cDNA cloning of the murine 30-kDa protein homologous to the 32-kDa subunit of human replication protein A

Masashi Nakagawa, Satoshi Tsukada, Toshihiro Soma, Yoshifumi Shimizu, Seigou Miyake, Akihiko Iwamatsu¹ and Haruo Sugiyama*

The Third Department of Internal Medicine, Osaka University Medical School, Fukushima-ku, Osaka 553 and ¹Central Laboratories of Key Technology, Kirin Brewery Co., Ltd, Soujamachi 1-chome, Maebashi, Gunma 371, Japan

Submitted February 1, 1991

DDBJ accession no. D00812

DNA-binding proteins were purified by using sepharose 4B column coupled with the synthetic 53-bp nucleotide(5'-CCAG-AGACACAGTGAGGGAAGTCCAATGTGAGCCTGCACA-AATACCTCTCTGC-3') containing a 7mer-23bp-9-mer recombination signal sequence for immunoglobulin heavy chain gene rearrangements. Nuclear extract from Abelson murine leukemia virus-transformed immature B cells (1) was applied to the DNA column, and the DNA-binding proteins were eluted with 2M KCl. Then, the DNA-binding proteins were well separated into three major bands (66-, 54-, and 30-kDa) on SDS-PAGE under reduced conditions. Since the 30-kDa protein was most abundant, this 30-kDa protein was first sequenced. The 30-kDa protein was electroblotted onto PVDF membrane, and in situ digestion was carried out with lysyl-endopeptidase. The amino acid sequences of HPLC-purified peptide fragments were determined by a gas phase sequencer. When a cDNA library prepared from Abelson murine leukemia virus-transformed immature B cells was PCR-amplified using a mixture of oligonucleotide primers synthesized on the basis of the partial amino acid sequences of the 30-kDa protein, only one 462-bp fragment was amplified. Using this 462-bp fragment as a DNA probe for plaque hybridization, a full-sized cDNA clone of 1,447 bp was isolated. This cDNA clone contained a 810-bp open reading frame, predicting that the 30-kDa protein consists of 270 amino acids. This 30-kDa protein had the same numbers of amino acids and 87% homology at amino acid level, compared to the 32-kDa subunit of human replication protein A (RP-A) (2). Therefore, we concluded that this 30-kDa protein is a mouse homologue to the 32-kDa subunit of RP-A. In recent data-base searching we could find no other proteins with significant homology to the 30-kDa protein.

RP-A, a human single-stranded DNA-binding protein, is absolutely required for semiconservative replication of SV40 DNA in vitro (3, 4). RP-A consists of three polypeptides of 70-, 32-, and 13-kDa, and acts with T antigen and topoisomerases to unwind DNA. Our 30-kDa protein is highly homologous (87%) to the 32-kDa subunit of RP-A. Therefore, our 30-kDa protein is thought to be a mouse homologue to the 32-kDa subunit of RP-A. This 30-kDa protein appears to play an important role for DNA replication in mouse. Experiments to determine the biological activities of the 30-kDa protein are currently being carried out.

In comparison with amino acid sequences, Cys⁴⁹ and Cys²¹⁹ are conserved in mouse and human, predicting that a disulfide

bond is formed between Cys^{49} and Cys^{219} . When similar amino acids are taken into consideration, the homology is 95%, suggesting that the mouse and human genes are derived from a common ancestral gene.

Initially, this work is planned to purify IgH gene recombination signal sequence-specific DNA-binding proteins. However, under our column conditions, single-stranded DNA-binding proteins appear to be purified as described here.

ACKNOWLEDGEMENTS

We thank Miss Yasuko Miyoshi for her technical assistance and also thank Miss Hiromi Takeuchi for the preparation of the manuscript.

REFERENCES

- Sugiyama,H., Akira,S., Kikutani,H., Kishimoto,S., Yamamura,Y. and Kishimoto,T. (1983) Nature 303, 812-815.
- Erdile, L.F., Wold, M.S. and Kelly, T.J. (1990) J. Biol. Chem. 265, 3177-3182.
- 3. Wold, M.S. and Kelly, T.J. (1988) Proc. Natl. Acad. Sci. USA 85, 2523-2527.
- 4. Fairman, M.P. and Stillman, B. (1988) EMBO J. 7, 1211-1218.

Amino acid sequence of the 30-kDa protein (upper) in comparison with that of the 32-kDa subunit of human replication protein A (lower). Asterisks, identical amino acids; dots, similar amino acids. Boxes indicate the cysteine residues which will form a disulfide bond.