex mechanism that induces cold denaturation.

General principles of thermodynamics tell us that at any value of T and P the system

minimizes its Gibbs free energy, G ≡ H − TS, where H ≡ U + PV is the enthalpy of the

system, U the internal energy of the system, V the volume and P the pressure. In our case,

the system is the solution of proteins and water. Hence, the free-energy balance must take

into account both water molecules and protein residues. The experimental fact that solvated

proteins unfold by decreasing T means that at lower T the difference

�G ≡ Gu − G f (1)

between the unfolded (u) and folded ( f ) states is

�G = �H − T�S < 0, (2)

where �H ≡ Hu − Hf and �S ≡ Su − Sf.
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The total variation of the entropy of the system is given by �S = �Sp + �Sw where �Sp
and �Sw are the entropy variation of protein residues and water molecules, respectively.

By unfolding, the protein entropy increases, �Sp > 0. On the other hand, the protein

contribution to �H is positive, �Hp > 0, because the enthalpy of the protein increases

when the protein unfolds (Hp decreases when the number of contact points of the protein

increases). Therefore, the protein contribution to �G does not guarantee that (2) is satisfied,

because �Hp − T�Sp, could be negative or positive depending on the relative variations

at the given T. Hence, water contribution to the total balance of (2) could be relevant. A

commonly proposed idea is that the native-folded state is stabilized by the quasi-ordered

network of water molecules hydrating the non-polar monomers [10–13].

1.2 Protein phase diagram

In this section, we summarize the main theoretical calculations given by Hawley [14] and

reviewed by Smeller et al. [15] and Meersman et al. [16], predicting a close stability region

in the P− T plane for proteins, consistent with experiments (Fig. 1) [1, 2, 4, 5, 7, 17].

Outside the elliptic region the protein unfolds, losing its biological function.

Following Hawley [14, 15], we can calculate �G of the whole system (protein and water)

assuming that a protein can stay in only two distinct states, folded and unfolded as in (1).

Differentiating G, we get

dG = −SdT + VdP ≡ dG(T, P). (3)

Hence, we have

d�G = −�SdT + �VdP (4)

with �V ≡ Vu − V f. By expanding �S and �V to the first order around �S0 and �V0,

we get

�S = �S0 +
(

∂�S0

∂T

)
P
(T − T0) +

(
∂�S0

∂ P

)
T
(P− P0), (5)

�V = �V0 +
(

∂�V0

∂T

)
P
(T − T0) +

(
∂�V0

∂ P

)
T
(P− P0), (6)

and from (4) to (6), by integration,

�G(P, T) = �β

2
(P− P0)

2 + 2�α(P− P0)(T − T0) − �CP [(T − T0) − T0 ln(T/T0)]

+�V0(P− P0) − �S0(T − T0) + �G0, (7)

where α ≡ (∂V/∂T)P = −(∂S/∂ P)T is the thermal expansivity factor, related to the isobaric

thermal expansion coefficient αP by αP = α/V; CP ≡ T(∂S/∂T)P is the isobaric heat ca-

pacity and β ≡ (∂V/∂ P)T is the isothermal compressibility factor related to the isothermal

compressibility KT by the relation KT = −(β/V). All the quantities with the subscript equal

to zero are usually referred to as ambient conditions. By developing the logarithm to the

second order around (T0, P0)

ln

(
T
T0

)
∼ T − T0

T0

− (T − T0)
2

2T2

0

, (8)
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we get

�G(P, T) = �β

2
(P− P0)

2 + 2�α(P− P0)(T − T0) − �CP

2T0

(T − T0)
2

+ �V0(P− P0) − �S0(T − T0) + �G0, (9)

which is the equation of en ellipse, as in Fig. 1, given the constraint

�α2 > �CP�β/T0. (10)

This condition is guaranteed by the different signs of �CP and �β, as can be observed for

some proteins, as reported by Hawley [14].

Equation (9) is the Taylor expansion of �G(P, T) truncated at the second order, holding

for �α, �β and �CP independent of T and P. These assumptions are generally valid and

adding third order terms in the expansion has minimal effect on the elliptic shape of the

stability region.

At maximum pressure Pmax of stability for the protein, d�G/dT = �S = 0, while at

the maximum temperature Tmax of stability, d�G/dP = �V = 0. Therefore, based on

Hawley’s theory, it is possible to make general predictions about the changes of �V
and �S as schematically summarized in Fig. 1. This phenomenological theory does

not take into account explicit information about the protein structure, and makes strong

assumptions, such as, for example, that the protein only has two states, or that equilibrium

thermodynamics holds during the denaturation. The last assumption, in particular, implies

that the whole process would be reversible. Nevertheless, consistency with Hawley’s theory

is a good test for models of protein unfolding. More details about the arguments summarized

here can be found in [16].

P

T

Cold denaturation

Pressure denaturation

Hot denaturation
Folded StateS<0

V<0Δ
Δ

S<0
V<0Δ

Δ
S>0
V<0Δ

V=0Δ
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Δ

S=0Δ

S<0
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Δ

Fig. 1 Schematic representation of the phase diagram of a protein. Within the elliptic region, the protein is

folded, while it unfolds by increasing temperature T (hot denaturation), by decreasing T (cold denaturation),

and by increasing or decreasing pressure P (pressure denaturation). Each folding–unfolding process is

characterized by different variation of entropy �S and variation of volume �V as indicated in the figure.

The axes of the ellipse are loci where �S = 0 and �V = 0 (see text for discussion). Adapted from [9]
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In the next section, we review some of these models. The review does not pretend to

be exhaustive, but it has the aim of mentioning a number of positive results of the theories

formulated to understand protein folding.

2 Models for protein unfolding

2.1 Hydrophobic effect

To date the idea that hydrophobic interactions play an important role in protein folding is

widely shared. A solute is considered hydrophobic if it binds to water more weakly than

water itself.

A model for protein folding taking into account implicitly the hydrophobic effect was

proposed in 1989 by Lau and Dill, known as the HP model [18]. By assuming that the

exposed surface of hydrophobic residues is energetically unfavorable at low T, the model

reproduces the folding of the protein (hydrophobic collapse). The protein is represented as a

self-avoiding chain on a lattice. The chain is composed of two different categories of amino

acids: H (hydrophobic non-polar) and P (polar). The presence of the aqueous environment

is taken into account, introducing an attractive contact interaction between H monomers.

This interaction captures the hydrophobic effect between water molecules and non-polar

amino acids. No other interactions are present in the system.

Under these hypotheses, the authors show that the features of the folding process depend

on the HH energy interaction, the length of the chain, and the specific sequence of H and P

monomers. Moreover, for long chains one folded state dominates.

The model has the virtue of reducing the complexity of the folding process to a

manageable level. All the electrostatic and chemical properties of each amino acid are

simplified by allowing only two possible states. The degrees of freedom of the solvent

are not explicitly included. Nevertheless, the HP model cannot describe cold denaturation.

Therefore, the experimental evidence of cold denatured proteins calls for a reconsideration

of the hydrophobic interaction and its dependence on temperature and on the structure of

hydration water [3–6].

Back in 1945, Frank and Evans [10] discussed the tendency of water to form ordered

structures around non-polar solutes to minimize the free-energy cost of solvation. As

a consequence, hydrophobic solutes are “structure makers” for water, facilitating the

formation of cages around the solute. The effect of these structures around hydrophobic

solutes is to reduce the entropy with respect to the bulk and to compensate, approximately,

the enthalpy cost for the creation of a cavity which can be occupied by the solute.

As discussed by Muller in 1990 [12], the compensation of the enthalpy implies that

water–water hydrogen bonds (HBs) at the interface with the hydrophobic solute are stronger

than those in the bulk. This is consistent with the experimental observation that the excess

molar heat capacity for a non-polar solute at infinite dilution in water is positive. This

quantity, defined as the difference of the partial molar heat capacity in solution with respect

to the heat capacity of the pure liquid solute, is far larger at 25
◦
C when the solvent is water

than for any other solvent [12, 19].

The statement that HBs are stronger at the hydrophobic interface has led to the mis-

conception that water around a hydrophobic solute has an iceberg-like structure. Computer

simulations [20, 21], theoretical analysis [22–25], and neutron scattering studies [26] are

inconsistent with iceberg-like structures. Hence, the restructuring of water around a solvent
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seems not to play a relevant role in the hydrophobic effect. Nevertheless, Muller [12]

showed that if hydration HBs are enthalpically stronger, but fewer than in bulk, a model

with two-state HBs can reproduce the sign reversal of the proton NMR chemical shift with

T and the heat capacity change upon hydration.

On the other hand, a common opinion [27, 28] is that the large free-energy change

associated with the hydrophobic effect is due to the small size of the water molecules

with respect to the solutes, and that the free-energy change associated with the network

reorganization around hydrophobic particles is negligible due to compensation of enthalpy

and entropy, although it may account for the large heat capacity change upon hydration.

This observation apparently ruled out the Muller model, where the enthalpy-entropy

compensation upon hydration was not present.

Nevertheless, Lee and Graziano in 1996 [29] showed that the Muller model can be

slightly modified to recover also the enthalpy-entropy compensation upon hydration. The

Muller–Lee–Graziano model was further simplified by De los Rios and Caldarelli in 2000

[30–32] in order to reduce the number of parameters. Simplifying the description of bulk

water, they recovered hot and cold denaturation for a protein represented as a hydrophobic

homopolymer. A development of this model was used in 2005 to study the effective

interaction between chaotropic agents and proteins [33].

The model by De los Rios and Caldarelli has been generalized by Bruscolini and Casetti

[34, 35] in 2001 by allowing each monomer of a non-polar homopolymer to be in contact

with a cluster of water molecules. Each cluster has an infinite number of possible states

and only one state minimizes the free-energy cost of the interaction with the hydrophobic

monomers. The model reproduces the trends of thermodynamic averages in accordance with

experiments [36] and simulations [13], and predicts hot and cold denaturation. These results

are qualitatively similar to those of the Muller–Lee–Graziano model, further supporting the

relevant role of the solvent in the folding–unfolding process.

Cold denaturation and T-dependence of the hydrophobic effect were also observed by

Dias et al. in 2008, analyzing a non-polar homopolymer in the Mercedes-Benz (MB)

model for water [37]. The MB model, originally introduced by Ben-Naim [38] 1971,

represents water molecules as disks in two dimensions with three possible HBs (arms) as

in a Mercedes-Benz logo. Water molecules interact via van der Waals potential and HB

interactions. HB interaction is modeled with a Gaussian potential, favoring a fixed value

for the water–water distance and aligned arms for facing molecules. Simulations show that

the average HB energy is higher for shell water than for bulk water at high T, while it is

lower at lower T. Therefore, by cooling the solution, it is energetically more convenient to

increase the protein surface exposed to water, inducing protein unfolding. In this model,

the water molecules forming a cage around the protein monomers are strongly H-bonded to

each other. The highly ordered structure of the solvent around the monomers decreases the

entropy of water, compensating for the increase of entropy associated with protein unfolding.

This model has been criticized [39] because it assumes, without proof, that the en-

thalpy gain dominates at low T, giving rise to free-energy gain upon unfolding of the

protein. In particular, Yoshidome and Kinoshita in 2009 [39] analyzed by integral equation

theory the behavior of a non-polar homopolymer composed by fused hard spheres of

different diameters immersed in smaller hard spheres, with permanent electrostatic multiple

moments, representing the solvent [40]. The protein–water interaction is represented by

a hard sphere potential and water–water interaction by a hard sphere potential and an

electrostatic contribution given by the electrostatic multipole expansion. The authors found

that denaturation is characterized by large entropy loss and large enthalpy gain. However,
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these two contributions to the free energy almost completely cancel out and make no

significant contribution to the free-energy change. They found that the driving mechanism

for cold denaturation is the translational entropic loss of water due to the large excluded

volume of the hydrophobic particles. They observed that at low T water diffuses less,

therefore the hydrophobic effect is weaker and the protein unfolds.

A different approach to the role of hydrophobic interaction in polymer collapse and

nanoparticle self-assembly is represented by the theory proposed by Lum et al. in 1999

[41], further developed by ten Wolde and Chandler in 2002 [42] and recently by Varilly et

al. in 2011 [43]. They start from the observation that, at ambient conditions, the solvation

free energy of hard sphere solutes increases: (a) with the solute volume for solutes of small

radius and (b) with the solute surface for solutes of large radius.

Hence, the solvation free energy exhibits a crossover between two regimes: for small

solutes the entropy leads to the dispersion of hydrophobic particles, while for large

solutes the enthalpy drives the particles to hydrophobic collapse. The authors associate the

enthalpy change responsible for the hydrophobic collapse to a dewetting transition, i.e., to a

microscopic liquid-gas phase separation of water molecules at the interface with the solute.

Therefore, the average number of water molecules in a probe volume close to the solute

decreases with respect to bulk and a liquid-gas interface is formed near the hydrophobic

particles, i.e., the solute is surrounded by a vapor bubble. In order to reduce the free-energy

cost to form a liquid-gas interface, the solutes collapse. To take into account the crossover at

different length scales, the authors propose a mean-field model for the water solvent. Water

density is modeled as a sum of two scalar fields, representing the large and the small length-

scale contributions to the water density. This decomposition is valid in thermodynamic

conditions far away from critical regions of water, where density fluctuations are expected

to be strong. The Hamiltonian for the water system is a bilinear form, coupling the two

components of the density field. The solute–water coupling is represented by an excluded

volume term or by an external tuning potential. The hydrophobic collapse of a polymer [42]

and the dewetting transition of confined water [43] are studied under ambient conditions

with interesting predictions. In particular, the tendency of vapor formation at the solute

interface decreases as the system is moved away from liquid-vapor equilibrium, i.e., by

lowering the temperature or increasing the pressure. Therefore, the authors offer a rationale

for protein unfolding at low T and high P, as a consequence of destabilization of the

hydrophobic collapse.

Nevertheless, the starting hypothesis of this theory, i.e., that an extended hydrophobic

surface favors the formation of a liquid-gas interface, is at variance with classical MD

simulations [44, 45] and first principles studies [46] of atomistic models showing that water

density in the first shell near a hydrophobic surface is higher than in bulk.

2.2 Pressure effects

Pressure effects have been also considered in microscopic theoretical models for protein

denaturation. For example, in 2003 Marqués and coworkers [47] considered a model in

two dimensions with a hydrophobic homopolymer, represented as a self-avoiding random

walk, embedded in water at constant P. They adopted the Sastry et al. water model [48] for

water–water interactions. They considered that the polymer–water interaction is repulsive,

hypothesizing that it is proportional to the density number of HBs and to the number of

missed native contact points among monomers of the protein. The model displays hot
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denaturation, cold denaturation and denaturation at high pressure, in agreement with the

stability diagram of some proteins [49]. A peculiarity of this model is that the effective

repulsion between protein and solvent is mean field because it depends on the average

number of HBs of bulk water, that is, an average property of the bulk.

To remove this coupling, in 2007 Patel and coworkers [50] proposed a model where

water at the interface with a protein has a restricted number of accessible orientations for

the HBs compared with the bulk. Along with this entropic reduction, the interfacial HBs also

have an additional enthalpic bonus with respect to bulk water, following the ideas discussed

by Muller et al. The model displays a stability phase diagram with hot, cold and pressure

denaturation. However, it does not reproduce all the expected features of the schematic

phase diagram of Fig. 1. In particular, the model does not reproduce the elliptic shape of the

phase diagram and the low-P region with �V > 0 for hot denaturation. These results were

confirmed by extending the model to the case with heteropolymers.

In an attempt to reproduce the elliptic phase diagram for protein stability in Fig. 1, we

propose here a model starting from the assumption that HBs at the interface of a large

hydrophobic object are stronger compared with HBs in bulk water [51]. The plan of this

paper is as follows: in Section 3, we describe the model for hydration water, and in Section

4 we summarize the model properties, to clarify its water-like behavior. In Section 5, we

present a geometrical description of correlated regions of molecules of hydration water.

In Section 6, we calculate the free-energy landscape of hydration water. In Section 7,

we introduce the model for protein folding with explicit water. In Section 8, we present

preliminary results of this model and discuss the perspectives in Section 9.

3 Water monolayer between hydrophobic plates

We consider a monolayer of water nano-confined between two infinite flat hydrophobic

plates parallel to each other and with separation of 0.6 nm ≤ H ≤ 0.9 nm. The interaction

between water molecules and the plates is represented by a hard-core repulsion. The

confinement is such to inhibit the formation of bulk water structures. For example, bulk

water is known to preferentially form four HBs with four nearest neighbor molecules in an

approximate tetrahedral structure at low temperature and pressure [52]. Hard confinement

inhibits the formation of such bulk structure. Kumar et al. [53], by molecular dynamics

simulations of TIP5P-water confined between flat hydrophobic plates separated by 0.7 nm,

find an almost-flat monolayer of water molecules. They observe that each molecule has four

neighbors forming an orientationally disordered square lattice.

To define a tractable model of water, we coarse grain this structure of confined water

[54–57, 101]. We divide the volume accessible to water into N cells. Each cell contains one

water molecule and has a volume V/N = r2h, where h is the separation between the flat

plates, and r ≥ r0 is the average distance between water molecules, with r0 equal to the van

der Waals diameter of a water molecule. The van der Waals attraction (due to dispersion

forces) and the repulsive interactions (due to the Pauli exclusion principle) between water

molecules are described by a Lennard–Jones interaction

U = −
∑

ij

ε

[(
r0

rij

)12

−
(

r0

rij

)6
]

, (11)

where rij is the distance between molecules i and j and the sum is performed over all the

molecules.
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To each cell, we associate a variable ni = 0, 1. If the cell i is occupied by a water

molecule and has a density ρi > ρ0/2, where ρi = 1/(r2h) and ρ0 = 1/(r2

0
h) with ρi/ρ0 ≤

1, then the cell is liquid-like and ni = 1. If ρi ≤ ρ0/2, then the cell is gas-like and ni = 0.

To take into account the decrease of orientational entropy due to the formation of HBs,

we introduce for each water molecule i four bonding indices σij, one for each possible HB

formed with nearest neighbor water molecule j. Each variable σij can assume q different

values, σij = 1...q. We choose the parameter q by selecting 30
◦

as the maximum deviation

from linear bond (i.e., q = 180
◦/30

◦ = 6). Hence, every molecule has q4 = 1,296 possible

configurations. A HB is formed between two nearest neighbor molecules i and j only if

both are in liquid-like cells (nin j = 1) and their variables σij and σ ji are in the same state

(δσi jσ ji = 1, with δab = 1 if a = b, 0 otherwise). The first condition corresponds to requiring

that r0 ≤ r <
√

2r0, and the second corresponds to requiring that both molecules have the

right relative orientation to form a HB. The conditions are expressed by the Hamiltonian

term

HHB = −J
∑
<ij>

nin j δσij σ ji , (12)

representing the covalent (directional) HB component, where J > 0 represents the covalent

energy gained per HB, and the sum is over nearest neighbor cells.

The experiments show that the formation of a HB leads to an open structure that induces

an increase of volume per molecule [52, 58]. This effect is incorporated in the model by

considering that the total volume of the system is

V ≡ V0 + NHBvHB, (13)

where V0 is the volume of the system without HBs, and vHB is the increment due to the HB.

The term HHB quantifies the two-body component for HB interaction. On the other

hand, the distribution of O-O-O angles shows a strong T dependence [59] that suggests

the presence of many-body components for HB interactions due to long-range change

interactions. We quantify this component by the Hamiltonian term

HCoop = −Jσ
∑

i

∑
(k,l)i

δσikσil , (14)

where Jσ > 0 is the characteristic energy of the cooperative interaction leading to the many-

body term. The sum is performed over the six different pairs (k, l)i of bonding indices of

the molecule i, each facing another molecule and inducing a many-body interaction through

the direction term in (12). Therefore, the total enthalpy for water is

H = U + HHB + HCoop + PV = U − (J − PvHB)NHB − JNσ + PV0, (15)

where

NHB ≡
∑
<ij>

nin j δσij σ ji (16)

is the total number of HBs and

Nσ =
∑

i

∑
(k,l)i

δσikσil (17)

is the total number of pairs of indices optimizing the cooperative interaction.
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4 Dynamics and thermodynamics of a water monolayer

We study our model by Monte Carlo (MC) simulations [51, 56, 60–66] and mean-

field calculations with the cavity method approach [54–57, 61, 62]. MC simulations are

performed in the constant N, constant P and constant T (NPT) ensemble where the volume

of the system is a stochastic variable. We consider periodic boundary conditions in the

directions parallel to the confining surfaces.

4.1 Liquid-gas phase transition and anomalies

Previous calculations have shown that the system displays a liquid-gas first-order phase

transition ending in a critical point C at approximately kBTC/ε = 1.9 ± 0.1 and PCv0/ε =
0.80 ± 0.05 [54–56, 60–62, 66], in qualitative agreement with mean-field results [56, 57,

61, 62].

The model reproduces several anomalies of water. For example, the system presents a

density anomaly, i.e., the isobaric increase of density upon cooling, up to a temperature of

maximum density (TMD). The system also displays diffusion anomalies [67], maxima of

isothermal compressibility KT , isobaric heat capacity CP and the isobaric thermal expansion

coefficient αP [56, 57, 61, 63–65] related to the anomalous behavior of water in the

supercooled region.

4.2 Dynamical slowing down of water in supercooled region

The dynamical behavior of the model at low T has interesting features [60, 63, 64]. The

dynamics of the HBs at constant P displays an increase of the correlation time when T is

decreased. The increase is faster at higher T than at lower T and shows a crossover at the

temperature at which CP has a maximum [63, 64]. Results clarify that the crossover is due

to a structural change in the HB network [63, 64]. The qualitative features of this crossover

were successfully compared to experimental results for confined water at increasing P
[68, 69]. In particular, Franzese and de los Santos [60] have shown that at high pressure

(P � 2,000 bar) the effect of HBs is negligible due to the high enthalpic cost of forming

a HB and the correlation function decays as an exponential. At low P (P � 1 bar), the

correlation is large also at long times and the system becomes stuck in a glassy state. The

structural analysis shows that under these conditions the HB network develops gradually by

decreasing T and traps the system in metastable configurations. For intermediate values of

pressure, the correlation function C(t) is well described by a stretched exponential function

C(t) = C0e−( t
τ )

β

, (18)

where C0, τ and β ≤ 1 are fitting constants (β = 1 correspond to exponential decay). As

we approach a characteristic value of pressure PC′ , β reaches its minimum value (β � 0.4).

This is consistent with the experimental value of β � 0.35, observed for an intermediate

scattering correlation function of water hydrating myoglobin at low hydration level (h =
0.35 g H2O/g protein) [70, 71]. Considering that, the quantity 1 − β is a measure of the

heterogeneity in the system, and the decrease of β when PC is approached found by Franzese

and de los Santos indicates that the system exhibits the largest amount of heterogeneity at

PC′ . As we will discuss in the next section, this heterogeneity is the consequence of a large

increase of cooperativity in the vicinity of PC′ .



Role of hydrogen bonds in water dynamics and protein stability 37

4.3 Thermodynamics of supercooled water

Four scenarios have been proposed to explain the thermodynamics of supercooled water.

The stability limit scenario [72] hypothesizes that the limit of stability of superheated liquid

water merges with the limit of stretched and supercooled water, giving rise to a single locus

in the P− T plane, with positive slope at high T and negative slope at low T. The reentrant

behavior of this locus would be consistent with the anomalies of water observed at higher T.

As discussed by Debenedetti, thermodynamic inconsistency challenges this scenario [73].

The liquid-liquid critical point (LLCP) scenario [74] supposes a first-order phase

transition in the supercooled region between two metastable liquids at different densities:

the low-density liquid (LDL) at low P and T, and the high-density liquid (HDL) at high P
and T. The phase transition line has a negative slope in the P− T plane and ends in a critical

point. Numerical simulations for several models are consistent with this scenario [74–80].

The singularity-free scenario [48] focuses on the anticorrelation between entropy and

volume as the cause of the large increase of response functions at low T and hypothesizes

no HB cooperativity. The scenario predicts lines of maxima in the P− T plane for the

response functions, similar to those observed in the LLCP scenario, but shows no singularity

for T > 0.

The critical-point-free scenario [81] hypothesizes an order-disorder transition, with a

possible weak discontinuity of density, that extends to P < 0 and reaches the supercooled

limit of stability of liquid water. This scenario would effectively predict no critical point,

and a behavior for the limit of stability of liquid water as in the stability limit scenario.

As showed by Stokely et al. [62], all these scenarios may be mapped into the space of

parameters J and Jσ , of the model presented in the previous section, i.e., the coupling con-

stants of the covalent component of the HBs and the coupling constants of the cooperative

component of the HB interaction, respectively. In particular, Stokely et al. showed by mean-

field calculations and numerical simulations that the absence of the cooperative component

leads to the singularity-free scenario, while a large value of the many-body component with

respect to the covalent component gives rise to the critical-point-free scenario, and that in

this case the critical-point-free scenario coincides with the stability limit scenario [62].

By using estimates of these parameters from experimental results, the authors predict a

liquid-liquid phase transition at low temperature and high pressure ending in a second criti-

cal point C′
for water [62]. Therefore, following this prediction, the increasing fluctuations

related to CP, KT and αP of water under cooling are a consequence of the liquid-liquid

critical point C′
in the supercooled region of water. By approaching C′

, the correlation

length ξ of the HBs increases. In particular, for any P < PC′ , the critical pressure, there is

a temperature TW where the correlation length ξ(P) is maximum. The locus TW(P), called

the Widom line, converges toward C′
with a negative slope in the P− T plane [57, 82].

By increasing P along the Widom line, ξ increases and diverges at P = PC′ . Therefore, the

regions of cooperativity of the HBs increase in size, leading to large cooperativity and, as

a consequence, to large heterogeneity in the dynamics as observed by Franzese and de los

Santos [60] and described in the previous section.

Before discussing in more details the features of these cooperative regions, it is worth

mentioning that recent theoretical and experimental results about water hydrating lysozyme

proteins at very low hydration level (h = 0.3 g H2O/g protein) allow us to explain the phase

diagram of a water monolayer at T � 150 K and ambient pressure [83]. This investigation

reveals that at low P two structural changes take place in the HB network of the hydration

shell. One, at about 250 K, is due to the building up of the HB network [64], and another,

at about 180 K, is a consequence of the cooperative reorganization of the HBs. These two
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structural changes give rise to two dynamical crossovers in the HB correlation time and

the corresponding experimental quantity, the proton relaxation time [83]. By increasing P,

approaching PC′ , the two structural changes merge and at PC′ lead to diverging fluctuations

associated with the liquid-liquid critical point, as discussed in a recent work by Mazza et

al. [84]. Furthermore, the comparison of experiments and theory allows us to convert the

simulations results into real units [83], estimating the occurrence of the critical point C′
at

PC′ � 0.13 GPa, TC′ � 174 K [66].

5 Geometrical description of clusters of correlated HBs

As discussed in the previous section, a water monolayer between hydrophobic plates

separated by less than 1 nm has a complex phase behavior at T below the limit of stability

of bulk liquid water. The same phase diagram compares well with experiments with water

monolayers hydrating a complex substrate formed by proteins at low hydration level

[70, 71]. This can be understood if we admit that the main effect of the protein substrate

at low hydration is to induce, in the first layers of hydrating water, a structure that is

inconsistent with any possible crystal. Therefore, the substrate inhibits the crystallization,

but does not inhibit the water–water HB formation. It is, therefore, interesting to understand

how the region of correlated HBs builds up and gives rise to the cooperative rearrangement

and the liquid-liquid phase transition.

To this goal we follow an approach that has been validated during the last three decades to

describe critical phase transitions. It consists in a percolation approach elaborated in 1980 by

Coniglio and Klein [85] for ferromagnetic systems and related to a mathematical mapping

introduced by Fortuin and Kasteleyn [86]. The approach is also related to Swendsen-Wang

[87] and Wolff [88] techniques for cluster MC methods. The Coniglio–Klein approach,

called random-site-correlated-bond percolation, was extended to ferromagnetic systems

with many states [89] and spin-glass-like systems [90–96]. In particular, in [85] it was

proved that clusters, defined following the rules of this specific type of percolation,

statistically coincide with the region of thermodynamically correlated variables. Moreover,

in [91] it was proved that this result holds as long as the system has no competing

interactions that give rise to frustration. Since in the case considered here there is no

frustration, we can follow the percolation approach to define clusters of water molecules

with statistically correlated HBs.

As described in [51], we adopt the Wolff cluster MC algorithm [61] to study the cooper-

ative regions and their length scale. Thanks to the fact that a cluster represents a region of

water molecules with statistically correlated HBs, the algorithm allows equilibration of the

system at any T [61].

By definition, at given temperature T and pressure P, two bonding indices σij and σ ji of

two nearest neighbor water molecules belong to the same cluster with probability

p = min{δσij σ ji , 1 − exp[−(J − PvHB)/kBT]}. (19)

On the other hand, by definition two bonding indices σil and σik of the same water molecule

i belong to some cluster of correlated degrees of freedom with probability

pσ = min{δσilσik , 1 − exp(−Jσ /kBT)}. (20)

Therefore, p depends on P and T, while pσ depends only on T. This difference is a

consequence of the local volume increase due to the formation of HBs. The size of a cluster
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is given by the total number of σij variables belonging to the cluster. For each four σij
in a cluster we have, on average, one water molecule in the cluster. The average linear

size of finite (non-percolating) clusters is, for the mapping discussed above, statistically

equivalent to the correlation length of the HBs. Moreover, it is possible to prove [89] that

each thermodynamic quantity, such as the compressibility, can be described in terms of an

appropriate moment of the finite cluster distribution.

By approaching the critical point C′
, we observe that the largest cluster percolates and its

linear size becomes comparable to the system size. Under these conditions, the correlation

length ξ diverges. The distribution n(s) of clusters of linear size s decays as an exponential

away from C′
, and n(s) has a power law decay near C′

. This is indeed consistent with our

results for P �1.93 GPa and different temperatures (Fig. 2). From this analysis, we estimate

PC′ �1.93 GPa and TC′ � 173 K, consistent with the estimate of the critical parameters for

C′
based on the study of fluctuations [66].

From general considerations it is possible to show that at the critical point n(s) ∼ s−τ

with τ = 1 + d/DF, where DF is the fractal dimension of the cluster at the critical point and

d = 2 is the embedding (Euclidean) dimension. A preliminary estimate τ � 2 suggests that

the clusters of correlated HBs at the percolation point are compact with DF ∼ 2 (Bianco

and Franzese, in preparation). Therefore, the mapping of the thermodynamic systems

into a percolation problem allows us to give a geometrical description of the regions of

correlated HBs.

It is worth mentioning that the percolation approach was already used with interesting

results for the HB network of supercritical bulk water [97], and for the spanning HB network

of water hydrating biomolecules [98]. In both cases, the authors use a pure geometrical

definition of a cluster of molecules: two neighbor water molecules belong to the same
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Fig. 2 Distribution n(s) of clusters with finite size s formed by correlated hydrogen bonds in a non-

crystallizing water monolayer. Calculations are for P = 0.13 GPa � PC′ , the liquid-liquid critical pressure,

and different values of temperature for a system with N = 4 × 10
4

water molecules. For T = 173.84 K �
TC′ , the liquid-liquid critical temperature, calculations (blue square points) decays as a power law n(s) ∼ s−τ

(continuous line). We find τ = 2.1 ± 0.1, as expected from theory near a critical point [91]. Consistent with

the theory, we find that n(s) cannot be described by a power law decay away from the critical point. This is

the case, for example, at T = 173.83 K (green circles) and T = 176.35 K (orange triangles). We find that

at temperatures far from the critical temperature, n(s) has an exponential decay. For example, we find an

exponential decay (dashed lines) at T = 833.08 K (light blue square) and T = 163.80 K (black triangles)
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cluster if they participate to the same HB. This cluster definition does not take into account

the thermodynamic correlation among the HBs, hence, as can be demostrated, does not

describe the region of correlated HBs. In general the clusters defined in [97, 98] percolate at

higher T than the clusters defined in our work. We stress here that the statistical equality of

the HB correlation length with the average linear cluster size holds only for the correlated

percolation, adopted in our work.

6 Free-energy landscape analysis

The percolation approach allows us to adopt a cluster MC dynamics that is very efficient

at low T [61]. Therefore, we can equilibrate the system at low P around the TW(P), the

temperature of maximum correlation length ξ , and around the temperature TLL of liquid-

liquid coexistence at high P, and calculate the free-energy landscape for the system.

By definition, the Gibbs free energy is

G/kBT ≡ − ln P(H, ρ), (21)

where P(H, ρ) is the density of states with enthalpy H ∈ [H, H + δH] and density ρ ∈
[ρ, ρ + δρ], where δH and δρ are infinitesimal increments. In Fig. 3, we show G as a

function of energy per particle E/N and density ρ. The free energy displays two equivalent

minima straddling the line of phase transition. The two minima, equivalent within the

numerical precision, are consistent with the coexistence of two phases with different density

and energy. The one at higher density and higher energy represents the HDL phase. The

other, at lower density and lower energy, represents the LDL phase. Approaching C′
, the

two minima get closer and the density separation disappears, as expected at a critical point.

These results are consistent with the mean-field free-energy analysis of [61, 69], where the

Gibbs free energy is calculated as a function of the HB order parameters relevant at the

structural transition at high P and low T. In the mean-field analysis the minima of G are

separated at high P, but merge for P approaching PC′ . All these results are consistent with
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Fig. 3 Gibbs free energy for a water monolayer with N = 4 × 10
4

water molecules at P = 1.98 GPa and

T = 158 K. The two minima, one at high energy and high density, and the other at low energy and low

density, respectively the LDL and HDL phases of the system. The projection of G on the E/N − ρ plane

shows that there is a linear relation between the accessible energies and densities for the coexisting states at

the chosen P and T. The two minima have approximately the same G value, consistent with the coexistence

of two phases
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the behavior of CP, KT and αP, whose maxima move to lower T as P is increased [56, 63–

65]. The loci of the maxima of CP, KT and αP merge in the vicinity of C′
and the amplitude

of their maxima increases approaching C′
.

Therefore, with the coarse-grained model of confined water presented here, we can, on

the one hand, calculate the free energy G landscape in the mean-field approximation; on

the other hand, we can calculate G by simulations, even at very low T where detailed water

models cannot be easily equilibrated. In both calculations we find a free-energy landscape

typical of a first-order phase transition ending in a critical point.

7 A model for protein in water

In the previous section we define a coarse-grained model for a water monolayer. We show

that the model compares well with experiments probing protein hydration water and that it

predicts a complex phase diagram at low T, below the limit of stability of bulk liquid water,

and high P. As described in the introduction, under these conditions folded proteins are

destabilized. Following our discussion about how it could be relevant to take into account

the HB free energy to explain the lost of stability of folded proteins, it is intriguing to test if

the proposed water model could give insight into the mechanism of unfolding.

To this goal, we modify the water model to introduce the effect of the protein–water

interface. For the sake of simplicity, we will limit our discussion to the case of a single

protein embedded into a water monolayer. Although this case is far from the complex

studies of a protein embedded into bulk water, the model gives instructive results.

The simplest protein that we can consider is a hydrophobic homopolymer, schematized

as a self avoiding chain (Fig. 4). Following the discussion of Muller [12], we require that,

consistent with experiment, water molecules in contact with a hydrophobic monomer have

a larger decrease of enthalpy upon HB formation than bulk water. Also consistent with

Muller–Lee–Graziano’s discussion [29], the fraction of broken HBs at the hydrophobic

interface is larger than the fraction of broken HBs in the bulk.

Fig. 4 Example of configuration

of a homopolymer in the

coarse-grained model of a protein

suspended in water. Each cell is

occupied either by a water

molecule (white and gray cells)

or a hydrophobic homopolymer

monomer (cells with a filled
black circle). The gray cells
represent the sites occupied by

shell water. The enthalpy gain for

HB formation between shell

water molecules is larger than

that between bulk water

molecules, according to (22).

Shell water molecules cannot

form hydrogen bonds with

nearest neighbor hydrophobic

monomers
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The first requirement is achieved by adding a term to the water Hamiltonian equa-

tion (15)

Hs = −λJ
∑
<ij>s

nin j δσijδσ ji , (22)

where the sum is taken over the nearest neighbor water molecules in the protein hydration

shell (Fig. 4), and λ > 0 is an adjustable parameter accounting for the larger enthalpy

decrease for HBs in the hydration shell. Hence, for a HB formed between water molecules

in the shell, the enthalpy variation is −J(1 + λ) + PvHB, and the total enthalpy for protein

into water is

Htot = H + Hs, (23)

where H is given by (15).

The second requirement of Muller–Lee–Graziano approach, i.e., a larger number of

broken HBs at the interface, is achieved by volume exclusion. Once a cell of our system

is occupied by a protein monomer, it cannot be occupied by a water molecule. Therefore,

a water molecule in the hydration shell cannot form a HB in the direction of the monomer

and loses at least one HB (and can lose more if it has more monomers as nearest neighbors,

as shown in Fig. 4).

In the following section, we will define the algorithm adopted to generate protein

equilibrium configurations. To this purpose, we follow a MC procedure that mimics the

dynamics at large time scales.

7.1 Monte Carlo algorithm

We perform MC simulations in the constant NPT ensemble. In every MC step, we choose

a cell at random. If it is occupied by a water molecule, we change randomly one of its σ

variables. If it is occupied by a monomer and if the monomer is in a corner configuration

(Fig. 5a) then we swap its position with the position of the water molecules in the cell in the

opposite corner. By doing this, we keep the inter-monomer distances constant.

If the cell, picked at random, is occupied by a monomer not in a corner configuration,

no displacement is performed because it would change the inter-monomer distance. This

limitation is introduced in order to avoid in the enthalpy expression (23) any term

1

2 3

1 2

3

A B C

Fig. 5 a Monomer 2 is in a corner configuration and can be displaced from the configuration on the left

to the configuration on the right and vice versa. b Homopolymer configuration with two contact points,

indicated with dotted lines. c Homopolymer configuration without contact points
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accounting for the elastic energy of the homopolymer. The effects of this elastic contribution

are for the moment outside of the scope of the present work.

Finally, as in the cases discussed in the previous section, to keep the pressure of the

system constant, every N random changes of the cell variables (where N is the total number

of cells in the system), we attempt to rescale all the system volume by a factor that is tuned in

a way to guarantee a 50% acceptance ratio. All the MC moves described above are accepted

or rejected according to the Boltzmann factor associated with the enthalpy change caused

by the move.

In order to study the folding–unfolding process of the proteins, we calculate the number

of contact points Ncpts as illustrated in Fig. 5. In this calculation, we do not count the

monomers that are adjacent along the homopolymer.

8 Preliminary results for hydrated homopolymers

We study a system with N water molecules and a hydrophobic homopolymer chain with Nm

monomers. In our preliminary simulations we used N = 650 or N = 1,000 and Nm = 12

or Nm = 50. The parameters are chosen, for consistency, as in previous analysis [66]: ε =
5.8 kJ/mol, J = 2.9 kJ/mol, Jσ = 0.29 kJ/mol, v0 = hr2

0
, h = 7 Å, vHB/v0 = 0.5 and q = 6.

We choose λ = 0.7 for the larger decrease of enthalpy at the hydrophobic interface.

Our results display a non-monotonic behavior of Ncpts as a function of T at low P.

At high pressure we observe a region in the P− T plane where the number of contact

points is at least 51% of the maximum possible number. By definition, we consider these

configurations as belonging to the set of folded states. We observe that the region of folded

states is included within a larger region in the P− T plane where the number of contact

points is at least 49% of the maximum possible number. By definition, we consider those

configurations as belonging to a molten globule (we thank M. Vendruscolo for discussing

this point).

We find that the region of folded states has an elliptic shape that resembles the theoretical

prediction (Fig. 1). In particular, we observe that a folded protein unfolds upon cooling,

giving rise to the cold denaturation process. It also unfolds by increasing the pressure as

(a) (b) (c) (d) (e)

Fig. 6 Typical configurations of folding–unfolding of a coarse-grained protein suspended in water at

different temperatures T and high pressures P. The protein is represented as a fully hydrophobic chain

(in white), surrounded by water molecules (turquoise background). We use different color sticks for HBs

in different bonding states. a At high P and high T, the protein unfolds and the number of HBs of the

surrounding water is small. b At the same pressure but lower T, the protein collapses into a molten globule

state. c At lower T the protein folds, while the surrounding water has a large number of HBs. d At much

lower T we observe cold denaturation of the protein when the number of HBs is largely reduced (zero in the

configuration represented here). e At higher P the denaturation occurs at higher T, and the mechanism of

unfolding seems to be dominated by the reduction of HBs under these conditions
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expected by pressure denaturation (Fig. 6). Since our stability region is at high P, we are

also able to observe the unfolding by decreasing pressure, a phenomena that is predicted

by general theoretical considerations, as discussed in the Introduction. We also find that the

axes of the elliptical stability region are tilted as expected (Fig. 1).

9 Summary and discussion

Behavior of water supercooled at very low temperature is still an object of debate. The

presence of a second critical point C′
could be relevant to understanding how the structure

of liquid water changes around proteins and how affects protein properties. Experiments

on water confined in nano-structures offer the possibility to access a range of temperatures

where bulk liquid water would not be stable and would form ice. These conditions are

common in crowded environments, such as inside biological cells. Moreover, at these

temperatures a number of proteins unfold. Hence, confinement allows the study of water

under conditions that are relevant to biological systems.

Despite the growing interest of the scientific community in water at hydrophobic and

hydrophilic interfaces, it is still unclear how interaction with confining surfaces affects

the thermodynamics of water. For example, recently Strekalova et al. [66] observed that

the fluctuations of supercooled water confined into a hydrophobic porous material are

drastically smaller than those of water in weaker confinement. They found that the response

functions CP, αP and KT are largely reduced as a consequence of the interaction with the

porous medium. An extreme consequence of this change is the disappearance of the liquid-

liquid phase transition at high pressures [66]. Therefore, further work is necessary to clarify

the many issues related to the dynamics and thermodynamics of water at these interfaces.

Here, we presented a coarse-grained model for a monolayer of water and its extension to

the case of solvated proteins. The model takes into account the cooperativity between HBs

and has been studied by simulations and mean-field calculations. Previous results about

the phase diagram, the diffusivity properties, the response functions CP, αP and KT of the

model and the connection of these quantities with HB dynamics are in agreement with

experimental results and validate the model.

We adopted this model in the context of protein folding. For the sake of simplicity, we

consider the case of a protein schematized as a self-avoiding hydrophobic homopolymer.

Following Muller’s analysis [12], we assume that the network of HBs is perturbed by

the presence of hydrophobic solute with large size leading to interaction among the water

molecules at the interface that are stronger than in the bulk, and to a larger number of broken

HBs with respect to the bulk.

Our preliminary results reproduce hot, cold and pressure denaturation as well as the

existence of intermediate states (molten globule). We find that the stability region for the

folded protein has the theoretically expected elliptic shape in the P− T plane. Further work

is in progress to elucidate the relevant mechanism governing protein stability in this coarse-

grained model.
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