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Abstract
The neural mechanisms that support speech discrimination in noisy conditions are poorly
understood. In quiet conditions, spike timing information appears to be used in the discrimination
of speech sounds. In this study, we evaluated the hypothesis that spike timing is also used to
distinguish between speech sounds in noisy conditions that significantly degrade neural responses
to speech sounds. We tested speech sound discrimination in rats and recorded primary auditory
cortex (A1) responses to speech sounds in background noise of different intensities and spectral
compositions. Our behavioral results indicate that rats, like humans, are able to accurately
discriminate consonant sounds even in the presence of background noise that is as loud as the
speech signal. Our neural recordings confirm that speech sounds evoke degraded but detectable
responses in noise. Finally, we developed a novel neural classifier that mimics behavioral
discrimination. The classifier discriminates between speech sounds by comparing the A1
spatiotemporal activity patterns evoked on single trials with the average spatiotemporal patterns
evoked by known sounds. Unlike classifiers in most previous studies, this classifier is not
provided with the stimulus onset time. Neural activity analyzed with the use of relative spike
timing was well correlated with behavioral speech discrimination in quiet and in noise. Spike
timing information integrated over longer intervals was required to accurately predict rat
behavioral speech discrimination in noisy conditions. The similarity of neural and behavioral
discrimination of speech in noise suggests that humans and rats may employ similar brain
mechanisms to solve this problem.
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Introduction
Communication sounds often occur in the presence of environmental noise. Humans and
many species of animal can reliably identify behaviorally relevant communication sounds in
the presence of other interfering sounds (Ehret & Gerhardt, 1980; Gerhardt & Klump, 1988;
Hulse et al., 1997; Lohr et al., 2003; Narayan et al., 2007). Normal-hearing humans can
discriminate between many speech sounds above chance level, even when the speech sounds
and background noise are of equal intensity (Miller & Nicely, 1955; House et al., 1965;
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Wang & Bilger, 1973; Dubno & Levitt, 1981; Phatak & Allen, 2007). The normal auditory
system is remarkably adept at processing acoustic information in noisy situations.

The neural mechanisms that allow speech discrimination to be robust to background noise
are not well understood (Fitch et al., 1997; Bishop & Miller, 2009; Song et al., 2010). It is
not clear whether humans have specialized mechanisms to process speech in noise or
whether standard acoustic processing mechanisms are sufficient to explain the robustness of
speech discrimination in noise. A number of previous studies suggest that the underlying
processing of speech sounds is similar in humans and animals (Kuhl & Miller, 1975; Tallal
et al., 1993; Fitch et al., 1997; Cunningham et al., 2002; Reed et al., 2003; Mesgarani et al.,
2008). Behavioral discrimination of speech sounds in quiet by many species of animal is
similar to that in humans (Kuhl & Miller, 1975; Kluender et al., 1987; Ramus et al., 2000;
Reed et al., 2003; Engineer et al., 2008). Neural responses to speech sounds presented in
quiet are also similar in humans and animals (Steinschneider et al., 1999; Wong &
Schreiner, 2003; Engineer et al., 2008; Mesgarani et al., 2008). Few studies have directly
compared neural and behavioral discrimination of speech sounds to determine the neural
mechanisms for encoding of speech sounds (Engineer et al., 2008). Neural activity in the rat
primary auditory cortex (A1) is capable of accurately predicting rat speech discrimination
(Engineer et al., 2008). Speech sounds that evoke similar spatiotemporal neural activity
patterns are more difficult to discriminate than sounds that evoke distinct patterns. Spike
timing information precise to 1–10 ms appears to be necessary to account for rat behavioral
discrimination between different consonant sounds in quiet situations. In this study, we
documented neural and behavioral discrimination of speech sounds in background noise.

The experiments in this study were designed to test the hypotheses that: (i) the neural
mechanisms used to distinguish between similar speech sounds are different in noisy
conditions; (ii) neural responses can explain why some speech contrasts are more easily
masked than others; and (iii) animals, like humans, are able to discriminate speech sounds in
high levels of background noise. Our results provide new insights into the neural
mechanisms that contribute to robust speech sound processing in noisy environments, and
suggest that the rat may prove to be a useful model for studying the neural basis of human
speech sound processing deficits (Merzenich et al., 1993; Tallal et al., 1993; Cunningham et
al., 2002; Threlkeld et al., 2007).

Materials and methods
Stimuli

Speech stimuli—We used 11 of the 20 English consonant–vowel–consonant words,
ending in `ad' (as in `tad') used in the Engineer et al. (2008) study. These sounds were `bad',
`dad', `gad', `pad', `tad', `sad', `yad', `rad', `lad', `shad', and `chad'. A detailed description of
the recording and processing of these sounds can be found in Engineer et al. (2008). In brief,
we recorded these sounds in a double-walled, sound-proof booth. All speech sounds were
produced by a female speaker. The fundamental frequency and spectrum envelope of each
word was shifted up in frequency by a factor of two with the STRAIGHT vocoder
(Kawahara, 1997), to better match the rat hearing range (Sally & Kelly, 1988). The intensity
of the speech sounds was adjusted so that the intensity during the most intense 100 ms was
60 dB SPL. Speech sounds were approximately 500 ms long.

Noise stimuli—White noise was generated with a random number generator in MATLAB, and
covered a frequency range of 0.2–50 kHz. The speech-shaped noise was generated by
passing white noise through first-order Butterworth filters. Butterworth filters available in
the FDATOOL function in MATLAB were used. As the speech stimuli in our experiment were
produced by a female speaker, we used the female long-term average speech spectrum. The
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long-term average speech spectrum for females is flat from ~200 to ~700 Hz, and falls off
by approximately 7 dB SPL per octave on either side (Byrne et al., 1994). Like those of
speech stimuli, the frequency limits of speech-shaped noise were shifted up by a factor of
two in order to adjust for the rat frequency hearing range. Therefore, the speech-shaped
noise used in this study had a flat spectrum between ~400 and ~1400 Hz, and sloped by 7
dB SPL per octave on either side. Continuous background noise was used because it has a
greater impact on speech sound processing than discontinuous noise (Miller & Licklider,
1950; Buus, 1985; Moore, 1985; Hall & Grose, 1991). Both white noise and speech-shaped
noises were calibrated to 48, 60 and 72 dB SPL.

Behavioral training procedure
We trained 12 female Sprague–Dawley rats to discriminate speech sounds in quiet and
noise. An operant go / no-go training procedure was used for speech discrimination training
(Fig. 1). Half of the rats (n = 6) were trained to press a lever in response to the target sound
`dad' and ignore the non-target sounds `bad', `gad', `tad', and `sad'. The other half (n = 6)
were trained to press the lever in response to the target sound `shad' and ignore the non-
target sounds `bad', `dad', `yad', `sad', `pad', `tad', and `chad'. The rats weighed an average of
275 ± 15 g, and were housed under a 12 : 12-h reversed light cycle at constant humidity and
temperature. Rats were food-deprived to provide motivation for food reward during the
behavioral training, but were maintained at no < 85% of their normal body weight. Access to
water was free at all times except during the behavioral training session, which was 1 h long.
Rats were trained for two training sessions each day for 5 days a week in a sound-shielded
operant-training booth. The booth contained a video camera for monitoring, a house light, a
cage, and a speaker. The cage contained a lever, a lever light, and a pellet receptacle. The
pellet dispenser was mounted outside the training booth to minimize noise. The speaker was
mounted approximately 10 cm away from the midpoint between the lever and the pellet
receptacle, as rats generally stayed in this area during behavioral training sessions.

Rats progressed through the following behavioral training stages: 1, shaping; 2, detection of
sounds; 3, discrimination in quiet; and 4, discrimination in noise. The training protocol used
up to stage 2, namely detection of sounds, was similar to that in our previous study
(Engineer et al., 2008). In brief, during the shaping stage, the rats were trained to press the
lever for food reward. During the initial detection of sounds training stage, rats were given
the food reward only if they pressed the lever after listening to a target speech sound. The
same target speech sound was used every time, so that the rats associated it with the food
reward. We calculated d prime (d′), to compare the hit rates to the false alarm rates
(Engineer et al., 2008). A d′ of 0 indicates the rat is pressing the lever equally often to both
target and distracter, while a positive d′ indicates that the rat has a higher hit rate than false
alarm rate. A d′ of 1.5 or higher indicates that the rats were reliably detecting the target
sound. Once rats reached the performance level d ′≥ 1.5 for 10 sessions, they were advanced
to discriminate between consonant sounds in quiet.

During each consonant discrimination task, rats learned to discriminate the target sound
from the non-target sounds. Initially, the rats learned to discriminate sounds in quiet. Trials
began every 6 s, and rats were only rewarded for lever presses in response to the target
(conditioned) stimuli, which were randomly interleaved for 50% of the time. Silent catch
stimuli and non-target sounds were randomly interleaved for 50% of the time, and pressing
the lever in these trials resulted in a time-out of 6 s. After 20 sessions of discrimination
training in quiet, the rats were trained to discriminate between speech sounds in background
noise. During each session, rats were trained to discriminate speech sounds in both speech-
shaped noise and white noise of 48, 60 and 72 dB SPL. We also continued to test rat
behavioral speech discrimination in quiet, to allow direct comparison between
discrimination in quiet and in noise on the same days. Each session started with 13 trials of
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discrimination in quiet. For future reference, we will refer to 13 trials with a particular noise
intensity and noise type as a noise block. Sounds presented in each block were chosen
randomly to maintain a 1 : 1 presentation ratio of target sound and non-target sound. After
discrimination of trials in quiet, either white noise or speech-shaped noise of 48 dB SPL was
randomly chosen to be played in the background. Noise intensity was gradually increased
every noise block to the maximum level, so that the rat could habituate to the noise, and then
gradually decreased. After this sequence, the noise was changed to a random noise intensity
and noise type for every block. Noise had a 3-s ramp on to avoid startling the rat with abrupt
noise bursts. After this sequence, noise blocks were played randomly. Training performance
was quantified as percentage correct and d′ measure. Percentage correct was used to
correlate neural discrimination which was obtained from a neural classifier; this is explained
later in the section. The percentage of trials in which the rats pressed the lever in response to
the target sound and the percentage of trials in which the rats refrained from pressing the
lever in response to the non-target sounds were averaged together to calculate behavior
percentage correct. The behavioral discrimination performance of rats in noise improved
consistently up to the 50th session, after which their performance reached a plateau.
Behavioral data collected on the last 20 training sessions were averaged together to
determine the speech discrimination of rats. In order to compare the discrimination
performance of our neural classifier with a wide variety of behavioral tasks, we included
behavioral data of five additional tasks from our earlier study in quiet, and averaged
behavioral discrimination of six tasks common to both studies. The discrimination tasks
common to both studies were `dad' vs. `bad', `dad' vs. `gad', `dad' vs. `tad', `dad' vs. `sad',
`shad' vs. `sad', and `shad' vs. `chad'. The discrimination tasks used only in our previous
study were `shad' vs. `fad', `shad' vs. `jad', `shad' vs. `had', `rad' vs. `lad', and `mad' vs. `nad'.
sas statistical software (SAS Institute, Cary, NC, USA) was used for all statistical analyses.
We used a two-factor repeated-measures ANOVA to test the behavioral discrimination in the
different noise conditions and noise types, and Tukey post hoc comparisons with
significance set to P < 0.05 to test the effects of individual contrasts under the different noise
conditions. The Z-statistic was used to test whether Pearson correlation coefficients were
significantly different from each other. Handling, housing and testing of the animals were
approved by the University of Texas Institutional Animal Care and Use Committee.

Neural data: electrophysiology recordings
We recorded multiunit responses to speech in quiet and in six noise conditions from 133
sites in the right A1 of eight anesthetized naïve rats. Neural responses from our earlier study
(n = 445 A1 sites from 11 rats) (Engineer et al., 2008) recorded in quiet were used to
evaluate neural discrimination for the five additional behavioral tasks that were only tested
in quiet. Neural responses were also recorded from six (n = 4 rats with target sound as `dad',
and n = 2 rats with target sound as `shad') of the trained rats. Rats were anesthetized with
pentobarbital for surgery (50 mg/kg), and a state of areflexia was maintained throughout the
experiment with supplemental doses of dilute pentobarbital (0.2–0.5 mL; 8 mg/mL).
Anesthesia depth was monitored by heart rate, breathing rate, corneal reflexes, and response
to toe pinch. Nourishment was provided with a 1 : 1 mixture of dextrose (5%) and standard
Ringer's lactate solution, and body temperature was maintained at 37 °C. A tracheotomy was
performed to minimize breathing problems and breathing sounds, and a cisternal drain was
made to minimize cerebral edema. A part of the skull over the temporal ridge was removed
to expose the right A1. The dura was removed, and the cortex was maintained under a thin
film of silicone oil to prevent desiccation. Four parylene-coated tungsten microelectrodes
[Fred Haer Company (FHC), Bowdoin, ME; 1–2 MΩ] were lowered simultaneously to a
depth of 600 μm so that they were in layer IV/V of A1. To determine the characteristic
frequency at each site, we played 90 logarithmically spaced tones ranging from 1 to 47 kHz
at 16 intensities ranging from 0 to 75 dB SPL. The tones were 25 ms in length, and their
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presentation was randomly interleaved. We placed the speaker 10 cm away from the left ear.
Neural response characteristics such as start latency, end latency and characteristic
frequency at each recording site were used to determine whether the electrodes were placed
in A1. After all of the tones, speech sounds were played. The speech stimulus set was
composed of the same 11 monosyllabic consonant–vowel–consonant words used in
behavioral training, a silence stimulus, and two noise types: white noise and speech-shaped
noise. Each speech sound was separated by 2300 ms and presented 20 times in quiet and in
three noise intensity levels: 48, 60 and 72 dB SPL of both white noise and speech-shaped
noise. The different noise conditions, that is, noise levels and noise types, were interleaved
to avoid the state of anesthesia from affecting neural responses in any particular noise
condition. Within each noise type, the noise intensities were interleaved as follows. All of
the sounds (11 speech sounds and silent stimulus) were repeated five times at one noise
intensity. From here on, we will refer to this set of sounds, that is, 12 sounds repeated five
times played in a particular noise intensity and noise type, as one block. Within each block,
the speech sounds were randomly interleaved. The sequence in which the blocks were
played is as follows. First, one block of sounds was played in quiet. Either white noise or
speech-shaped noise was added in a linearly increasing order of intensity and then in a
linearly decreasing order, to avoid sudden changes in neural responses that could result from
random presentation of noise. We also added a 500-ms ramp with change in noise intensity
to ensure that there were no clicks or other disturbances in the noise and avoid neural
response to sudden onset of noise. The delay between the onset of noise and the speech
sounds was never < 10 s, to eliminate any transients related to noise onset. Because the noise
conditions were varied in blocks, the background noise was typically on for minutes before
changing in intensity or type. This sequence resulted in each of the sounds being played 10
times in one noise type. This sequence was repeated with the other noise type, and then
again with the first noise type, and finally with the second noise type. Stimulus generation
and data acquisition were performed with Tucker–Davis hardware (RP2.1 and RX5) and
software (BRAINWARE). Surgery protocols and recording procedures were approved by the
University of Texas at Dallas Institutional Animal Care and Use Committee.

Neural data: electrophysiology data analysis
Neural response characteristics—The total number of spikes was calculated over the
first 100 ms of the neural response onset above spontaneous. Onset start latency
(milliseconds) was defined as the time from stimulus onset to the earliest reliable neural
response, and was determined as the time when average neural responses from all recording
sites were at least 3 SD above spontaneous activity. The end of peak latency (milliseconds)
was the time when the average neural responses returned to baseline, and was determined as
the time when neural responses after the peak-driven response were not significantly
different from spontaneous activity. Latency was based on the average population data
instead of latency data from individual recording sites, because it was difficult to establish
the latency for individual recording sites in high background noise, and the evoked response
was small. Distinctiveness between neural response patterns was calculated by the use of
city-block and Euclidean distance, to test the correlation between neural distinctiveness and
behavioral discrimination. For statistical analysis of neural responses, we used a two-factor
repeated-measures ANOVA and Tukey post hoc comparisons with significance set to P < 0.01.

Classifier—To quantify neural discrimination, we modified a well-studied nearest
neighbor classifier (Foffani et al., 2004; Schnupp et al., 2006; Engineer et al., 2008). Unlike
our earlier classifier, which was explicitly given the stimulus start time (Engineer et al.,
2008), the version of classifier used in the current study was not given information about the
stimulus start time.
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The neural classifier identifies sounds on the basis of action potential activity produced by a
single presentation. The classifier attempts to identify which of two possible sounds was
presented by looking for the spatiotemporal activity patterns generated by each sound.
Pairwise analysis was performed to ensure simplicity and to maintain historical continuity
with our earlier study. The two activity patterns were derived from the average
spatiotemporal response from a set of recording sites distributed across A1. The
performance of the classifier was tested by systematically varying the durations and bin
sizes of the average spatiotemporal patterns. Specifically, the durations were varied between
10 and 700 ms in steps of 10 ms, and the bin sizes were varied between 1 and 700 ms in
steps of 5 ms, to find the classifier parameters that could accurately predict behavior.
Analysis was based on activity from 1, 5, 10, 25, 40, 60 or 133 recording sites. The sites
were randomly chosen recording sites from the complete list of 133 sites. As an example of
the parameters used, Fig. 8A and B shows the average response of 60 A1 sites to the word
`dad' and `bad'. In this case, the duration of the pattern was 100 ms, and the bin size was 10
ms.

The classifier determines which of the two patterns was more likely to have occurred during
the single trial response period, which is 750 ms in length (Fig. 8C). The classifier computes
the city-block distance (Fig. 8C, top) between the average patterns and the single trial
activity, assuming all possible start times. The average spatio-temporal activity patterns
were generated from 19 trials, and the current trial was not included. City-block distance is
simply the average difference between the firing rate at each bin of the single trial activity
and the average pattern. All results were also tested by the use of Euclidian distance, and
were similar to the results obtained with city-block distance. The classifier guesses that the
sound that was presented on each trial was the sound whose average spatiotemporal pattern
was closest (Fig. 8C, asterisk) to the single trial activity. Neural discrimination for a group
of sites was determined by calculating the percentage of trials on which the classifier
correctly guessed the presented sound.

Classifier100/10 ms refers to the classifier when 100 ms of activity from 60 sites binned every
10 ms was used for the neural discrimination. Classifier400/60 ms refers to the classifier when
400 ms of activity from 60 sites binned every 60 ms was used. The hybrid classifier uses
100 ms of activity binned every 10 ms in quiet conditions and 400 ms of activity binned
every 60 ms in noise. We also analyzed neural responses to sounds from our previous study
in quiet, with the classifiers used in this study, and determined whether our new neural
classifier could predict the behavioral discrimination of tasks from our previous study
(Engineer et al., 2008).

Results
Behavioral results

Our results provide the first evidence that animals, like humans, can discriminate between
numerous speech sounds even when the speech signals and background noise are of equal
intensity (Fig. 2). We trained 12 rats to discriminate between different consonant sounds in
noise. Half of the rats (n = 6) were first trained to discriminate the target word `dad' from the
non-target words `bad', `gad', `tad' and `sad' in quiet. The other half were first trained to
discriminate the target word `shad' from the non-target words `bad', `dad', `pad', `tad', `yad',
`sad' and `chad' in quiet. All of the speech sounds were presented such that the loudest 100
ms was at 60 dB SPL. After the rats had learned to accurately perform the tasks, both groups
were required to discriminate the same stimuli in white noise and speech-shaped noise of 48,
60 and 72 dB SPL.
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Consistent with our earlier report, the rats were able to discriminate the target from the non-
target sounds in more than 85% of trials when tested in quiet (Fig. 2A) (Engineer et al.,
2008). As expected, discrimination could be impaired by adding background noise, and the
extent of impairment depended primarily on the intensity of the noise. Moderate levels of
background noise (i.e. 48 dB SPL) did not significantly impair speech discrimination as
compared with quiet for most speech sound contrasts (Fig. 2; F1,66 = 0.54, P = 0.5, two-way
repeated-measures ANOVA). Only the discrimination of `shad' from `chad' was significantly
impaired by 48 dB SPL noise (Fig. 2B and C; P = 0.005, Tukey post hoc). In 60 dB SPL
noise, rats were able to perform each of the discrimination tasks at well above chance levels,
but performance was significantly impaired as compared with quiet (Fig. 2; P = 0.005,
Tukey post hoc). In 72 dB SPL noise, discrimination on all tasks, except `dad' vs. `tad', was
significantly impaired as compared with quiet (Fig. 2; P = 0.005, Tukey post hoc). These
results demonstrate that rats can discriminate speech sounds at a minimum signal-to-noise
ratio that is similar to that for humans (Miller & Nicely, 1955; House et al., 1965; Horii et
al., 1971; Wang & Bilger, 1973; Dubno & Levitt, 1981; Phatak et al., 2008).

Moderate background noise does not impair discrimination by preventing detection of the
target sounds. In 60 dB SPL noise, rats pressed the lever in response to both target sounds
significantly more than in response to silent catch trials (60 ± 5% more responses to target, P
= 0.001, Tukey post hoc). Even in 72 dB SPL white noise, rats were able to detect both
targets (37 ± 7% more responses to target, P < 0.01). In 72 dB SPL speech-shaped noise,
rats were able to detect `dad' (13 ± 7% more responses to target, P < 0.05) but not `shad' (5 ±
8% more responses to target, P = 0.61). These results are consistent with earlier observations
that discrimination is more sensitive to background noise than detection (Hawkins &
Stevens, 1950; Whiting et al., 1998).

Behavioral discrimination in most tasks was impaired to similar extents by white noise and
speech-shaped noise when the noise intensities were 48 or 60 dB SPL (Fig. 2; by 2 ± 1.9%
in 48 dB SPL noise, and by 9.5 ± 2% in 60 dB SPL noise, respectively). However, in 72 dB
SPL noise, speech discrimination was significantly more impaired by speech-shaped noise
(average percentage correct, 51 ± 2%) than by white noise (average percentage correct, 60 ±
3%) (Fig. 2A; F1,66 = 10.20, P = 0.001, two-way repeated-measures ANOVA). Rats could
discriminate six of 11 tasks significantly above chance level in 72 dB SPL white noise and
only three of 11 tasks in 72 dB SPL speech-shaped noise (Fig. 2B and C; P = 0.005, Tukey
post hoc). The observation that speech-shaped noise generally causes greater impairment in
speech discrimination than white noise is consistent with psychophysical studies in humans
(Busch & Eldredge, 1967; Dubno & Levitt, 1981).

There were significant differences in the degree to which different speech contrasts were
impaired by the different noise conditions (P = 0.01, Tukey post hoc). In quiet, `dad' vs.
`bad' and `dad' vs. `gad' were the easiest discrimination tasks, and `dad' vs. `tad' and `shad'
vs. `chad' were the hardest discrimination tasks, consistent with our previous report (Fig. 2B
and C) (Engineer et al., 2008). In the presence of background noise, `dad' vs. `bad' and `dad'
vs. `gad' continued to be among the easiest discrimination tasks, and `shad' vs. `chad'
continued to be the hardest discrimination task (Fig. 2B and C). The ability of rats to
discriminate `dad' vs. `tad' in white noise, however, was quite robust, and showed the least
impairment of all of the discrimination tasks (Fig. 2B and C; P = 0.005, Tukey post hoc).
For example, the behavioral discrimination for `dad' vs. `gad' fell by 23 ± 3% from quiet to
72 dB SPL white noise, whereas that of `dad' vs. `tad' fell by 6 ± 2%. This result is
consistent with results from psychophysical studies in humans, which show that voicing
tasks are the most robust to white noise (Miller & Nicely, 1955; Wang & Bilger, 1973).
Discrimination for `dad' vs. `tad' was not as robust in speech-shaped noise, and fell by 27 ±
3% when 72 dB SPL speech-shaped noise was added. This result is consistent with previous
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results in humans, which show that voicing discrimination is not as robust in speech-shaped
noise as in white noise (Dubno & Levitt, 1981).

Discrimination tasks with `dad' as the target stimulus were significantly more robust to 72
dB SPL white noise than discrimination tasks with the target stimulus `shad' (Fig. 2B and C;
P = 0.01, Tukey post hoc), but were not more robust in 72 dB SPL speech-shaped noise (P =
0.08, Tukey post hoc). The greater masking of `shad' by white noise is consistent with
previous results in humans, which show that fricatives and affricates are more sensitive than
other sounds to white noise (Miller & Nicely, 1955; Busch & Eldredge, 1967; Horii et al.,
1971; Phatak et al., 2008). The only tasks that were more impaired in white noise than in
speech-shaped noise were `dad' vs. `sad' and `shad' vs. `chad' in 48 dB SPL noise, and `dad'
vs. `gad', `shad' vs. `tad' and `shad' vs. `chad' in 60 dB SPL noise (P = 0.005, Tukey post
hoc). We expected that A1 responses to speech sounds in each of the noise types and
intensities would clarify the auditory mechanisms that support robust speech processing in
noisy environments.

Neural responses to speech sounds in background noisy situations
Neural responses were recorded from 133 multiunit clusters of A1 neurons in barbiturate-
anesthetized rats. Neural responses were obtained in response to the same 11 consonant
sounds that were behaviorally tested in quiet and in 48, 60 and 72 dB SPL speech-shaped
noise and white noise. The responses recorded in silence were consistent with results from
previous studies in humans and animals (Steinschneider et al., 1999, 2005; Wong &
Schreiner, 2003; Engineer et al., 2008; Skoe & Kraus, 2010). For example, voiced stop
consonants (`b', `d', and `g') evoked a single burst of activity, whereas unvoiced stop
consonants (`p' and `t') resulted in a second peak of activity corresponding to the voicing
onset. Stop consonants (`b', `d', `g', `p', and `t') evoked a greater neural onset response than
fricatives and affricates (`s', `sh', and `ch') (average of 3.0 ± 0.1 spikes vs. 2.3 ± 0.4 spikes; P
= 0.0001; Tukey post hoc). Neural responses to consonant sounds were degraded in the
presence of background noise. Background noise reduced the number of action potentials
evoked by speech sounds and delayed the latency of the response (Fig. 2). Increasing the
level of background noise transiently increased the average firing rate from 25 to 95 Hz
(~500-ms half-life). Background noise did not significantly increase the spontaneous firing
activity during the time period when speech sounds were presented (> 10 s after each change
in noise level; P > 0.05). The average baseline spontaneous firing rates were 25, 26, 26 and
27 Hz in quiet, and 48, 60 and 72 dB, respectively (two-way repeated measures ANOVA; P >
0.05).

The amount of degradation of the neural onset response depended on the intensity of the
noise, the type of speech sound, the spectral composition of the noise, and the characteristic
frequency at each recording site. Increasing the intensity of background noise caused
significant degradation of the neural onset response to all consonant sounds. Specifically,
increasing the intensity of background noise reduced the total number of spikes and
increased both start and end latency of the neural onset response to consonant sounds (Fig.
3; F3,396 = 141.79, P = 0.0001, F3,396 = 29.14, P = 0.0001, and F3,396 = 15.72, P = 0.0001,
respectively, two-factor repeated-measures ANOVA). For example, the average number of
spikes evoked by consonant sounds in the first 100 ms was 1.7 ± 0.2 less in 60 dB SPL noise
than in quiet (P = 0.0001, Tukey post hoc). The average start and end latency of sounds
increased by 35 ± 14 ms and 62.5 ± 14.5 ms, respectively, in 60 dB SPL noise as compared
with quiet (P = 0.0001, Tukey post hoc). The neural onset response to most sounds was
prominent in 48 dB SPL noise and still present when the background noise and speech
signal were of the same intensity (i.e. 60 dB SPL; Fig. 4). The onset response to most speech
sounds was eliminated by the presence of 72 dB SPL background noise. The severe
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reduction in neural activity by 72 dB SPL noise is consistent with our behavioral results
showing that speech discrimination is severely impaired in this noise intensity.

Neurophysiology studies in humans show that the cortical responses to some sounds are
more degraded by noise than those to other sounds (Whiting et al., 1998; Martin et al., 1999;
Billings et al., 2010). Our recordings in rats also showed a significant effect of stimulus on
cortical responses in noise (Fig. 4; F30,3960 = 68.67, P = 0.0001, two-factor repeated-
measures ANOVA). Voiced stop consonants (`b', `d', and `g') were least affected by the presence
of background noise (Fig. 4A–C; P = 0.0001, Tukey post hoc). The number of spikes in the
onset response evoked by voiced stop consonants was significantly greater than that evoked
by all of the other consonant groups (i.e. unvoiced stop consonants, fricatives, affricates, and
glides; P = 0.0001, Tukey post hoc). For example, sounds `b', `d' and `g' evoked an average
of 1.67 ± 0.10 spikes, significantly above spontaneous activity, even in 72 dB SPL white
noise (Fig. 4; P = 0.0001, Tukey post hoc). On the other hand, the neural onset response to
the fricative sound `s' was almost completely eliminated, even in the presence of 48 dB SPL
white noise (Fig. 4F; P = 0.0001, Tukey post hoc). The onset responses to unvoiced sounds
were eliminated in 72 dB SPL white noise (Fig. 4D–K). The prominence of the neural
response for `d' and the absence of a neural response for `sh' in 72 dB SPL white noise
supports our behavioral finding of robust speech discrimination of tasks with target sound
`d'. As in previous studies, in both humans and animals, neural responses to vowel sounds
were more robust than those to consonant sounds (Cunningham et al., 2002; Russo et al.,
2004; Song et al., 2010). For example, the neural response to vowel onset was present even
in 72 dB SPL white noise for most sounds, whereas the response to the unvoiced consonant
was eliminated (Fig. 4D–K). The differential effect of noise on neural responses to different
sounds may clarify the greater behavioral sensitivity of certain tasks to noise.

The spectral composition of background noise significantly altered the degree of degradation
of the neural response. Speech-shaped noise had a greater impact on most sounds than white
noise (Fig. 4; F1,132 = 391.14, P = 0.0001). The average number of spikes evoked by sounds
`b', `d', `g', `p', `y', `r' and `l' was reduced by 0.94 ± 0.14 in the presence of speech-shaped
noise as compared with white noise of equal intensity (60 dB SPL, P = 0.0001, Tukey post
hoc). Three speech sounds, `b', `d', and `g', caused significantly driven responses in 72 dB
SPL white noise, whereas neural responses to no speech sounds were significantly different
from spontaneous activity in 72 dB SPL speech-shaped noise (P = 0.0001, Tukey post hoc).
These neural results are consistent with our behavioral results in rats and previous results in
humans showing that speech-shaped noise is more impairing than white noise for most
speech sounds (Busch & Eldredge, 1967; Dubno & Levitt, 1981).

The neural responses evoked by the sounds `s', `sh', `ch', and `t', which primarily contain
high-frequency energy (> 10 kHz), were more degraded in white noise than in speech-
shaped noise. The average number of spikes evoked by `s', `sh', `ch' and `t' was reduced by
0.31 ± 0.12 in white noise as compared with speech-shaped noise (60 dB SPL, P = 0.0001,
Tukey post hoc). Our neural results show that white noise impairs responses to high-
frequency speech sounds more than those to low-frequency sounds, as seen in previous
human psychophysical studies (Miller & Nicely, 1955; Busch & Eldredge, 1967; Wang &
Bilger, 1973; Phatak et al., 2008).

The high spatial resolution of neural responses obtained from our study allowed us to
explain the differential effect of noise type by comparing responses of neurons tuned to
different frequencies. Although both noise types were presented at the same overall
intensities, white noise contains approximately 9 dB more high-frequency (> 10 kHz) energy
than speech-shaped noise, which contains approximately 9 dB more low-frequency (< 4
kHz) energy. As a result, speech-shaped noise degraded responses of low-frequency neurons
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(characteristic frequency < 4 kHz) more than white noise (Figs 5 and 6), whereas white
noise degraded neural responses of high-frequency neurons (characteristic frequency > 10
kHz) more than speech-shaped noise (60 dB SPL, P = 0.0001, Tukey post hoc; Fig. 6). The
number of spikes evoked in low-frequency neurons by most speech sounds was 1.84 ± 0.26
less in speech-shaped noise than in white noise (60 dB SPL, P = 0.0001, Tukey post hoc;
Fig. 5). The number of spikes evoked in high-frequency neurons by high-frequency speech
sounds (i.e. `s', `sh', `ch', and `t') was 0.80 ± 0.09 less in white noise than in speech-shaped
noise (60 dB SPL, P = 0.0001, Tukey post hoc). Most speech sounds in our study contained
mostly low-frequency energy and evoked greater responses in low-frequency neurons. As
speech-shaped noise degraded neural responses in the low-frequency region more than white
noise, it is not surprising that most speech sounds were degraded to a greater extent by
speech-shaped noise than by white noise (Fig. 5). The consonant sounds, which primarily
contain high-frequency energy, that is, sounds `s', `sh', `ch', and `t', evoked the most activity
in the high-frequency group of neurons (Fig. 6). As white noise degraded neural activity in
the high-frequency neurons more than speech-shaped noise, it is not surprising that white
noise degraded neural responses to high-frequency sounds to a greater extent than speech-
shaped noise. Our results are consistent with earlier reports in humans that the spectral
contents of both the speech signal and the background noise influence neural responses to
speech sounds (Whiting et al., 1998; Martin et al., 1999; Kozou et al., 2005; Martin &
Stapells, 2005; Billings et al., 2010).

The different noise conditions had similar effects on behavioral and neural responses. We
found a high correlation between the average number of spikes evoked by sounds in each
discrimination task and the behavioral discrimination on that task (R2 = 0.63, P = 10−18, Fig.
7A). These results are consistent with electroencephalography and imaging (blood oxygen
level-dependent) studies in humans, which show degradation of behavioral and of neural
responses that are proportional to the noise intensity (Whiting et al., 1998; Muller-Gass et
al., 2001; Binder et al., 2004).

Our observation that the average number of spikes evoked by speech sounds in noise was
correlated with behavioral discrimination should not be taken as evidence that spike count is
sufficient to discriminate between speech sounds. To discriminate between stimuli, there
must be a difference in neural activity. When we quantified the difference in the number of
spikes evoked by pairs of sounds in each speech contrast, we found that the difference was
poorly correlated with behavioral discrimination (R2 = 0.05, P = 0.05; Fig. 7B). This
observation is consistent with our earlier report that speech discrimination in quiet is not
correlated with the difference in the total number of spikes, that is, firing rate, evoked by
each sound at each multiunit recording site (Engineer et al., 2008). In our previous study,
speech discrimination in quiet was only correlated with A1 activity when spike timing was
used. In this study, we also found that distinctiveness of neural activity patterns was well
correlated with behavioral speech discrimination when neural responses were analyzed by
spike timing. Neural activity was best correlated with behavioral discrimination when 100
ms of neural activity was binned with 10-ms spike timing precision (R2 = 0.61, P = 10−17;
Fig. 7C). Neural activity was also significantly well correlated when neural responses were
analyzed over 70–180 ms with 1–30-ms spike timing precision (R2 > 0.55; P < 10−12). The
correlation between behavioral and neural responses was high (R2 > 0.55) when either city-
block distance or Euclidean distance was used to quantify distinctiveness of neural
responses. These results suggest that the brain can use differences in spike timing to
discriminate between speech sounds in noise.

Although this result extents those of our earlier report to noisy conditions, this method
requires the stimulus onset time to be known. In the following section, we will explain the
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disadvantage of specifying the stimulus onset time, and describe a neural analysis method
that does not require the stimulus onset to be specified.

Quantifying neural discrimination without reference to sound onset
Previous studies of neural coding using spike timing strategies generally assumed that the
decoding mechanism knew the precise stimulus start time (Gawne et al., 1996; Furukawa et
al., 2000; Ahissar et al., 2001; Panzeri et al., 2001; Foffani et al., 2004, 2008; Schnupp et
al., 2006; Wang et al., 2007; Engineer et al., 2008). The stimulus start time is often
calculated from the average response of a large group of neurons (Chase & Young, 2007;
Engineer et al., 2008). Although it is reasonable to expect that stimulus onset time
information is available in quiet situations, loud background noise significantly degrades
neural responses, making it difficult to determine the stimulus onset time, even based on the
average activity of many neurons. Therefore in this study, we developed a new form of
neural classifier that is able to determine which speech sound was presented by analyzing
neural activity without precise knowledge of stimulus onset time. We compared classifier
discrimination with behavioral speech discrimination to determine the neural analysis
methods that are correlated with behavior.

In brief, the neural classifier examines activity from a single trial collected from a set of A1
neurons and attempts to identify which of two possible sounds was presented by looking for
the spatiotemporal activity patterns generated by each sound (Fig. 7; see Materials and
methods). Neural discrimination is determined by calculating the percentage of trials in
which the classifier correctly guessed the speech sounds.

We first tested whether the new classifier could mimic the behavioral discrimination in the
11 consonant tasks reported in our earlier study (Engineer et al., 2008). Using single trial
data from groups of 60 A1 sites, the classifier was able to discriminate `dad' from `bad' in
quiet for 99 ± 1% of the time, which is comparable to behavioral discrimination. Classifier
discrimination on the 11 tasks was highly correlated with behavioral discrimination in quiet
when the average spatiotemporal patterns were composed of 100 ms of neural activity
binned with 10-ms precision (R2 = 0.75, P = 0.0005). This correlation was similar to the
correlation observed with the classifier from our previous study, which was given the exact
start time of each stimulus (R2 = 0.66, P = 0.005) (Engineer et al., 2008).

The new classifier required neural activity from at least 25 recording sites to achieve a
performance that was comparable to that of the old classifier using one site. The
performance of the new classifier was almost at chance level when only one A1 site was
provided (51 ± 0%). This poor performance when neural data from only one recording site
are given is attributable to the fact that the classifier could not distinguish spontaneous
activity from driven activity without knowledge of the stimulus onset time. When the
spatiotemporal activity patterns included many sites, the new classifier was able to reliably
discriminate between speech sounds by using data from a single trial. Using a large number
of sites provided the classifier with additional information about the spatial pattern of
activity which was not available when only one recording site was used. When neural data
from a large number of sites were analyzed together, classifier performance improved,
because the spatiotemporal pattern of driven activity across sites was distinct from
spontaneous activity patterns. The sound `dad', for example, caused high-frequency neurons
to fire 5–10 ms before low-frequency neurons, whereas the sound `bad' caused the neurons
to fire in the opposite order (Fig. 8A and B). When activity from many sites was analyzed,
this pattern could be easily distinguished from spontaneous activity occurring during the
750-ms analysis window (Fig. 8C). This analysis [tested with current and previously
published behavioral and neural data in Engineer et al. (2008)] suggests that it is not
necessary to know the precise stimulus onset time to decode A1 patterns.
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In the current study, we tested five additional consonant discrimination tasks that were not
included in our earlier study (Engineer et al., 2008), resulting in a total of 16 consonant
discrimination tasks tested in quiet. Behavioral and neural discrimination from each dataset
were averaged together for the six tasks that were examined in both studies. We observed a
high correlation between behavioral and classifier discrimination (R2 = 0.72, P = 10−5; Fig.
9A) when the classifier analyzed neural activity using 100 ms of activity binned with 10-ms
precision. The correlation between neural and behavioral discrimination was also high when
the average patterns had a duration of 70–150 ms and were binned with 5–20-ms precision
(R2 > 0.55, P < 0.0001). For future reference, we will refer to the classifier that analyzes
activity from 60 sites using 100-ms durations binned with 10-ms precision as
classifier100/10 ms. In our previous study in quiet, spike timing information was well
correlated with behavioral discrimination, and average spike count was not correlated with
behavioral consonant discrimination. Neural responses analyzed with our new classifier also
were very poorly correlated with behavioral consonant discrimination on the 16 tasks when
an average spike count over a 100-ms duration was used (R2 = 0.11, P = 0.3). These results
support the hypothesis from our earlier study that spike timing information is required to
discriminate between consonant sounds in quiet conditions.

After confirming that the new classifier was correlated with behavioral discrimination in
quiet, we tested whether the classifier discrimination was correlated with speech
discrimination in noise (n = 11 tasks). Classifier100/10 ms was unable to discriminate between
speech sounds presented in even moderate noise. For example, classifier100/10 ms
discrimination of `dad' vs. `bad' in 48 dB SPL white noise was at chance levels (Fig. 9B).
Behavioral discrimination in this condition was 91 ± 1%. This discrepancy between neural
and behavioral discrimination was seen across all noise conditions and discrimination tasks,
leading to a poor correlation between behavior and classifier100/10 ms discrimination in noise
(R2 = 0.2; Fig. 9B). None of the spike timing analysis ranges that could predict behavioral
discrimination in quiet could predict behavioral discrimination in noise. This result led us to
hypothesize that neural responses in noise are analyzed differently from those in quiet.

We tested classifier discrimination in noise by using multiple combinations of durations and
temporal precisions, that is, bin sizes. The range of tested durations was from 10 to 700 ms,
and the range of tested bin sizes was from 1 to 700 ms. As neural responses were delayed in
noisy situations, we suspected that a classifier that used longer durations of activity would
result in a better correlation with behavior. Classifier discrimination was best correlated with
behavioral discrimination on all tasks in the different noise conditions when the average
spatiotemporal patterns from 60 A1 sites were analyzed with a duration of 400 ms and
binned with a temporal precision of 60 ms (R2 = 0.68, P = 10−17; Fig. 10B). For example,
classifier discrimination on `dad' vs. `bad' in 48 dB SPL white noise was 96 ± 1%. For future
reference, we refer to the classifier that analyzes activity from 60 sites using 400-ms
durations binned with 60-ms precision as classifier400/60 ms. In 48–60 dB SPL noise,
classifier400/60 ms discrimination was significantly better on all 11 tasks than
classifier100/10 ms discrimination (Figs 9B and 10B; F1,10 = 12.95, P = 0.001, two-way
repeated-measures ANOVA). Classifier400/60 ms discrimination remained close to chance for
most tasks in 72 dB SPL noise (P = 0.005 for 16 of 22 tasks), which is similar to the
behavioral discrimination. Classifier400/60 ms discrimination was well correlated with
behavioral discrimination in noise when neural responses were analyzed with 25 or more
sites together (R2 > 0.55). Classifier discrimination was well correlated with behavioral
discrimination in noise, provided that neural activity was analyzed over 300–600-ms
durations and binned with 50–100-ms temporal precision (R2 > 0.55, P < 10−10). None of
the analysis ranges that were well correlated with behavioral discrimination in noise were
well correlated with behavioral discrimination in quiet. For example, classifier400/60 ms was
poorly correlated with behavioral discrimination in quiet, because of a ceiling effect
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observed for many tasks (R2 = 0.11, P = 0.2; Fig. 10A). Our observations that (i) neural
responses analyzed over small integration windows can predict behavioral discrimination in
quiet but not in noise and (ii) responses analyzed with longer integration windows can
predict behavioral discrimination in noise but not in quiet support our hypothesis that neural
responses are analyzed differently in quiet and noisy situations. These results show that
neural responses need to be integrated over longer time scales to accurately predict
behavioral discrimination in noisy conditions.

A hybrid classifier that uses the 100/10-ms parameters in quiet and the 400/60-ms
parameters in noise was highly correlated with behavioral discrimination under all
conditions tested (R2 = 0.66, P = 10−19; Fig. 11). Hybrid classifier performance was well
correlated with behavioral discrimination when neural responses of more than 25 sites were
grouped together (R2 > 0.55, P < 10−11; Fig. 12A). Classifier accuracy was closest to
behavioral discrimination (Fig. 2A) when it was provided with neural activity recorded from
60 sites (Fig. 12B). Classifier discrimination was well correlated with behavioral
discrimination when the average patterns in quiet were analyzed with 70–150-ms durations
and binned with 5–20-ms precision, and when the average patterns in noise were analyzed
with 300–600-ms durations and binned with 50–100-ms precision (R2 > 0.55, P < 10−11).
These results show that neural responses can explain behavioral discrimination provided that
they are analyzed over longer integration periods and with less temporal precision in noise.

We also recorded neural activity from six of the 12 rats trained to discriminate speech
sounds in noise (n = 4 rats with target sound as `dad', and n = 2 rats with target sound as
`shad'). Neural discrimination found with activity from trained rats was well correlated with
behavioral discrimination (R2 > 0.60, P = 10−18), and was not significantly different from
that in naïve rats (F6,10 = 2.36, P > 0.05, two-way repeated-measures ANOVA). Although the
correlation between neural and behavioral discrimination was slightly higher when data
from naïve rats were used (R2 > 0.66, P < 10−19), the difference between the correlations
was not statistically significant (P = 0.42, chi-square statistic with confidence intervals of
0.72–0.84). These results suggest that 2 months of training on a difficult speech in noise
discrimination task did not significantly alter A1 responses to speech sounds. This lack of
plasticity could possibly be explained by recent theories proposing that cortical plasticity
might be necessary only in the first few days, when learning occurs, and is not necessary for
sustained performance, as seen in our animals after 2 months of training (Reed et al., 2011).

Although the prediction of the hybrid classifier could be off by as much as 30% for a
specific task in a specific noise condition (i.e. `shad' vs. `chad' in 48 dB SPL speech-shaped
noise), the hybrid classifier was highly accurate in predicting the average discrimination of
rats across 11 tasks in different noise conditions (R2 = 0.89, P = 0.002; Fig. 13A). If relative
spike timing information was not used (i.e. spike count only), the hybrid classifier was not
able to match this level of correlation, regardless of the number of sites or duration of
activity examined (R2 < 0.35). For example, classifier discrimination on most tasks was
poorly correlated with behavioral discrimination even when noise-dependent integration
windows (i.e. 100 ms in quiet and 400 ms in noise) for spike count were used (R2 = 0.03).
Classifier discrimination in both quiet and noise was poorly correlated with behavioral
discrimination when spike count over the entire duration of the sound was used (R2 = 0.1).
Collectively, our results suggest that spike timing information is required to explain
behavioral speech discrimination and that the precision of the spike timing information
depends on whether significant background noise is present.
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Discussion
The human auditory system is highly effective at extracting speech information from
background noise. Speech discrimination is well above chance even when background noise
is 10 dB louder than the speech signal (Miller & Nicely, 1955; Wang & Bilger, 1973; Phatak
et al., 2008). Our study provides the first evidence that rats can accurately discriminate
between speech signals when the background noise is 10 dB louder than the speech signal.
The similarity of speech in noise performance supports the hypothesis that the neural
mechanisms that support speech sound processing could be similar in humans and other
mammals (Kuhl & Miller, 1975; Tallal et al., 1993; Fitch et al., 1997; Cunningham et al.,
2002; Reed et al., 2003; Mesgarani et al., 2008). In both humans and rats, certain speech
contrasts are more sensitive to noise than others. These differences in noise sensitivity
appear to result from an inability to distinguish between the spatiotemporal patterns evoked
by similar speech sounds, and not simply from an inability to detect the sounds. We have
developed a novel neural classifier that mimics behavioral discrimination. Unlike previous
classifiers, this new classifier does not assume that the stimulus onset time is known. The
classifier was only able to mimic behavioral discrimination when neural responses to speech
in noise were integrated over longer time windows than were needed to mimic
discrimination of speech sounds in quiet. Our results indicate that the rat may prove to be a
useful model of human speech sound processing, and could be used to develop models of
speech sound processing disorders.

Comparison with human psychophysical literature
In addition to showing that rats and humans have similar thresholds for speech in noise, our
study reveals a number of other similarities between these species. Human psychophysical
studies have observed that certain speech sounds are more easily masked by noise than
others, and that some types of noise mask certain sounds more than others. These results
from previous human studies provided us with another opportunity to evaluate the similarity
in behavioral speech discrimination in rats and humans. Our behavioral results in rats
confirm several key findings from human psychophysical studies. In both rats and humans,
most speech sounds are more impaired in speech-shaped noise than in white noise (Busch &
Eldredge, 1967; Dubno & Levitt, 1981), but high-frequency sounds, such as fricatives, are
more impaired in white noise than in speech-shaped noise (Miller & Nicely, 1955; Wang &
Bilger, 1973). Voicing contrasts are much more robust than other speech contrasts in white
noise in both rats and humans (Miller & Nicely, 1955; Wang & Bilger, 1973; Dubno &
Levitt, 1981). These additional similarities between rat and human speech performance in
noise corroborate the hypothesis that at least the primary stages of speech sound processing
employ the basic auditory processing mechanisms common to all mammals (Kuhl & Miller,
1975; Merzenich et al., 1993; Tallal et al., 1993; Cunningham et al., 2002; Reed et al.,
2003; Mesgarani et al., 2008). Further studies are needed to test the conditions under which
the basic speech processing would be similar between animals and humans. For example, it
would be interesting to know whether rats, like humans, can use glimpsing strategies to
improve speech discrimination in comodulated noise (Buus, 1985; Moore, 1985; Hall &
Grose, 1991).

Predictors of speech intelligibility, such as the Articulation Index, the Speech Intelligibility
Index, and the Speech Transmission Index, have been shown to predict human speech
intelligibility in noise (Dorman et al., 1997; Steeneken & Houtgast, 2002; Cox & Vinagre,
2004; Chen & Loizou, 2010). These systems are good at predicting the average intelligibility
of the speech signal in noise, but cannot predict the intelligibility of individual speech
contrasts or explain why some speech contrasts are more confusable than others in noise.
Moreover, these systems require adjustments such as frequency weighting functions, which
differ according to the speech signal and the acoustic conditions (Steeneken & Houtgast,
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1980, 2002; Studebaker et al., 1987; Chen & Loizou, 2010). Our study could lead to a
generic neural-inspired model of speech sound discrimination in noise. The neural
mechanisms found in our study may provide insights that are useful for designing systems to
discriminate between speech sounds in noisy conditions.

Comparison with human neurophysiological studies
Our neurophysiological results reveal a number of important similarities between neural
responses to speech in noise recorded in rats and humans. The addition of background noise
increases the latency and decreases the amplitude of consonant responses in both rats and
humans (Whiting et al., 1998; Martin et al., 1999; Martin & Stapells, 2005). Our recordings
mimic human imaging results, which show that the neural representation of vowel sounds is
more robust to noise than that of consonant sounds (Russo et al., 2004; Song et al., 2010).
This robustness is probably attributable to the fact that vowel sounds are generally louder
than consonants (Brinton, 2000). Previous psychophysical studies have explained the effect
of noise in terms of articulatory features (e.g. voicing and place of articulation), but have
provided no biological hypothesis for these differences (Miller & Nicely, 1955; Busch &
Eldredge, 1967; Dubno & Levitt, 1981; Phatak et al., 2008). Our results provide the first
evidence that discrimination of different speech contrasts in noise can be explained by
reduced differences in the evoked spatiotemporal neural activity patterns.

Additional studies are needed to confirm that our recordings from anesthetized rats are
comparable to recordings from awake rats who are actively attending the speech sounds.
Earlier neural recordings in awake and anesthetized monkeys, cats, ferrets and rats suggest
that the basic pattern of speech-evoked responses is only modestly altered by anesthesia
(Steinschneider et al., 1999, 2005; Wong & Schreiner, 2003; Engineer et al., 2008;
Mesgarani et al., 2008). Speech-evoked responses in awake humans were also similar to
responses recorded in awake rats and monkeys (Steinschneider et al., 1999, 2005; Engineer
et al., 2008). The similarity of behavioral and neural responses between rats and humans
suggests that the rat is a reasonable animal model of speech sound processing and that the
rat model could be useful in understanding the greater noise sensitivity of certain clinical
populations, including individuals with hearing loss and learning impairments (Cunningham
et al., 2002; Ziegler et al., 2005, 2009; Threlkeld et al., 2007; Anderson et al., 2010;
Engineer et al., 2011).

Clinical relevance
People with hearing and learning impairments have difficulty in understanding speech in
noisy conditions (Hawkins & Stevens, 1950; Snowling et al., 1986; Hygge et al., 1992;
Stuart & Phillips, 1996; Cunningham et al., 2001; Appeltants et al., 2005; Sperling et al.,
2005; Harris et al., 2009). For example, learning-impaired children are three times worse
than normal children in understanding conversational speech in noise (Cunningham et al.,
2001). An understanding of how auditory neurons represent speech sounds may help in
determining the nature of neural encoding deficits in these populations. Although animals do
not interpret speech sounds linguistically, our study indicates that the basic underlying
processing of speech sounds may be similar in humans and animals, even under highly noisy
conditions. Our study shows that temporal analysis of neural activity is required to
accurately discriminate between speech sounds in noise. Previous studies have shown that
improvements in temporal processing increase speech processing capabilities in learning-
impaired children (Merzenich et al., 1996; Tallal et al., 1996; Russo et al., 2010). Further
studies in rat models of dyslexia could provide insights into abnormal encoding of speech
sounds in these populations (Threlkeld et al., 2007) and have implications for clinical
management of speech processing disorders.
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Comparison with neural decoding literature
An extensive literature on neural decoding has shown that spatiotemporal patterns in the
cortex provide significant information about the sensory world (Abeles et al., 1993; Villa et
al., 1999; Butts et al., 2007; Kayser et al., 2009; Huetz et al., 2010). Although the amount of
information is almost invariably greater when spike timing is included in the analysis, there
is relatively little behavioral evidence that spike timing information can predict behavior
(Reinagel & Reid, 2000; Panzeri et al., 2001; Foffani et al., 2004; Butts et al., 2007; Huetz
et al., 2010; Panzeri & Diamond, 2010). A recent study showed that there is a high
correlation between behavioral consonant discrimination in quiet and the distinctiveness of
cortical activity patterns, but only when spike timing information is included (Engineer et
al., 2008). This result differed from those of earlier studies in primates showing that cortical
decoding based on spike count was best correlated with behavior (Romo & Salinas, 2003;
Liu & Newsome, 2005; Lemus et al., 2009). The most likely explanation for the apparent
contradiction is that the primate studies used continuous or periodic stimuli that lack the
kind of temporal transitions that are present in consonant stimuli. In this study, we tested
consonant sounds embedded in background noise to determine the effect of degrading
stimulus onset timing on behavioral and neural discrimination. Because background noise
makes it harder to determine when the sounds occur, we developed a method of decoding
neural responses without providing the classifier with the stimulus onset time. Our results
provide the first behavioral evidence that a code based on relative spike timing can account
for behavior over a wide range of conditions without the need for precise knowledge of
stimulus start time. The observation that neural decoding is well correlated with behavior
supports the long-held hypothesis that sensory scenes are encoded in highly distributed
spatiotemporal activity patterns (Abeles et al., 1993; Villa et al., 1999; Butts et al., 2007;
Kayser et al., 2009; Huetz et al., 2010).

The precision of spike timing needed to accurately explain consonant discrimination
behavior seems to depend on whether the sounds are presented in quiet or noise. Neural
activity analyzed with longer temporal integration than for quiet is necessary to account for
consonant discrimination in noise. We know of no study that has directly related neural
discrimination in cortex based on different levels of temporal integration with behavioral
discrimination in high-noise and low-noise situations. Our combined neural classifier model
uses spike timing activity integrated over a longer window in noise, and results in neural
discrimination that is comparable to observed behavioral discrimination.

Limitations
An important limitation of our study was that the classifier was provided with neural
responses over a fixed time period. We tested classifier discrimination with neural activity
from 100 ms before and 150 ms after stimulus presentation (total duration of 750 ms). This
time period given to the classifier can be viewed as an expectation period during which the
stimulus can appear. In real-life situations, the brain has to process information without any
expectation period; that is, there is an infinite stimulus time uncertainty. A previous study
showed that an increase in this window of expectation decreased classifier discrimination if
a spike count strategy was used, but not when a spike timing strategy was used (Panzeri &
Diamond, 2010). These results suggest that neural responses analyzed with spike timing
measures could be robust to larger stimulus time uncertainties than tested in our study.
Neural network models that work in real time are needed to shed further light on how the
brain handles these challenges.

Another limitation of our classifier model is that it does not explain how computations in the
classifier are performed by neurons. An important part of the classifier is comparison
between the average post-stimulus time histogram (PSTH) template of sounds and single
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trial activity of neurons. Our classifier does not explain the neural mechanisms underlying
these computations; that is, it is not mechanistically realistic, and serves as an estimate of
neural distinctiveness. Another limitation is that although the brain can clearly detect
background noise (Salvi et al., 2002; Binder et al., 2004; Wong et al., 2008, 2009), our
classifier does not specify these mechanisms or how they alter neural decoding.
Furthermore, our classifier divides neural activity into multiple intervals and bins to test
which analysis strategies are correlated with behavior. The neural mechanisms capable of
such temporal processing abilities are not clear. The biophysical properties underlying such
computations are investigated by studies that focus on developing realistic neural network
models showing how spike timing strategies are learnt and used by these networks to
discriminate between complex stimuli (Buonomano & Merzenich, 1995; Buonomano &
Maass, 2009; Gutig & Sompolinsky, 2006;). Further work in these areas will help us better
understand how the brain accomplishes such computations.
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Fig. 1.
Schematic diagram of the go / no-go speech discrimination task. The target sound was a
word spoken by a female talker and shifted up by one octave with the STRAIGHT vocoder
to better match the rat hearing range (Engineer et al., 2008). The non-targets differed in the
initial consonant sound. Continuous background noise was added to make the task more
difficult.
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Fig. 2.
Behavioral discrimination of consonant sounds in different intensities of white noise and
speech-shaped noise. (A) Average speech discrimination on all tasks. Rats could
discriminate between consonant sounds well above chance level, even when speech and
noise were of equal intensity, that is, 60 dB SPL (P = 0.005, Tukey post hoc). (B)
Discrimination of 11 consonant discrimination tasks in quiet and different intensities of
white noise. (C) Discrimination of 11 consonant discrimination tasks in quiet and different
intensities of speech-shaped noise. Chance level performance is shown as light gray lines.
Speech-shaped noise of 72 dB SPL was more impairing than white noise of 72 dB SPL
(F1,66 = 10.20, Mean Square Error (MSE) = 244.02, P = 0.001).
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Fig. 3.
Degradation of neural responses in different intensities of white noise and speech-shaped
noise. (A) Average number of spikes evoked within 100 ms of consonant sound onset. None
of the sounds had significantly driven activity in 72 dB SPL speech-shaped noise (P > 0.05,
n = 133 A1 sites). (B) Average start latency of the population response evoked by all
consonant sounds. As there were no significantly driven spikes in 72 dB SPL speech-shaped
noise, there was no latency in this condition. Black and magenta asterisks indicate neural
responses in white noise and speech-shaped noise, respectively; these were significantly
degraded as compared with quiet (P = 0.0001, Tukey post hoc). Blue asterisks indicate that
neural responses in white noise were significantly less degraded than responses in speech-
shaped noise at that intensity (P = 0.0001, Tukey post hoc). Error bars indicate standard
errors of the mean across the 11 sounds tested. For interpretation of color references in
figure legend, please refer to the Web version of this article.
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Fig. 4.
Average PSTH responses evoked by each speech sound in three different intensities of white
noise and speech-shaped noise. Sounds are grouped according to manner of articulation.
Cyan and light gray lines show the amplitude envelopes of speech and noise signals. Speech
signals were calibrated so that loudest 100 ms was at 60 dB SPL and noises were at 48, 60
and 72 dB SPL. In quiet, most sounds, except for voiced stop consonants, evoked a two-
peaked response; the first peak was evoked by the consonant part of the sound, and the
second peak was evoked by the vowel part of the sound. Stop consonants evoked the
strongest onset response in quiet. For reference, sound `t' evoked the strongest neural onset
response at 377 Hz. Voiced stop consonants (A–C) were the most robust in all noise
conditions (P = 0.0001, Tukey post hoc). Fricatives and affricatives evoked the weakest
response in quiet and noise (F and H). For most sounds, neural responses in white noise
were significantly more robust than those in speech-shaped noise of equal intensity (P =
0.0001, Tukey post hoc). For interpretation of color references in figure legend, please refer
to the Web version of this article.
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Fig. 5.
Average PSTH responses evoked by different speech sounds in the 45 low-frequency A1
sites. Neural responses in low-frequency neurons (characteristic frequency of neurons, < 4
kHz) were more robust in white noise than in speech-shaped noise (P = 0.0001, Tukey post
hoc). High-frequency sounds (e.g. `t', `s', `sh', and `ch') evoked weak responses in low-
frequency neurons even in quiet, and these were completely eliminated in 48 dB SPL noise
(E, F, G, and H).
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Fig. 6.
Neurograms depicting onset response to speech sounds `dad', `bad', `shad' and `sad' in quiet
and six different types of continuous background noise. These neurograms represent the
spatiotemporal activity patterns of 133 multiunit A1 recording sites arranged according to
the characteristic frequency (CF) of each site. Each horizontal line represents the average
PSTH from one recording site in response to 20 stimulus repeats. Time is represented on the
x-axis (0–100 ms). The firing rate of each site is represented in color, whereby dark blue
indicates the lowest firing rate, that is, spontaneous activity, and dark red represents the
highest firing rate. For comparison, the mean population PSTH evoked by each sound is
plotted above the corresponding neurogram. SSN, speech-shaped noise; WN, white noise.
For interpretation of color references in figure legend, please refer to the Web version of this
article.
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Fig. 7.
Correlation between neural and behavioral responses in all tasks. (A) The average number of
spikes evoked by two sounds in the discrimination task is well correlated with behavioral
discrimination. (B) The difference in the average number of spikes evoked by two sounds in
the discrimination task is poorly correlated with behavioral discrimination. In a and b, the
numbers of spikes were averaged together over the first 100 ms. (C) Normalized city-block
distances between the average spatiotemporal patterns evoked by each sound involved in the
discrimination tasks were well correlated with behavioral discrimination when the neural
responses were analyzed over 100 ms and binned with 10-ms spike timing precision.
Circles, triangles and squares represent performance in quiet, speech-shaped noise, and
white noise, respectively. The sizes of the symbols indicate noise level, smaller symbols
indicating greater amount of noise (i.e. lower signal-to-noise ratio).
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Fig. 8.
Consonant discrimination using relative spike timing. This figure illustrates how the
classifier evaluates which of two speech sounds (`dad' or `bad' in this case) was presented
from a single trial of neural activity recorded at 60 A1 sites. (A and B) In this example, the
average spatiotemporal patterns of sounds `dad' and `bad' were analyzed over 100 ms and
binned with 10-ms spike timing precision. This classifier is referred to as classifier100 / 10 ms.
Neural activity from different A1 sites is arranged according to the characteristic frequency
of each site. (C) Single trial spatiotemporal activity from the same 60 sites is shown from
100 ms before the stimulus onset to 150 ms after the stimulus end. The similarity of the
single trial to each of the average spatiotemporal activity patterns is shown as red and black
lines at the top of the figure, each point indicating the different possible stimulus start times.
The point of greatest similarity occurred immediately after the word `dad' was presented
(asterisk). The classifier correctly identified that `dad' had been presented, because the
similarity of the single trial was highest to the average pattern generated by `dad'. Neural
discrimination was determined by calculating the percentage of trials in which the classifier
correctly guessed the presented sound (see Materials and methods). The set of A1 sites
shown in this example was able to correctly identify whether `dad' or `bad' was presented on
39 of 40 presentations in quiet (97.5% correct). For interpretation of color references in
figure legend, please refer to the Web version of this article.
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Fig. 9.
Correlation between classifier100 / 10 ms and behavioral discrimination in quiet and noise. (A)
Classifier discrimination was significantly correlated with behavioral discrimination in
quiet, when average spatiotemporal patterns were analyzed with 100-ms duration and binned
with 10-ms precision. (B) In noise, classifier discrimination analyzed with the same
parameters was poorly correlated with behavioral discrimination. Symbols with black
borders are the tasks used in this study. Symbols with gray borders are extra tasks used from
our previous study (Engineer et al., 2008) (see Materials and methods). Circles, triangles
and squares represent discrimination in quiet, speech-shaped noise, and white noise,
respectively. The sizes of the symbols indicate noise level, smaller symbols indicating
greater amount of noise (i.e. lower signal-to-noise ratio).
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Fig. 10.
Correlation between classifier400 / 60 ms discrimination and behavioral discrimination in
quiet and noise. (A) In quiet, classifier discrimination analyzed with 400-ms duration and
binned with 60-ms precision was poorly correlated with behavioral discrimination. (B) In
noise, classifier discrimination was significantly correlated with behavioral discrimination,
when the average spatiotemporal patterns were analyzed with 400-ms duration and binned
with 60-ms precision. Symbols with black borders are the tasks used in this study. Symbols
with gray borders are extra tasks used from our previous study (Engineer et al., 2008) (see
Materials and methods). Circles, triangles and squares represent discrimination in quiet,
speech-shaped noise, and white noise, respectively. The sizes of the symbols indicate noise
level, smaller symbols indicating greater amount of noise (i.e. lower signal-to-noise ratio).
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Fig. 11.
Single trial responses analyzed with longer integration time scales than in quiet were well
correlated with behavioral discrimination in all conditions. Hybrid classifier performance
when the average spatiotemporal patterns in quiet were analyzed with 100-ms duration and
binned with 10-ms precision and the average spatiotemporal patterns in noise were analyzed
with 400-ms duration and binned with 60-ms precision was correlated with behavioral
discrimination in quiet all conditions. Circles, triangles and squares represent discrimination
in quiet, speech-shaped noise, and white noise, respectively. The sizes of the symbols
indicate noise level, smaller symbols indicating greater amount of noise (i.e. lower signal-to-
noise ratio).
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Fig. 12.
Average neural discrimination and correlation between the hybrid classifier and behavioral
discrimination as a function of site. (A) The correlation (R2) between neural and behavioral
discrimination improved significantly (F1,10 = 12.95, Mean Square Error (MSE) = 0.11, P =
0.001) as a function of site. Neural discrimination in quiet and noise was significantly
correlated with behavior when neural responses from more than 25 sites were analyzed
together (R2 > 0.55; P < 10−11). Neural discrimination from 60 multiunit clusters was best
correlated with behavior (R2 = 0.68, P = 10−17). (B) Average neural discrimination in all
tasks in quiet, 48 dB SPL noise and 60 dB SPL noise increased as a function of site, and was
comparable to behavioral discrimination. Increasing the number of sites did not affect neural
discrimination in 72 dB SPL noise, which is also comparable with what was found for
behavioral discrimination at this noise level.
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Fig. 13.
Hybrid classifier percentage correct can explain the variance in behavioral discrimination
caused by either noise conditions or discrimination tasks alone. The hybrid classifier can
explain 89% of the variance (P = 0.002) caused by the seven noise conditions when the
classifier discrimination is averaged across all 11 tasks. The sizes of the symbols indicate
noise level, smaller symbols indicating greater amount of noise (i.e. lower signal-to-noise
ratio).
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