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† Background and Aims For 84 years, botanists have relied on calculating the highest common factor for series of
haploid chromosome numbers to arrive at a so-called basic number, x. This was done without consistent (repro-
ducible) reference to species relationships and frequencies of different numbers in a clade. Likelihood models that
treat polyploidy, chromosome fusion and fission as events with particular probabilities now allow reconstruction
of ancestral chromosome numbers in an explicit framework. We have used a modelling approach to reconstruct
chromosome number change in the large monocot family Araceae and to test earlier hypotheses about basic
numbers in the family.
† Methods Using a maximum likelihood approach and chromosome counts for 26 % of the 3300 species of
Araceae and representative numbers for each of the other 13 families of Alismatales, polyploidization events
and single chromosome changes were inferred on a genus-level phylogenetic tree for 113 of the 117 genera
of Araceae.
† Key Results The previously inferred basic numbers x ¼ 14 and x ¼ 7 are rejected. Instead, maximum likelihood
optimization revealed an ancestral haploid chromosome number of n ¼ 16, Bayesian inference of n ¼ 18.
Chromosome fusion (loss) is the predominant inferred event, whereas polyploidization events occurred less fre-
quently and mainly towards the tips of the tree.
† Conclusions The bias towards low basic numbers (x) introduced by the algebraic approach to inferring chromo-
some number changes, prevalent among botanists, may have contributed to an unrealistic picture of ancestral
chromosome numbers in many plant clades. The availability of robust quantitative methods for reconstructing
ancestral chromosome numbers on molecular phylogenetic trees (with or without branch length information),
with confidence statistics, makes the calculation of x an obsolete approach, at least when applied to large clades.

Key words: Araceae, Bayesian inference, chromosome evolution, haploid chromosome number, dysploidy,
maximum likelihood inference, polyploidy.

INTRODUCTION

Chromosome numbers in angiosperms vary from n ¼ 2
(Tsvelev and Zhukova, 1974; Singh and Harvey, 1975;
Sokolovskaya and Probatova, 1977; Erben, 1996) over n ¼
250 (Oginuma et al., 2006) and n ¼ 298 (Johnson et al.,
1989) to n ¼ 320 (Uhl, 1978). The range in animals is
similar (Crosland and Crozier, 1986; Imai et al., 2002). Such
drastic differences in chromosome number, sometimes even
within small groups, raise questions about the evolutionary dir-
ection and frequency of the implied drastic genome rearrange-
ments. Cytogenetic studies have shown that chromosome
numbers can change due to fission, fusion or genome doubling
(Guerra, 2008), and there is ample evidence that such changes
can contribute to speciation. It has also been inferred that a
large fraction of all plant species may have polyploid
genomes (Stebbins, 1971; Goldblatt, 1980; Otto and
Whitton, 2000; Ramsey and Schemske, 2002; Cui et al.,
2006; Soltis et al., 2009; Wood et al., 2009; Jiao et al.,
2011). Chromosome counts, however, exist only for 60 000
of the 300 000–352 000 species of flowering plants
(Bennett, 1998; http://www.theplantlist.org/browse/A/). Most
published numbers are listed in an electronic database for

chromosome numbers, the ‘Index of Plant Chromosome
numbers’ (http://mobot.mobot.org/W3T/Search/ipcn.html).

Given the incomplete knowledge of angiosperm chromo-
some numbers, evolutionary changes in chromosome
numbers in most clades can only be estimated. Botanists do
this by calculating a so-called basic, or monoploid, chromo-
some number, denoted x, to differentiate it from the haploid
(usually the gametophytic) number n and the diploid (sporo-
phytic or somatic) number 2n. The concept of x goes back
to Langlet (1927) who explained it using Aconitum as an
example; if different Aconitum species have n ¼ 8, n ¼ 12,
n ¼ 16 and n ¼ approx. 32, their inferred monoploid
number x is 4 (Langlet, 1927: 7). Langlet’s idea took off, at
least in botany, where thousands of basic chromosome
numbers have been inferred, even for poorly counted groups.
Thus, for flowering plants, Raven (1975, p. 760) suggested x
¼ 7 as ‘characteristic of all major groups of both dicots and
monocots except Caryophyllidae.’ Similarly, base chromo-
some numbers of x ¼ 12 or x ¼ 5 and 6 have been suggested
for Poaceae (reviewed in Hilu, 2004) and x ¼ 7 or x ¼ 12 for
Triticeae (Heslop-Harrison, 1992; Luo et al., 2009). Many
further examples of divergent base numbers having been cal-
culated for a clade could be cited (Soltis et al., 2005; Blöch
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et al., 2009). Part of the reason why different researchers
arrived at different base numbers (x) has to do with the
unclear definition of x, with some treating it in Langlet’s ori-
ginal sense as an algebraically discoverable highest common
factor, others as ‘the lowest detectable haploid number
within a group of related taxa’ (Stuessy, 2009: 264; italics
ours), and yet others as ‘the haploid number present in the
initial population of a monophyletic clade’ (Guerra, 2008:
340), i.e. an inferred number, since the ‘initial population’
will not usually have its chromosomes counted. How to
make the inference is up to the investigator. Zoologists, in con-
trast, never became enamoured of the concept of an inferred
base number x.

Criteria for inferring ancestral (perhaps no longer present)
chromosome numbers from empirical counts could come
from phylogenetic analyses, the relative frequencies of differ-
ent haploid numbers in various species groups, cytogenetic
work on closely related species or, best, a combination of all
such information. Data from genomics and molecular–
cytogenetic methods, such as fluorescence in situ hybridization
(FISH)-marking chromosomes, are probably the best way to
search for evidence of past chromosome number changes
because they can identify synteny, fusion sites or unusual loca-
tions of centromeres, in turn providing evidence for duplica-
tions, fusions or losses (Bowers et al., 2003; Lysak et al.,
2006; Peruzzi et al., 2009). Such methods, however, may not
be feasible in large clades or those with few species in
cultivation.

In 2010, an approach was developed that moves the infer-
ence of chromosome number evolution to maximum likeli-
hood (ML) character state reconstruction (Mayrose et al.,
2010). Mayrose et al. (2010) formulated probabilistic models
describing the evolution of chromosome number across a
phylogenetic tree. Their approach makes use of branch
lengths as a proxy for time and of the frequencies of different
numbers at the tips and in outgroups to infer transition rates
between the different states. Ancestral chromosome numbers
have previously sometimes been reconstructed using
maximum parsimony (e.g. Soltis et al., 2005: 178, 298–
302). Parsimony, however, assigns all state transitions the
same weight and disregards information contained in phylo-
genetic branch length, which tends to result in an underesti-
mate of the number of transition events.

In this study we use the approach of Mayrose et al. (2010) to
reconstruct ancestral haploid chromosome numbers in
Araceae, a large and old family of monocotyledons. For a
mainly tropical family, Araceae have a high number of chro-
mosomes counts, with 862 (26 %) of their approx. 3300
species counted, including at least one species for most of
the 117 genera (Petersen, 1989; Bogner and Petersen, 2007;
Appendix; Supplementary Data Table S1 lists all species
with their n and/or 2n counts and the respective references).
Two basic chromosome numbers have been suggested for
Araceae. Larsen (1969) and Marchant (1973) argued for x ¼
7, with higher numbers derived through ancient polyploidiza-
tion events or ascending dysploid series. In contrast, Petersen
(1993) hypothesized a base number of x ¼ 14 because 2n ¼
28 is especially common in the family. The former hypothesis
was put forward without the benefit of a phylogenetic frame-
work, but Petersen (and also Bogner and Petersen, 2007)

took into account morphological phylogenetic analyses
(Grayum, 1990; Mayo et al., 1997).

Molecular phylogenetic work over the past few years has
resulted in aroid relationships at the generic level becoming
relatively clear (French et al., 1995; Cabrera et al., 2008;
Cusimano et al., 2011). We here use the most recent phylogen-
etic analysis of Araceae to infer chromosome evolution in the
family, using the model-based approach of Mayrose et al.
(2010), in both its ML and Bayesian implementations, the
latter having the advantage that uncertainty in ancestral state
probabilities is readily quantified. To test the power of their
method, Mayrose et al. (2010) first used simulated data and
then four exemplar plant clades (Aristolochia, Carex,
Passiflora and Helianthus) with relatively densely sampled
phylogenetic trees and chromosome counts. Sampling in
these clades ranged from 11 to 100 % of the species in the
genera. The Araceae data set analysed here represents an
entire family that is larger and older by at least an order of
magnitude. This poses challenges that we tried to address by
experimentally modifying character codings to take into
account uncertainties in the larger genera and the 13 outgroup
families.

METHODS

Family and order phylogeny

The phylogenetic tree for Araceae on which ancestral chromo-
some numbers were inferred in this study is based on the six-
plastid marker matrix of Cusimano et al. (2011). Clades are
named as proposed in that study. We used the ML tree from
that study or an ultrametric Bayesian tree newly obtained
using BEAST v. 1.6.1 (Drummond and Rambaut, 2007). In
BEAST, we used the GTR + G model with four rate categor-
ies, a mean substitution rate estimated from the data, and a
pure-birth Yule model as the tree prior. The GTR + G
model fit the data best, as assessed with Modeltest (Posada
and Crandall, 1998). The analysis was run for 37 million gen-
erations, sampling every 1000th step. The burn-in fraction, i.e.
the number of trees to be discarded before runs reached statio-
narity, was assessed using the Tracer v. 1.4.1 program (part of
the BEAST package) and AWTY (Nylander et al., 2008). For
one set of analyses (below), we included only Araceae. For
another, we included one exemplar each of the other families
of Alismatales (Stevens, 2001 onwards), using branch lengths
of 0.01 except for Tofieldiaceae (Tofieldia), which was the out-
group used by Cusimano et al. (2011) and had an empirical
branch length.

Chromosome number coding

Total numbers of genera and species of Araceae were taken
from the website Creating a Taxonomic eScience (CATE; http://
www.cate-araceae.org/) and then updated by the Araceae spe-
cialist Josef Bogner (see Acknowledgements). Of the 117 cur-
rently recognized genera of Araceae, 29 are monospecific
(and hence can be coded unambiguously for chromosome
number), 19 have just two species, 31 have 3–10 species, 25
have 11–50 species and 13 have .50 species. Araceae chromo-
some counts were compiled from original literature
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(Supplementary Data Table S1, available online), checking the
generic assignment of each species against the current classifi-
cation and for synonymy. Chromosome numbers for four mono-
typic genera were contributed by J. Bogner and E. Vosyka (see
Acknowledgements) and are newly reported here: Filarum man-
serichense Nicolson (M. Sizemore s.n., voucher in the herbar-
ium M), Hestia longifolia (Ridl.) S. Y. Wong & P. C. Boyce
(J. Bogner 3003, M), Philonotion americanum (A. M. E.
Jonker & Jonker) S. Y. Wong & P. C. Boyce (J. Bogner
2911, M) and Pichinia disticha S. Y. Wong & P. C. Boyce
(P. C. Boyce s.n., M; Supplementary Data Table S1). One
genus was coded as unknown (X), namely the monotypic
Schottariella, the chromosomes of which have not been
counted. The presence of B chromosomes was not coded.
Overall, our phylogenetic analysis includes 113 of the 117
accepted genera of Araceae, with 112 of them coded for
haploid chromosome number (Appendix).

Chromosome numbers were coded in three ways to address
the problem of genera with more than one chromosome
number. First, we coded all reported numbers for each
genus, regardless of frequency in different species, but exclud-
ing odd numbers (Appendix, column 5; Supplementary Data
Table S1). This resulted in 55 genera coded as polymorphic.
Our second coding scheme (‘reduced polymorphism’ coding)
took into account the frequency of different numbers and
treated the most common as the ancestral state (Appendix,
column 7; Supplementary Data Table S1). For example,
Lemnoideae have many different chromosome numbers, but
n ¼ 20 is especially common (Landolt, 1986; Appendix,
Supplementary Data Table S1). For genera with numbers sug-
gesting different ploidy levels, we used the lowest haploid
chromosome number (e.g. Arum). Polymorphisms could thus
be reduced to two states (chromosome numbers) per genus
or even a single haploid number, leaving 34 instead of 55
genera with polymorphic numbers. In a third coding scheme
(‘informed’ coding), we took into account molecular phylo-
genetic analyses for the genera Philodendron (Gauthier
et al., 2008), Biarum and Typhonium (Cusimano et al.,
2010), and assigned the state (chromosome number) found in
the early-branching species to the entire genus. The numbers
thus inferred were compared with those inferred by Bogner
and Petersen (2007). This third approach left just ten genera
coded as polymorphic with maximally two states (Appendix,
column 8; Supplementary Data Table S1, Supplementary
Data Figs S1 and S2). In this third scheme, Lazarum, a
genus of 23 species with a few chromosome counts and insuf-
ficient phylogenetic information (Matthew Barrett, Botanic
Gardens & Parks Authority, West Perth; personal communica-
tion, 2011) was coded as ‘unknown’ (X) because no ancestral
haploid number could be inferred. In all cases, changes among
character states (i.e. chromosome numbers) were assigned
equal probability.

The remaining families of Alismatales were coded as
follows: Alismataceae n ¼ 7, 8; Aponogetonaceae n ¼ 12,
16, 19; Butomaceae n ¼ 7, 8, 10, 11, 12; Cymodoceaceae
n ¼ 7, 8, 10, 14, 15; Hydrocharitaceae n ¼ notably variable;
Juncaginaceae n ¼ 6, 8, 15; Maundiaceae only Maundia tri-
glochinoides, no chromosome count reported; Posidoniaceae
n ¼ 10; Ruppiaceae n ¼ 8–12, 15; Potamogetonaceae n ¼ 7,
12, 14–18; Scheuchzeriaceae n ¼ 11; Tofieldiaceae n ¼ 15;

Zosteraceae n ¼ 6, 9, 10 (numbers from Stevens, 2001
onwards). Those of these families with more than one
number listed by Stevens were coded as polymorphic in all
analyses. The above-described three coding schemes were
first run on the phylogenetic tree that included only Araceae
and then on the tree that included the 13 outgroups, resulting
in six analyses (labelled A1–A6 in Table 1).

Inference of chromosome number change

For ML and Bayesian phylogenetic inferences of ancestral
haploid chromosome numbers, we relied on the chromEvol
program v. 1.2 of Mayrose et al. (2010; http://www.zoology.
ubc.ca/prog/ chromEvol.html). This implements eight models
of chromosome number change (Table 2), two more than
described in the original paper. The models include the follow-
ing six parameters: polyploidization (chromosome number du-
plication with rate r, ‘demi-duplication’ or triploidization with
rate m) and dysploidization (ascending, chromosome gain rate
l; descending, chromosome loss rate d) and two linear rate
parameters, l1 and d1, for the dysploidization rates l and d,
allowing them to depend on the current number of chromo-
somes. Four of the models have a constant rate, whereas the
other four include the two linear rate parameters. Both
model sets also have a null model that assumes no polyploidi-
zation events. We fitted all models to the data, each with 10
000 simulations to compute the expected number of changes
of the four transition types along each branch. The
maximum number of chromosomes was set to 10× higher
then the highest number found in the empirical data, and the
minimum number was set to 1. The null hypothesis (no poly-
ploidy) was tested with likelihood ratio tests using the Akaike
information criterion (AIC).

We also ran an analysis, using the informed polymorphism-
coding scheme, but excluding Calla because of its unclear
relationships in Araceae (Cusimano et al., 2011). For a final
sensitivity test, we again used the informed coding scheme
but the non-ultrametric ML phylogenetic tree from
Cusimano et al. (2011) instead of the ultrametric tree used
in the remaining analyses.

RESULTS

The results obtained in the six analyses (A1–A6) are summar-
ized in Table 1. The three-parameter constant-rate model
(Mc2), with the chromosome duplication rate equal to the
demi-duplication rate, was the best explanation of the empiric-
al data in all analyses. All analyses rejected the null model of
no polyploidy with high significance (P , 0.999). The inferred
rates of change, chromosome numbers at nodes (and their
probability) and numbers of events were similar regardless
of which of the three schemes for polymorphism coding was
applied. We therefore show the results obtained from
Bayesian and ML analyses with the most conservative
coding scheme, namely the one including all polymorphisms
and all outgroups (Table 1, A1; Figs 1 and 2). For comparison,
the results from analysis A6, without outgroups and the phylo-
genetically informed coding (Appendix, column 8), can be
found in Supplementary Data Figs S1 and S2.
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The loss rate d ranges from 45.9 (Table 1, A1) to 58.2 (A3),
and the polyploidization rate r ¼ m from 5.4 (A6) to 6.9 (A1).
A gain rate l is inferred only for models A1 (3.9) and A4
(1.8, analyses with all polymorphisms coded). The number
of events inferred with a probability of .0.5 is higher in
the analyses using the tree with outgroups than in that
without outgroups, simply because it has more branches.
Inferred chromosome loss events range from 98.1 (A1) to
120.1 (A3), duplications from 11.5 (A2) to 14.3 (A1) and
demi-duplications from 13 (A2) to 14.3 (A3) ); in A1, 8.4
chromosome gain events were inferred, whereas, in the tree
without outgroups, the number of losses ranges from 86.6
(A4) to 94.4 (A6), that of duplications from 9.7 (A6) to
10.5 (A4) and that of demi-duplications from 9.3 (A4) to
10.5 (A6); finally in A4, 3.2 chromosome gain events were
inferred (Table 1, Fig. 1 and Supplementary Data Fig. S1,
Bayesian inference). In the Bayesian analyses, the haploid
chromosome number at the root with the highest posterior
probability (PP) was n ¼ 18, and support for this number
was higher in analyses without outgroups (0.37–0.42) than
in those with outgroups (0.18–0.26, Table 1). Similarly, a
range of n ¼ 17–19 at the root node had a PP of ≥0.85
without outgroups, but only ≤0.52 when outgroups were
included (Table 1). A broader range of ancestral numbers
[n ¼ 8–18 (A1); n ¼ 10–20 (A2, A3)] could be inferred
with higher PP (.0.85, Table 1, Fig. 1 and Supplementary
Data Fig. S1). In the ML analyses with outgroups (Fig. 2),
the most likely haploid number at the root was n ¼ 16/17,
and without outgroups it was 17/18 (Table 1;
Supplementary Data Fig. S2).

To describe inferred chromosome evolution in Araceae, we
focus on the Bayesian inference of the most conservative ana-
lysis scheme A1 depicted in Fig. 1. Starting from the root
node, chromosome numbers decreased, becoming n ¼15
along the branch leading to the Spirodela clade (PP ¼ 0.32;
n ¼ 16: PP ¼ 0.29), n ¼ 15 in Araceae (PP ¼ 0.55; n ¼ 14:
PP ¼ 0.21), and n ¼ 14 in the Podolasia clade (PP ¼ 0. 62;
n ¼ 15: PP ¼ 0.24). The number n ¼ 14 is inferred with in-
creasing probability as one moves up the phylogenetic tree
towards the present. It has 0.77 PP in Aroideae and 0.99 PP
in the Ambrosina clade.

Increases in chromosome number are inferred as deriving
from (demi-) duplication events, never via single chromosome
gains (centric fission), whereas decreases in chromosome
number are inferred as resulting from chromosome loss
(fusion). The most likely events (PP .0.5) predicted by the
best-fitting model are descending dysploidy (98.1 events),
and these are inferred both on branches leading to major
clades (e.g. Pothoideae, Lasioideae and Spathicarpeae) and
on terminal branches. The only chromosome gain event in
Araceae inferred with high probability occurred on the
branch leading to Scaphispatha (n ¼ 14). Polyploidization
events (29 in total, Fig. 1) occur mainly towards the tips of
the tree (Gymnostachys, Alloschemone, Urospatha, Anubias,
Montrichardia, Cryptocoryneae, Calla, Filarum and
Peltandra). Only three polyploidization events are inferred
deeper in the tree: a genome duplication on the branch
leading to the Rhaphidophora (Fig. 1) clade (from n ¼ 15
to n ¼ 30), a demi-duplication on the branch leading to the
Zantedeschia clade (from n ¼14 to n ¼ 21) and one
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FI G. 1. Chromosome number evolution in Araceae inferred under Bayesian optimization, with outgroups included and all polymorphic chromosome states
coded (analysis A1 in Table 1). Pie charts at nodes and tips represent the probabilities of the inferred chromosome number(s); numbers inside charts have
the highest probability. Numbers at the tips are chromosome numbers inferred with the highest probability, i.e. the inferred ancestral haploid chromosome
number for each genus. Numbers above branches represent the inferred frequency of those of the four possible events (gains, losses, duplications and demi-

duplications) that had a probability .0.5. The colour coding of chromosome numbers and event types is explained in the insets.
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FI G. 2. Chromosome number evolution in Araceae inferred under maximum likelihood optimization, with outgroups included and all polymorphic chromosome
states coded (analysis A1 in Table 1).

Cusimano et al. — Maximum likelihood-inferred chromosome number changes686



duplication event on the branch leading to the Typhondorum
clade (from n ¼ 14 to n ¼ 28).

Results of the two additional analyses (inclusion/exclusion
of Calla; ultrametric or non-ultrametric trees) did not yield
results substantially different from those obtained in analysis
A6 and shown in Supplementary Data Fig. S1. Model Mc2
remained the best-fitting model, and chromosome number
reconstructions at nodes and change rates were similar.

DISCUSSION

The results presented here provide an example of the power of
ML-based or Bayesian inference of chromosome number
changes. The new approach, which distinguishes (and separ-
ately infers) chromosome gains, losses, polyploidization and
demi-ploidization, not only reconstructs numbers at particular
phylogenetic nodes, but also infers rates of change throughout
the phylogenetic tree. Equally importantly, Bayesian PPs yield
a statistically well-understood measure of confidence in the
results. Most previous ancestral chromosome numbers, in con-
trast, have been inferred without confidence assessment
(examples and critical discussion in Soltis et al., 2005). The
experiments we carried out with the different coding
schemes for genera polymorphic for chromosome number
revealed surprising robustness of the states inferred at interior
nodes, although as expected the inclusion or exclusion of out-
groups (in our case 13 families) affected the number inferred
for the basal-most node, albeit only slightly (Table 1). The
results of the present study further confirm that model-based
chromosome inference works well even with large data matri-
ces; the largest of the four matrices analysed by Mayrose et al.
(2010) had 107 terminals, and the present tree had 126.

Chromosome fusion (loss) appears to be the predominant
pattern in the evolution of chromosome number in Araceae;
polyploidization events are much less frequent and apparently
occurred mainly towards the tips of the tree. However, ancient
polyploidization events may be harder to detect than recent
ones, because of the genomic restructuring that follows poly-
ploidization. Only detailed studies, perhaps involving chromo-
some painting techniques, will reveal how rapid intergenomic

rearrangements have occurred after genome doubling, perhaps
especially following hybridization (Hayasaki et al., 2000; Lim
et al., 2008; Peruzzi et al., 2009; Tu et al., 2009).

In general, basic chromosome numbers inferred according
to Langlet’s (1927) approach, as the lowest detectable or
somehow calculated haploid number within a group of
related taxa, will be low, simply because of the way they are
arrived at (see Introduction for Langlet’s original example).
For Araceae, the hypothesized ancestral numbers were x ¼
14 or x ¼ 7 (Larsen, 1969; Marchant, 1973; Petersen, 1993).
The present study instead inferred an ancestral haploid
number of n ¼ 16 (under ML) or n ¼ 18 (with Bayesian infer-
ence) and, moreover, an evolutionary trend from higher to
lower numbers, rather than the other way around. One needs
to keep in mind that none of the earlier studies (Larsen,
1969; Marchant, 1973; Petersen, 1993) included Lemnoideae
in Araceae, a taxonomic difference that greatly affects the
range of chromosome numbers found in early-diverging
clades (Figs 1 and 2). It is also likely that the high frequency
of 2n ¼ 28 in the well-counted unisexual Aroideae unduly
influenced the hypotheses about x being 7 or 14. Finally, the
earlier hypotheses were developed without the relatively com-
plete and solid phylogenetic information that is available
today.

Nevertheless, any inferences about character evolution from
a taxon sampling of just 112 representatives, however well
coded their states may be, must be regarded with caution.
Every genus with more than one species must have its own,
perhaps complex, history of cytogenetic change. It is also con-
ceivable that dysploidy rates might change in different parts of
the tree (e.g. in clades of taxa living in different environments)
and that relatively derived and rapidly radiating clades,
perhaps with frequent hybridization, might have different
rates of polyploidization than older, genetically isolated
groups. The phylogenetically informed coding scheme (our
scheme three) may be the best way of coding ancestral
haploid chromosome numbers in larger clades (here genera),
an idea that could be tested by cytological work in small
genera with solid phylogenetic hypotheses, such as Arum
(e.g. Espı́ndola et al., 2010).

Given the inferred high ancestral haploid numbers, chromo-
some fusions (neutrally termed ‘losses’ in the models of
Mayrose et al., 2010) must have been common during evolu-
tion of Araceae. This hypothesis now needs to be tested.
Large chromosomes in Araceae, with distally positioned cen-
tromeres, may be the result of fusion between smaller meta-
centric chromosomes (Petersen, 1993). If so, one expects to
find interstitial telomeric sites. With probes, using primer
pairs homologous to the basic plant telomeric repeats, one
can visualize these regions (Ijdo et al., 1991;
Weiss-Schneeweiss et al., 2004). Such chromosome prepara-
tions are now being carried out in our laboratory on
Typhonium species with suspected chromosome fusion (pre-
dicted from high or low chromosome numbers in species of
known phylogenetic relationships).

The results of the present study suggest that quantitative
methods for inferring ancestral haploid numbers should
replace inferences that rely on algebraically finding the greatest
common factor for a series of numbers or on interpreting the
lowest available haploid count as the ancestral condition.

TABLE 2. The eight models of chromosome number evolution
implemented in the software of Mayrose et al. (2010), indicating
the considered parameter estimates (d, l, r, m, d1, l1), the
number of parameters included, and, in the case of m, with

which condition

Model d l r m d1 l1 No. of parameters

Mc1 + + + – – – 3
Mc2 + + + r ¼ m – – 3
Mc3 + + + r= m – – 4
Mc0 + + r ¼ 0 m ¼ 0 – – 2
Ml1 + + + – + + 5
Ml2 + + + r ¼ m + + 5
Ml3 + + + r= m + + 6
Ml0 + + r ¼ 0 m ¼ 0 + + 4

Mc indicates models with constant rates, and Ml models that include linear
rate parameters (d1, l1). Zero indicates the respective null model.
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The new approaches also yield a measure of statistical confi-
dence or estimates of the rates of polyploidization, fusion or
fission, We suggest that the concept ‘x’, which sets botanists
apart from zoologists, be retained only in the context of
small species groups in which the history of polyploidy is
known in detail (Vanzela et al. 2003).

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxford-
journals.org and consist of the following. Table S1: chromo-
some counts for species of Araceae with references. Figure
S1: chromosome number evolution in Araceae inferred under
Bayesian optimization, with phylogenetically informed
coding and outgroups excluded. Figure S2: chromosome
number evolution in Araceae inferred under maximum likeli-
hood optimization, with phylogenetically informed coding
and outgroups excluded.
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APPENDIX

The 117 genera of Araceae with number of species, number and percentage of species with chromosome counts, diploid chromo-
some numbers and coded ancestral haploid chromosome numbers in the three coding schemes used in this study (see Methods).

X ¼ unknown.

Genera
Spp.

number
Spp.

counted %

Counted diploid
chromosome

numbers 2n ¼
All polymorphic

n ¼

Reduced
polymorphic

n ¼
Informed

n ¼

1 Aglaodorum 1 1 100 40 20 20 20
2 Aglaonema 23 6 26 14, 40, 100 7, 20, 50 7, 20, 50 20
3 Alloschemone 2 1 50 84 42 42 42
4 Alocasia 107 17 16 24, 26. 28, 40,42, 56, 68, 70,

84
12, 13, 14, 20, 21, 28,
34, 35, 42

12, 13, 14, 20, 21, 28,
34, 35, 42

14

5 Ambrosina 1 1 100 22 11 11 11
6 Amorphophallus 196 47 24 26, 28, 39 13, 14 13, 14 13
7 Amydrium 5 2 40 60 30 30 30
8 Anadendrum 11 3 27 60 30 30 30
9 Anaphyllopsis 3 1 33 26 13 13 13
10 Anaphyllum 2 2 100 26 13 13 13
11 Anchomanes 6 3 50 40 20 20 20
12 Anthurium 903 171 19 14, 20, 24, 26, 28, 29,

30 + Bs, 34, 36, 40, 48, 49,
56, 60, 84, approx. 90, approx.
124

7, 13, 15, 17, 18, 30 7, 13, 15, 17, 18, 30 15

13 Anubias 8 8 100 48 24 24 24
14 Apoballis 12 6 50 26, 39, 56 13, 28 13 13
15 Aridarum 10 4 40 24, 26 12, 13 12, 13 12, 13
16 Ariopsis 2 1 50 28, 84, 86 14, 42, 43 14 14
17 Arisaema 150 97 65 20, 24, 26, 28, 32,42, 48, 52,

56, 64, 70, 72, 84, 112, 140,
168

10, 12, 13, 14, 16, 21,
24, 26, 28, 32, 42, 56,
70, 84

10, 12, 13, 14, 16, 21,
24, 26, 28, 32, 42, 56,
70, 84

14

18 Arisarum 4 2 50 14, 28, 42, 52, 56 7, 14, 21, 26, 28 7, 14, 21, 26, 28 14
19 Arophyton 7 6 86 38, 40, 54, approx. 76 19, 20, 27 19, 20, 27 19
20 Arum 29 26 90 28, 29, 30, 42, 56, 63, 70, 84 14, 15, 21, 28, 35, 42 14 14
21 Asterostigma 8 2 25 34 17 17 17
22 Bakoa 2 2 100 26 13 13 13
23 Biarum 21 12 57 16, 18, 22, 24, 26, 32, 36, 40,

74, approx. 96, 98, 108
8, 9, 11, 12, 13, 16, 18,
20, 37, 49, 54

8, 9, 11, 12, 13, 16, 18,
20, 37, 49, 54

13

24 Bognera 1 1 100 34 17 17 17
25 Bucephalandra 3 3 100 26 13 13 13
26 Caladium 12 6 50 19, 22, 26, 28, 30 11, 13, 14, 15 11, 13, 14, 15 13, 14
27 Calla 1 1 100 36, 54, 60, 72 18, 27, 30, 36 18 18
28 Callopsis 1 1 100 36 17 17 17
29 Carlephyton 3 3 100 54, 108 27, 54 27 27
30 Cercestis 10 6 60 approx. 36, 42 21 21 21
31 Chlorospatha 28 2 7 26 13 13 13
32 Colletogyne 1 1 100 44, 46, 54 22, 23, 27 27 27
33 Colocasia 16 5 31 26, 28, 30, 36, 38, 42, 44, 46,

48, 52, 58, 84, 116
13, 14, 15, 18, 19, 21,
22, 23, 24, 26, 42, 58

13, 14, 15, 18, 19, 21,
22, 23, 24, 26, 42, 58

14

34 Croatiella 1 1 100 34 17 17 17
35 Cryptocoryne 60 64 107 20, 22, 28, 30, 33, 34, 36, 42,

54, 56, 66, 68, 70, 72, 85, 88,
90, 102, 112, approx. 132

10, 11, 14, 15, 17, 18,
21, 27, 28, 33, 34, 35,
36, 44, 45, 51, 56

10, 11, 14, 15, 17, 18,
21, 27, 28, 33, 34, 35,
36, 44, 45, 51, 56

17, 18

36 Culcasia 24 9 38 approx. 40, 42 21 21 21
37 Cyrtosperma 12 4 33 24, 26 12, 13 12, 13 13
38 Dieffenbachia 57 14 25 34, 36, 40, 44, 68 17, 18, 20, 22, 34 17 17
39 Dracontioides 2 1 50 26 13 13 13
40 Dracontium 24 5 21 26 13 13 13
41 Dracunculus 2 2 100 28, 32 14, 16 14 14
42 Eminium 9 3 33 28 14 14 14
43 Epipremnum 15 3 20 60, 70, 84 30, 35, 42 30, 35, 42 30
44 Filarum 1 1 100 28 14 14 14
45 Furtadoa 2 1 50 40 20 20 20
46 Gearum 1 1 100 34, 68 17, 34 17 17
47 Gonatopus 5 4 80 34, approx. 68 17 17 17
48 Gorgonidium 8 3 38 34 17 17 17
49 Gymnostachys 1 1 100 48 24 24 24
50 Hapaline 8 2 25 26, 28 13, 14 13, 14 13, 14

Continued
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TABLE Continued

Genera
Spp.

number
Spp.

counted %

Counted diploid
chromosome

numbers 2n ¼
All polymorphic

n ¼

Reduced
polymorphic

n ¼
Informed

n ¼

51 Helicodiceros 1 1 100 56 14 14 14
52 Hestia 1 1 100 26 13 13 13
53 Heteropsis 17 1 6 26–28 13, 14 13, 14 14
54 Holochlamys 1 1 100 30, 60 15 15 15
55 Homalomena 117 24 21 38, 40, 42, 56 19, 20, 21, 28 19, 20, 21, 28 20
56 Incarum 1 1 100 34 17 17 17
57 Jasarum 1 1 100 22 11 11 11
58 Lagenandra 15 14 93 32, 36, approx. 72 16, 18 16, 18 18
59 Landoltia 1 1 100 40,46, 50 20, 23, 25 20 20
60 Lasia 2 1 50 26 13 13 13
61 Lasimorpha 1 1 100 26 13 13 13
62 Lazarum 23 2 9 approx. 118, 130, 152, approx.

160,168
59, 65, 76, 84 59, 65, 76, 84 X

63 Lemna 13 11 85 20, 30, 36, 40, 42, 44, 50, 60,
63, 64, 70, 80, 84, 126

10, 15, 18, 20, 21, 22,
25, 30, 32, 35, 40, 42, 63

20 20

64 Lysichiton 2 2 100 28 14 14 14
65 Mangonia 2 1 50 34 17 17 17
66 Monstera 39 5 13 24, 56, 58, 60 12, 28, 29, 30 30 30
67 Montrichardia 2 1 50 48 24 24 24
68 Nephthytis 6 5 83 36, 40, 60 18, 20, 30 18, 20 18, 20
69 Ooia 2 1 50 26 13 13 13
70 Orontium 1 1 100 26 13 13 13
71 Pedicellarum 1 1 100 24 12 12 12
72 Peltandra 2 1 50 112 56 56 56
73 Philodendron 483 31 6 26, 30, 32, 34, 36, 48, 54 13, 15, 16, 17, 18, 24, 27 13, 15, 16, 17, 18, 24, 27 17, 18
74 Philonotion 3 1 33 26 13 13 13
75 Phymatarum 1 1 100 26, 28 13 13 13
76 Pichinia 1 1 100 26 13, 14 13, 14 13
77 Pinellia 9 9 100 20, 26, 28, 39, 42, 52, 54, 72,

78, 90, 91, 99, 104, 108, 115,
116, 117, 128, 129

10, 13, 14, 21, 26, 27,
36, 39, 45, 52, 54, 58, 64

10, 13, 14, 21, 26, 27,
36, 39, 45, 52, 54, 58, 64

13

78 Piptospatha 10 6 60 26, 39 13 13 13
79 Pistia 1 1 100 14, 28 7, 14 7, 14 14
80 Podolasia 1 1 100 26 13 13 13
81 Pothoidium 1 1 100 24 12 12 12
82 Pothos 57 3 5 24, 36, 60 12, 18, 30 12 12
83 Protarum 1 1 100 28 14 14 14
84 Pseudodracontium 7 2 29 26 13 13 13
85 Pseudohydrosme 2 1 50 approx. 40 20 20 20
86 Pycnospatha 2 2 100 26 13 13 13
87 Remusatia 4 4 100 20, 28, 30, 42, 56 10, 14, 15, 21, 28 10, 14, 15, 21, 28 14
88 Rhaphidophora 98 8 8 26, 42, 54, 56, 60, approx. 120 13, 21, 27, 28, 30 28, 30 28, 30
89 Rhodospatha 29 3 10 28, 56, 60 14, 28, 30 14, 28 14
90 Sauromatum 9 7 78 26, 52, 54, 104 13, 26, 27, 52 13 13
91 Scaphispatha 2 1 50 28 14 14 14
92 Schismatoglottis 100 15 15 26, 30, 39, 52 13, 15, 26 13 13
93 Schottariella 1 0 0 – X X X
94 Scindapsus 35 8 23 48, 60 (42, 56, 58, 64, 70,

112), approx. 110
28, 30 28, 30 28, 30

95 Spathantheum 2 2 100 34 17 17 17
96 Spathicarpa 4 1 25 34 17 17 17
97 Spathiphyllum 49 9 18 30, 60 15, 30 15 15
98 Spirodela 3 2 67 20, 30, 32, 36, 38, 40, 50, 80 10, 15, 16, 18, 19, 20,

25, 40
15, 20 15, 20

99 Stenospermation 50 4 8 28 14 14 14
100 Steudnera 9 4 44 28, 36,56 14, 18, 28 14 14
101 Stylochaeton 18 4 22 28, 56 14, 28 14, 28 14
102 Symplocarpus 5 2 40 30, 60 15, 30 15, 30 15
103 Synandrospadix 1 1 100 34 17 17 17
104 Syngonium 35 9 26 22, 24, 26, 28 11, 12, 13, 14 14 14
105 Taccarum 6 1 17 34 17 17 17
106 Theriophonum 5 5 100 16, 24, 32 (14, 18) 8, 12, 16 8 8
107 Typhonium 68 8 12 10, 16, 18, 20, 26, 36, 52,65 5, 8, 9, 10, 13, 18, 26 5, 6, 7, 8, 9, 10, 13, 18,

26
8, 13

Continued
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TABLE Continued

Genera
Spp.

number
Spp.

counted %

Counted diploid
chromosome

numbers 2n ¼
All polymorphic

n ¼

Reduced
polymorphic

n ¼
Informed

n ¼

108 Typhonodorum 1 1 100 112 56 56 56
109 Ulearum 2 2 100 14 7 7 7
110 Urospatha 12 1 8 52 26 26 26
111 Wolffia 11 8 73 16, 20, 22, 23, 30, 40, 42, 46,

50, 60, 62, 63, 70, 80
8, 10, 11, 15, 20, 21, 23,
25, 30, 31, 35, 40

20 20

112 Wolffiella 10 7 70 20, 40, 42, 50, 70 10, 20, 21, 25, 35 20 20
113 Xanthosoma 75 11 15 22, 26, 39, 52 11, 13, 26 11, 13, 26 13
114 Zamioculcas 1 1 100 34 17 17 17
115 Zantedeschia 8 7 88 32 16 16 16
116 Zomicarpa 3 2 67 20, 22 10, 11 10, 11 10
117 Zomicarpella 2 1 50 26 13 13 13

Total 3309 847
Mean 61

Cusimano et al. — Maximum likelihood-inferred chromosome number changes692


