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Tumor microenvironment: becoming sick of Myc
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Abstract Several years ago, we described Myc as ‘‘the

oncogene from hell’’, since evidence had just emerged that

Myc, aside from being responsible for cell-cycle progres-

sion and tumor expansion, was also able to induce genomic

instability in culture, wreaking havoc in tumor cells and

accelerating tumor progression (Soucek and Evan, Cancer

Cell 1:406–408, 2002; Vafa et al., Mol Cell 9:1031–1044,

2002). In this review, we discuss recent publications that

expand Myc’s evil armory to include coordination of the

crosstalk between tumor and microenvironment. Indeed,

endogenous Myc, acting as a client for upstream oncogenic

lesions, instructs the tumor stroma, engages a complex

inflammatory response and induces angiogenesis, thus

allowing the tumor to thrive. This is highly topical in light

of the fact that Hanahan and Weinberg have recently

redefined the hallmarks of cancer and pointed out that

genomic instability and inflammation are essential for both

their acquisition and development (Hanahan and Weinberg,

Cell 144:646–674, 2011). Myc, it seems, is behind it all.
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Abbreviations

VEGF Vascular endothelial growth factor

IL-1b Interleukin-1b

Hif1a Hypoxia-inducible transcription factor 1 alpha

Bcl-xl B-cell lymphoma-extra large

RIP Rat insulin promoter 1

SV40 Simian virus 40

Introduction

Myc is a highly pleiotropic transcription factor known to

control proliferation, metabolism, differentiation, and

apoptosis [4–6]. Normally its expression is tightly regu-

lated. In human cancer, however, Myc’s deregulated

expression is often observed and is considered a poor

prognostic factor [7–10]. Myc is evolutionarily conserved

as an integrator of extracellular and intracellular signals

leading to cell growth and division, tissue regeneration, and

remodeling [11]. Indeed, during development, myc family

gene expression is highest during embryonic stages and is

downregulated in mature organs, due to cell growth arrest

and differentiation [12].

Genetic knockout of the c-myc gene leads to embryonic

lethality and, as elegantly shown by Baudino et al. [13],

this is partially due to defects in vasculogenesis caused by

the lack of proper Vascular Endothelial Growth Factor

(VEGF) signaling [13]. In the same study, a role in murine

embryonic stem cells and derived teratomas was attributed

to Myc in the regulation of other proteins strictly involved

in angiogenesis, such as thrombospondin-1 and angio-

poietin-1 and -2, providing the first evidence to show Myc

as a master regulator of vascular remodeling [13]. Myc’s

role in embryonic development has recently been defined

more precisely by the use of cell lineage specific deletion

[14]: embryos lacking c-myc in both endothelial and

hematopoietic compartments phenocopied those lacking
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c-myc in the entire embryo, as a consequence of defective

hematopoiesis and vasculogenesis. Surprisingly though,

c-myc deletion in endothelial cells alone did not prevent

endothelial cell proliferation and vasculogenesis. Thus, it is

c-myc-mediated hematopoiesis that is critical for blood

vessel formation during mammalian development [14].

Further evidence for the regulation of VEGF and angio-

genesis by Myc was provided by Mezquita and colleagues

[15], who demonstrated that a human B-cell line increases

VEGF production tenfold upon Myc overexpression, due to

increased initiation of VEGF mRNA translation. Ngo et al.

[16] confirmed in vivo Myc’s down-modulation of

thrombospondin-1 by making use of Myc-transformed Rat-

1A fibroblasts that form vascular tumors in immunocom-

promised mice. Finally, Dews and colleagues [17]

suggested that thrombospondin-1 is downregulated by Myc

through induction of the miR-17-92 microRNA cluster,

using p53-null mouse colonocytes transformed in vitro by

low-grade overexpression of activated K-Ras and Myc, and

engrafted into the cecal wall of syngeneic mice. Collec-

tively, these results show that Myc efficiently modulates in

vivo various potent factors implicated in neoangiogenesis.

Another giant leap forward in understanding Myc’s role

as instructor of the tumor microenvironment was made

using mouse models of Myc-induced tumorigenesis. In

particular, the use of reversibly switchable models that

allowed synchronous activation or deactivation of Myc

also permitted deconvolution of the cause-and-effect pro-

cesses consequent to activation of the oncogene in vivo.

One of these models is the pInsMycERTam;RIP-BclXL

model of pancreatic b-cell tumorigenesis, in which

expression of a MycER fusion protein is spatially con-

trolled by the tissue-specific insulin promoter (pIns) and

temporally regulated by the administration of 4-hydroxy-

tamoxifen [18]. Apoptosis is prevented by co-expression of

B-cell lymphoma-extra large (Bcl-xl) driven from the Rat

insulin promoter 1 (RIP). In this model, Shchors et al.

demonstrated that acute Myc activation in b-cells triggers

the release of factors that induce proliferation of adjacent

endothelial cells, and their subsequent formation of leaky

and complex vessels [19]. This process is mediated by the

release of interleukin-1b (IL-1b) by b-cells, which leads to

mobilization of VEGF-A bound to the extracellular matrix,

presumably through the action of extracellular proteases

[19, 20].

In the same mouse model, we showed that Myc alone

causes a complex inflammatory response, leading to the

recruitment of various inflammatory cells. Among those,

mast cells are absolutely required for tumor expansion and

sustained proliferation of endothelial cells within the tumor

[21]. We also showed that inhibitors of mast cell function

rapidly triggered hypoxia and cell death in tumors and

vessels, which suggests that there are Myc effectors in the

tumor stroma, offering new therapeutic opportunities [21].

These data underscore the essential role of the activation of

inflammatory pathways for Myc’s oncogenic activity and,

together with the previous work by Shchors et al. [19],

demonstrate that Myc can directly instruct tissue remod-

eling, angiogenesis and inflammation.

Other studies have suggested the intriguing possibility

of bi-directional crosstalk between Myc-driven tumors and

their microenvironment. Giuriato et al. [22] and Rakhra

et al. [23] showed that, in a conditional mouse model for

Myc-induced tumorigenesis in hematopoietic cells, com-

plete tumor regression, cellular senescence and shutdown

of angiogenesis upon Myc inactivation can be achieved

only through persistent expression of thrombospondin-1

[22] and in the presence of CD4(?) T cells [23].

Furthermore, hypoxia and other environmental stresses

can affect c-Myc expression itself. For instance, low oxy-

gen supply leads to stabilization of hypoxia-inducible

transcription factor 1 alpha (Hif1a), whose transcriptional

activity both antagonizes and cooperates with Myc [24],

while low oxygen and glucose deficiency can destabilize

Myc [25].

Yet, for a long time, Myc’s interaction with the

microenvironment was thought to be a prerogative of

overexpressed and not physiological levels of Myc. More

recently, we made use of a dominant-negative form of

Myc, termed Omomyc, to assess the requirement for

Myc activity in tumorigenesis. More specifically, we

decided to study b-cell insulinomas arising in Rip-Tag2

mice that express Simian virus 40 (SV40) T/t antigens,

the ‘workhorse’ for tumor microenvironment and angio-

genic switch studies [26, 27]. We crossed these mice

with the TREOmomyc;CMVrtTA strain, thus enabling

controlled expression of Omomyc in most mouse organs

[28]. This dominant-negative mutant interferes with

Myc’s transactivation activity [29], and we sought to

establish the extent to which tumor angiogenesis is

dependent upon endogenous Myc. Strikingly, given the

enormous transforming potential of T/t antigens, tumor

expansion was completely prevented by Myc inhibition,

and furthermore, tumors collapsed after induced expres-

sion of Omomyc [30]. Notably, at no stage of tumor

evolution was Myc overexpressed, suggesting it functions

simply—but critically—as a client for upstream SV40

oncoproteins. Similarly, in most human cancers, Myc

does not appear to be mutated itself, but more typically

is induced by altered signal transduction [31]. Our results

show that, even in cases where it is not upregulated,

Myc still has a crucial part to play in tumorigenesis.

Indeed, inhibition of endogenous—neither mutated nor

overexpressed—Myc has a huge impact on the tumor

stroma: it impairs VEGF signaling, causes disappearance

of infiltrating inflammatory cells and leads to vasculature
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collapse, all events that precede actual tumor regression

[30]. Importantly, this holds true even when Myc is

inhibited exclusively in tumor cells and not the micro-

environment [30], showing that it is Myc in the tumor

cells that directs changes in the tumor stroma.

This is particularly intriguing when considered together

with recent data from Pello et al. [32], which define a clear

role for Myc in controlling the activation of tumor-asso-

ciated macrophages. This study indicates that Myc

inhibition in the microenvironment also has therapeutic

promise, being able to prevent alternative polarization of

macrophages and their pro-tumorigenic behavior [32].

Various considerations follow:

First, since no emergence of resistance to Myc inhibition

was observed in any tumor lesion, these results revealed a

unique, non-adaptive link between tumor and microenvi-

ronment, which provides tremendous therapeutic oppor-

tunities.

Second, it remains to be established whether Myc’s

instruction of the microenvironment is conserved in dif-

ferent tumors and tissues, and downstream of different

oncogenic lesions, or whether the degeneracy observed in

signals upstream of Myc is also maintained in downstream

pathways.

Third, Omomyc exerts an ‘‘edgetic’’ perturbation [33] of

the Myc transcriptome [29, 34]—that is to say, Omomyc

does not ablate all Myc activities but specifically Myc-

dependent gene transactivation, rather than transrespres-

sion [29, 34]. This contrasts with approaches designed to

totally ablate the gene product function, such as gene

knockout or RNA interference techniques. Hence, the

microenvironmental effects elicited by Omomyc are criti-

cally dependent on the inhibition of Myc’s transactivated

target genes.

Finally, it is well known that metastasis is a multi-

stage process that requires cancer cells to escape from

the primary tumor, survive in the circulation, seed at

distant sites, and grow. Each of these processes is

influenced by non-malignant cells of the tumor micro-

environment [35]. It remains to be established whether

Myc is again a critical node during such stages of

tumorigenesis and whether inhibiting Myc has thera-

peutic activity against metastasis.

In summary, instruction of the microenvironment, pre-

viously considered a feature of aberrant, mutated or

overexpressed Myc, is more likely just one of Myc’s many

and diverse physiological cellular activities. This should

come as no surprise if we consider Myc as a nodal, central,

and non-redundant integrator of intracellular and extra-

cellular programs normally involved in organogenesis and

tissue regeneration. It is this same physiological activity

that is hijacked during tumorigenesis, turning Myc from

healing and regenerating saint, to sinner.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.
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